

1. (12 points) Find the equation of the plane passing through $A(1, 1, 0)$, $B(0, 2, 3)$, and $C(1, 0, 3)$. What is the area of $\triangle ABC$? (ANS: $6(x-1) + 3(y-1) + z = 0$, $\text{Area} = \frac{1}{2}\sqrt{46}$.)

2. (12 points) Find the angle between the planes $x + y - z = 1$ and $2x - 3y + 4z = 5$. (ANS. $\theta = \cos^{-1} \frac{-5}{\sqrt{87}}$.)

3. (12 points) Find the equation of the plane which passes through $(-1, 2, 1)$ and contains the line of intersection of $x + y - z = 2$ and $2x - y + 3z = 1$. (ANS. $(x+1)-2(y-2)+4(z-1)=0$.)

4. (14 points) If $e^{xy} - e^{zx^2} = 1$, find $\frac{\partial z}{\partial x}$. (ANS. $\frac{\partial z}{\partial x} = \frac{ye^{xy} - 2xze^{zx^2}}{x^2e^{zx^2}}$.)

5. (12 points) A particle starts at the origin with initial velocity $\mathbf{i} + 2\mathbf{j} + \mathbf{k}$. Its acceleration is $\mathbf{a}(t) = t\mathbf{i} + \mathbf{j} + t^2\mathbf{k}$. Find the position of the particle as a function of t . (ANS. $\mathbf{r}(t) = \langle \frac{t^3}{6} + t, \frac{t^2}{2} + 2t, \frac{t^4}{12} + t \rangle$.)

6. (12 points) If $f(x, y) = e^{xy^2}$, find f_{xxy} . (ANS. $4y^3e^{xy^2} + 2xy^5e^{xy^2}$.)

7. (14 points) Find the tangential and normal components of the acceleration vector if $\mathbf{r}(t) = (3t - t^3)\mathbf{i} + 3t^2\mathbf{j}$. Your answers should be *vectors*. (ANS. $\mathbf{a}_T = \langle \frac{6t - 6t^3}{1 + t^2}, \frac{12t^2}{1 + t^2}, 0 \rangle$, $\mathbf{a}_N = \langle \frac{-12t}{1 + t^2}, \frac{-6 + 6t^2}{1 + t^2}, 0 \rangle$.)

8. (12 points) Find the extreme values of $f(x, y) = e^{-xy}$ on the region $x^2 + 4y^2 \leq 1$. (ANS. $\max = e^{1/4}$, $\min = e^{-1/4}$.)

9. (14 points) Change the order of integration in the integral $\int_0^1 \int_{y^2}^{2-y} f(x, y) dx dy$. (ANS. $\int_0^1 \int_0^{\sqrt{x}} f(x, y) dy dx + \int_1^2 \int_0^{2-x} f(x, y) dy dx$.)

10. (12 points) Find the volume of the region bounded by $z = 3x^2 + 3y^2$ and $z = 4 - x^2 - y^2$. (ANS. 2π .)

11. (12 points) Evaluate the integral $\int_0^1 \int_0^{\sqrt{1-y^2}} \int_{x^2+y^2}^{\sqrt{x^2+y^2}} xyz \, dz \, dx \, dy$ by changing to cylindrical coordinates. (ANS. $1/96$.)

12. (12 points) Find $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = (y^2 e^y) \mathbf{i} + (2xye^y + xy^2 e^y) \mathbf{j}$ and C is any curve from $(0, 0)$ to $(3, 4)$. (ANS. $48e^4$.)

13. (12 points) If $\mathbf{F} = y^2 \mathbf{i} + (2xy + e^{3z}) \mathbf{j} + 3ye^{3z} \mathbf{k}$ find f so that $\nabla f = \mathbf{F}$. (ANS. $f(x, y) = xy^2 + ye^{3z}$.)

14. (12 points) Evaluate $\int_C xy \, dx + 2x^2 \, dy$ where C consists of the line segment from $(-2, 0)$ to $(2, 0)$ and the top half of $x^2 + y^2 = 4$. (ANS. 0 .)

15. (12 points) Evaluate $\iint_S \mathbf{F} \cdot d\mathbf{S}$ where $\mathbf{F} = xze^y \mathbf{i} - xze^y \mathbf{j} + z \mathbf{k}$ and S is the part of the plane $x + y + z = 1$ in the first octant with the downward orientation. (ANS. $-1/6$.)

16. (14 points) Evaluate $\iint_S \mathbf{F} \cdot d\mathbf{S}$ where $\mathbf{F} = xy \mathbf{i} + (y^2 + e^{xz^2}) \mathbf{j} + \sin(xy) \mathbf{k}$ and S is the surface bounded by $z = 1 - x^2$, $z = 0$, $y = 0$, and $y + z = 2$. (ANS. $184/35$.)

BONUS PROBLEM (5 POINTS): Evaluate the integral $\int_0^\infty \frac{\arctan(\pi x) - \arctan(x)}{x} \, dx$ by first writing it as an iterated integral and then reversing the order of integration. (ANS. $\pi \ln(\pi)/2$.)