

FALL 1999 FINAL EXAM

1. (11 pts) Find the equation of the plane which passes through the points $(1,2,3)$, $(3,-2,1)$, and $(-1,2,1)$. (Ans: $x + y - z = 0$.)
2. (12 pts) Find the curvature of the ellipse $x = 3 \cos t$, $y = 4 \sin t$ at the points $(3,0)$ and $(0,4)$. (Ans: $\kappa = 4$ and $\kappa = 3$.)
3. (11 points) Find the center and the radius of the sphere $x^2 + y^2 + z^2 + 4x + 6y - 10z + 2 = 0$. (Ans: $(x + 2)^2 + (y + 3)^2 + (z - 5)^2 = 36$, so center is $(-2, -3, 5)$ and radius is 6.)
4. (12 points) If $xy^2z^3 + x^3y^2z = x + y + z$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

$$\left(\text{Ans: } \frac{\partial z}{\partial x} = -\frac{y^2 z^3 + 3 x^2 y^2 z - 1}{3 x y^2 z^2 + x^3 y^2 - 1}, \frac{\partial z}{\partial y} = -\frac{2 x y z^3 + 2 x^3 y z - 1}{3 x y^2 z^2 + x^3 y^2 - 1} \right)$$
5. (12 points) Find the equations of the tangent plane and normal line to the surface given by $x^2y + xz^2 + y^2z = -1$ at the point $(1,2,-1)$. (Ans: $5(x - 1) - 3(y - 2) + 2(z + 1) = 0$, $\mathbf{r}(t) = \langle 1, 2, -1 \rangle + t\langle 5, -3, 2 \rangle$.)
6. (12 points) Write the integral $\int_{-1}^1 \int_{x^2}^1 f(x, y) dy dx$ as an integral $dx dy$.

$$\left(\text{Ans: } \int_0^1 \int_{-\sqrt{y}}^{\sqrt{y}} f(x, y) dx dy. \right)$$
7. (12 points) Find the area enclosed by one loop of the 4-leaved rose $r = \cos 2\theta$. (Ans: $\frac{\pi}{8}$.)
8. (12 points) Find the volume that lies under the paraboloid $z = x^2 + y^2$ and over the triangle with vertices $(1,0,0)$, $(0,1,0)$, and $(0,0,0)$. (Ans: $\frac{1}{6}$.)
9. (11 points) Find the volume of the solid enclosed by the cylinder $x = y^2$ and the planes $z = 0$ and $x + z = 1$. (Ans: $\frac{8}{15}$.)
10. (12 points) Convert the integral $\int_{-1}^1 \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{x^2+y^2}^{2-x^2-y^2} f(x, y, z) dz dy dx$ to an equivalent integral in cylindrical coordinates.

$$\text{Ans: } \int_0^{2\pi} \int_{y^2}^1 \int_{r^2}^{2-r^2} f(r \cos(\theta), r \sin(\theta), z) r \, dz \, dr \, d\theta.$$

11. (11 points) Evaluate $\int_C y \sin z \, ds$ where C is the helix given by $x = \cos t$, $y = \sin t$, $z = t$, $0 \leq t \leq 2\pi$. (Ans: $\sqrt{2}\pi$.)

12. (12 points) Find the local maxima, local minima, and saddles of $f(x, y) = x^3 + 3xy - y^3$. (Ans: Saddle at $(0,0)$. Local min at $(1,-1)$.)

13. (12 points) If $u = x^y$, $x = \sin t$, $y = \cos t$, find $\frac{du}{dt}$ when $t = \frac{\pi}{4}$.

$$\text{Ans: } \sin(t)^{\cos(t)} \left(-\sin(t) \ln(\sin(t)) + \frac{\cos(t)^2}{\sin(t)} \right)$$

14. (12 points) Let $\mathbf{F} = 2xy^3z^4 \mathbf{i} + 3x^2y^2z^4 \mathbf{j} + 4x^2y^3z^3 \mathbf{k}$. Find f with $\nabla f = \mathbf{F}$ and use it to evaluate the integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{r} = t \mathbf{i} + t^2 \mathbf{j} + t^3 \mathbf{k}$, $0 \leq t \leq 2$. (Ans: 1048576.)

15. (12 points) Use Green's Theorem to find the work done by $\mathbf{F} = x(x+y) \mathbf{i} + 2xy^2 \mathbf{j}$ in moving a particle from the origin along the x-axis to $(1,0)$, then along the line segment from $(1,0)$ to $(0,1)$, and then back to the origin along the y-axis. (Ans: 0.) For no particular reason I can see - it just comes out that way.

16. (12 points) Use the Divergence Theorem to calculate the integral $\iint_S \mathbf{F} \cdot d\mathbf{S}$ where $\mathbf{F} = xy^2 \mathbf{i} + yz \mathbf{j} + zx^2 \mathbf{k}$ and S is the surface of the solid that lies between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$ and between the planes $z = 1$ and $z = 3$. (Ans: 27π .)

17. (12 points) Evaluate the surface integral $\iint_S \mathbf{F} \cdot d\mathbf{S}$ where $\mathbf{F} = e^y \mathbf{i} + ye^x \mathbf{j} + x^2y \mathbf{k}$ and S is the part of the paraboloid $z = x^2 + y^2$ that lies above the square $0 \leq x \leq 1$, $0 \leq y \leq 1$, and has upward orientation. (Ans: $-\frac{5}{3}e + \frac{11}{6}$.)

BONUS PROBLEM: Find the volume of the intersection of the two cylinders $x^2 + y^2 = 1$ and $x^2 + z^2 = 1$. Can you find the volume of the triple intersection of these two and $y^2 + z^2 = 1$? (Ans: The first part was on midterm #2. The second part is a pain.)