

1. (12 points) If  $\mathbf{a} = \langle 1, 2, 3 \rangle$  and  $\mathbf{b} = \langle 3, -1, 3 \rangle$ , find  $\mathbf{a} \cdot \mathbf{b}$  and  $\mathbf{a} \times \mathbf{b}$ .
2. (12 points) Evaluate the integral  $\int_0^1 \int_{x^2}^1 x^3 \sin(y^3) dy dx$  by reversing the order of integration.
3. (12 points) Find the equations of the tangent plane and normal line to the surface described by  $z + 1 = xe^y \cos(z)$  at the point  $(1, 0, 0)$ .
4. (14 points) If  $e^{xy} - e^{zx^2} = 1$ , find  $\frac{\partial z}{\partial x}$ .
5. (12 points) Find the local maxima, minima, and saddles of  $f(x, y) = x^3y + 12x^2 - 8y$ .
6. (12 points) Find the absolute maximum and minimum of  $f(x, y) = x^2 - y^3$  subject to the constraint  $2x^2 + 3y^2 = 5$ . Don't worry if you don't have a calculator. You'll get credit if you find all of the potential maxima and minima.
7. (14 points) Find a function  $f(x, y, z)$  so that  $\nabla f = \langle zye^{xy}, zxe^{xy} + x, e^{xy} + 2z \rangle$  and use it to evaluate the line integral  $\int_C \nabla f \cdot d\mathbf{r}$  along any curve from  $(1, 0, 0)$  to  $(0, 1, 1)$ .
8. (12 points) Find the volume under the cone  $z = \sqrt{x^2 + y^2}$  which lies above the ring bounded by the circles  $x^2 + y^2 = 1$  and  $x^2 + y^2 = 9$  in the  $xy$ -plane.
9. (14 points) Evaluate the line integral  $\int_C \mathbf{F} \cdot d\mathbf{r}$ , where  $\mathbf{F}(x, y, z) = x^2 \mathbf{i} + xy \mathbf{j} + z^2 \mathbf{k}$  and  $\mathbf{r}(t) = \sin(t) \mathbf{i} + \cos(t) \mathbf{j} + t^2 \mathbf{k}$ ,  $0 \leq t \leq \pi/2$ .
10. (12 points) For what value of  $x$  is the curvature of  $y = x^3$  a maximum?
11. (12 points) Find  $\int \int_S \mathbf{F} \cdot d\mathbf{S}$ , where  $\mathbf{F} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$  and  $S$  is the sphere  $x^2 + y^2 + z^2 = 9$ .
12. (12 points) Evaluate  $\oint_C (3y - e^{\sin x}) dx + (7x + \sqrt{y^4 + 1}) dy$ , where  $C$  is the boundary of the rectangle  $0 \leq x \leq 2$ ,  $0 \leq y \leq 3$ .

13. (12 points) Find  $\iint_S z \, dS$ , where  $S$  is the surface with parametric equations  $x = \cos(u)$ ,  $y = \sin(u)$ ,  $z = v$ ,  $0 \leq u \leq 2\pi$ ,  $0 \leq v \leq 2$ .

14. (12 points) Find the area of the part of the paraboloid  $z = x^2 + y^2$  that lies under the plane  $z = 9$ .

BONUS PROBLEM (10 POINTS) Let  $S$  and  $E$  be as in the statement of the Divergence Theorem. Prove that

$$\iint_S (f \nabla g) \cdot d\mathbf{S} = \iiint_E (f \nabla^2 g + \nabla f \cdot \nabla g) \, dV.$$