

1. (10 pts) Find the equation of the plane which passes through the points $P(1, 4, 6)$, $Q(-2, 5, -1)$, and $R(1, -1, 1)$. Find the distance from the point $(1, 2, 3)$ to this plane.

Solution: $PQ := \langle -3, 1, -7 \rangle$ and $PR = \langle 0, -5, -5 \rangle$. We have $PQ \times PR = \langle -40, -15, 15 \rangle$. The equation of the plane is then

$$-40(x - 1) - 15(y + 1) + 15(z - 1) = 0 \text{ or } -40x - 15y + 15z + 10 = 0.$$

The distance from the point to the plane is

$$\frac{|-40(1) - 15(2) + 15(3) + 10|}{\sqrt{40^2 + 15^2 + 15^2}} = \frac{3}{\sqrt{82}}.$$

2. (10 pts) Find the area of the triangle with vertices $P(1, 4, 6)$, $Q(-2, 5, -1)$, and $R(1, -1, 1)$.

Solution: As in Problem #1 we have $PQ := \langle -3, 1, -7 \rangle$, $PR = \langle 0, -5, -5 \rangle$, and $PQ \times PR = \langle -40, -15, 15 \rangle$. The area is $\frac{1}{2}|\langle -40, -15, 15 \rangle| = \frac{1}{2}\sqrt{40^2 + 15^2 + 15^2} = \frac{5\sqrt{82}}{2}$.

3. (10 pts) Find the length of the curve $\mathbf{r}(t) = 3 \sin t \mathbf{i} + 4t \mathbf{j} + 3 \cos t \mathbf{k}$ from $t = 2$ to $t = 4$.

Solution: $r'(t) = 3 \cos(t) \mathbf{i} + 4 \mathbf{j} - 3 \sin(t) \mathbf{k}$, so $|r'(t)| = 5$.

$$L = \int_2^4 |r'(t)| dt = \int_2^4 5 dt = 10.$$

4. (10 pts) Find parametric equations for the line passing through the point $(2, -7, 5)$ which is parallel to the line $x = 2t + 7$, $y = -3t + 5$, $z = t + 1$.

Solution: $x = 2t + 2$, $y = -3t + -7$, $z = t + 5$.

5. (10 pts) Find the equation of the tangent plane to the surface $z = \sin(x^2 + y)$ at the point $(1, -1, 0)$.

Solution: The normal vector to the surface is $\langle -2, -1, 1 \rangle$, so the equation of the plane is

$$-2(x - 1) - (y + 1) + z = 0.$$

6. (10 pts) Find the tangential and normal components of the acceleration vector if

$$\mathbf{r}(t) = (t - \sin t)\mathbf{i} + (1 - \cos t)\mathbf{j}.$$

Your answers should be vectors.

Solution: $r'(t) = \langle 1 - \cos(t), \sin(t) \rangle$ and $r''(t) = \langle \sin(t), \cos(t) \rangle$.

$$a_{\mathbf{N}} = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|} = \frac{|\cos(t) - 1|}{\sqrt{2 - 2\cos(t)}} = \frac{1}{2}\sqrt{1 - \cos(t)}.$$

$$a_{\mathbf{T}} = \frac{\mathbf{r}'(t) \cdot \mathbf{r}''(t)}{|\mathbf{r}'(t)|} = \frac{\sin(t)}{\sqrt{2 - 2\cos(t)}}.$$

The “vector” part was just that I wanted you to write

$$\left(\frac{1}{2}\sqrt{1 - \cos(t)} \right) \mathbf{N} \quad \text{and} \quad \left(\frac{\sin(t)}{\sqrt{2 - 2\cos(t)}} \right) \mathbf{T}.$$

7. (10 pts) At what point does the curve $y = e^x$ have maximum curvature?

Solution: $f(x) = e^x$, $f'(x) = e^x$, and $f''(x) = e^x$, so

$$k = \frac{e^x}{(1 + e^{2x})^{\frac{3}{2}}}, \text{ so } k'(x) = -\frac{e^x(-1 + 2e^{(2x)})}{(1 + e^{(2x)})^{(5/2)}}$$

$k'(x) = 0$ when $-1 + 2e^{(2x)} = 0$, which means that $e^{2x} = 1/2$ or $x = -\frac{1}{2}\ln(2)$. $e^{-\frac{1}{2}\ln(2)} = \frac{\sqrt{2}}{2}$, so the point we want is $\left(-\frac{1}{2}\ln(2), \frac{\sqrt{2}}{2}\right)$.

8. (10 pts) If $xyz = \sin(x + y + z)$, find $\frac{\partial z}{\partial x}$.

Solution: Let $F(x, y, z) = xyz - \sin(x + y + z) = 0$. Then

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{yz - \cos(x + y + z)}{xy - \cos(x + y + z)}.$$

9. (10 pts) The temperature at a point (x, y, z) is given by

$$T(x, y, z) = 200e^{-x^2-3y^2-9z^2}$$

where T is measured in degrees centigrade and x , y , and z are measured in meters.

a. (7 points) Find the rate of change of temperature at the point $P(2, -1, 2)$ in the direction toward the point $(3, -3, 3)$.

$$\nabla T = \langle -400x e^{(-x^2-3y^2-9z^2)}, -1200y e^{(-x^2-3y^2-9z^2)}, -3600z e^{(-x^2-3y^2-9z^2)} \rangle$$

$\langle 3, -3, 3 \rangle - \langle 2, -1, 2 \rangle = \langle 1, -2, 1 \rangle$, so the direction is $u = \frac{1}{\sqrt{6}}\langle 1, -2, 1 \rangle$. At $(2, -1, 2)$, $\nabla T = \langle -800 e^{(-43)}, 1200 e^{(-43)}, -7200 e^{(-43)} \rangle$.

b. (3 points) In which direction does the temperature increase the fastest at P ?

In the direction of the gradient or $\frac{\langle -800 e^{(-43)}, 1200 e^{(-43)}, -7200 e^{(-43)} \rangle}{|\langle -800 e^{(-43)}, 1200 e^{(-43)}, -7200 e^{(-43)} \rangle|}$.

10. (10 pts) Find the angle between the main diagonal of a cube and the diagonal of one of its faces.

