

1. (10 points) Find the local maxima, minima, and saddles of $f(x, y) = x^3 - 3xy - y^3$.

$\partial f / \partial x = 3x^2 - 3y = 0$, $\partial f / \partial y = -3x - 3y^2 = 0 \implies y = x^2$ and $x = -y^2$. Therefore, $x = -x^4$ and $x = 0$ or $x = -1$ and the critical points are $(-1, 1)$ and $(0, 0)$. $D = -36xy - 9$, so the critical point at $(0, 0)$ is a saddle and the critical point at $(-1, 1)$ is a local maximum.

2. (10 points) Find the absolute maximum and minimum of $f(x, y) = xy$, subject to the constraint $9x^2 + y^2 = 4$. $\nabla f = \langle y, x \rangle$, and $\nabla g = \langle 18x, 2y \rangle$. The critical points occur when $\nabla f = \lambda g$, which happens when

$$\begin{vmatrix} y & x \\ 18x & 2y \end{vmatrix} = 2y^2 - 18x^2 = 0$$

This gives us $y = \pm 3x$. Substituting into $9x^2 + y^2 = 4$, we get $18x^2 = 4$, so $x = \pm\sqrt{2}/3$, $y = \pm\sqrt{2}$. It follows that the maximum value of $f(x, y) = xy$ is $2/3$ and the minimum value is $-2/3$ when $9x^2 + y^2 = 4$.

3. (10 points) Change the order of integration in the integral $\int_0^3 \int_{y^2}^9 f(x, y) dx dy$. Do NOT try to evaluate the integral.

The answer is $\int_0^9 \int_0^{\sqrt{x}} f(x, y) dy dx$.

4. (10 points) find the volume bounded by the paraboloid $z = 3x^2 + 3y^2$ and the plane $z = 3$.

The integral is $\int \int_D 3 - 3x^2 - 3y^2 dy dx$, where D is the region $x^2 + y^2 \leq 1$, so in polar coordinates we have $\int_0^{2\pi} \int_0^1 (3 - 3r^2) r dr d\theta = 3\pi/2$.

5. (10 points) Set up the triple integral to find $\int \int \int_E (x + 2y) dV$, where E is bounded by the planes $x = 0$, $y = 0$, $z = 0$, and $2x + y + 3z = 6$. Please do NOT try to integrate the integral!

$$\int_0^3 \int_0^{6-2x} \int_0^{\frac{6-y-2x}{3}} (x + 2y) dz dy dx.$$

6. (10 points) Show that the integral $\int_C (12y^2 - 12x^3y^3) dx + (24xy - 9x^4y^2) dy$ is independent of path and evaluate the integral if C is the path $x(t) = 1 + 2t$, $y(t) = 1 + t$, $0 \leq t \leq 1$.

Let $P = 12y^2 - 12x^3y^3$ and $Q = 24xy - 9x^4y^2$. Then $\partial P / \partial y = 24y - 36x^3y^2 = \partial Q / \partial x$, so the integral is independent of path. $\langle P, Q \rangle = \nabla f$, where $f = 12xy^2 - 3x^4y^3$. By the Fundamental Theorem, the value of the integral is then $f(3, 2) - f(1, 1) = -1809$.

7. (10 points) Find the Jacobian of the transformation $x = u - v^2$, $y = u + v^2$.

$$\frac{\partial(x, y)}{\partial(u, v)} = 4v.$$

8. (10 points) Find $\int_C y \, dx + xy \, dy$, along the curve $x = y^3$ from $(1, 1)$ to $(8, 2)$.

Parameterize by $x = t^3$, $y = t$, $0 \leq t \leq 2$.

$$\int_1^2 t(3t^2)dt + t^3(t)dt = 349/20.$$

9. (10 points) Use Green's Theorem to evaluate the line integral $\int_C (x^3 - y^3)dx + (x^3 + y^3)dy$, where C is the boundary of the region between the circles $x^2 + y^2 = 1$, and $x^2 + y^2 = 4$.

$$\int_C (x^3 - y^3)dx + (x^3 + y^3)dy = \iint_D 3x^2 + 3y^2 \, dA = \int_0^{2\pi} \int_1^2 3r^2 r \, dr \, d\theta = 45\pi/2.$$

10. (10 points) Find the centroid of the solid which lies above the cone $\phi = \pi/3$ and below the sphere $\rho = 4 \cos \phi$.

$$\text{volume} = \int_0^{2\pi} \int_0^{\pi/3} \int_0^{4 \cos \phi} \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta = 10\pi.$$

$$M_{xy} = \int_0^{2\pi} \int_0^{\pi/3} \int_0^{4 \cos \phi} \rho \cos(\phi) \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta = 21\pi.$$

$$\bar{x} = \bar{y} = 0 \text{ by symmetry. } \bar{z} = 21\pi/10\pi = 21/10.$$