

1. (10 points) Given $P(1, 2, 3)$, $Q(-1, 1, 1)$, $R(2, 0, 2)$, $S(5, -1, -2)$, find the volume of the parallelopiped with adjacent sides PQ , PR , and PS . (ANSWER: 25)

2. (10 points) Find the equation of the normal plane to the curve $\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + t^3\mathbf{k}$ at the point where $t = 2$. (ANSWER: $x + 4y + 12z = 114$)

3. (12 points) Find the length of the curve $\mathbf{r}(t) = \cos(2t)\mathbf{i} + \sin(2t)\mathbf{j} + t\mathbf{k}$, $0 \leq t \leq 2\pi$. (ANSWER: $2\sqrt{5}\pi$)

4. (14 points) Find the tangential component $a_T\mathbf{T}$ of acceleration if $\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + t^3\mathbf{k}$ and $t = 1$. (ANSWER: $\langle \frac{11}{7}, \frac{22}{7}, \frac{33}{7} \rangle$)

5. (10 points) Find the position vector $\mathbf{r}(t)$ if $\mathbf{a}(t) = t^2\mathbf{i} + t\mathbf{j} + e^t\mathbf{k}$, $\mathbf{v}(0) = \mathbf{i} + \mathbf{j}$, and $\mathbf{r}(0) = \mathbf{k}$. (ANSWER: $\mathbf{r}(t) = (\frac{t^4}{12} + t)\mathbf{i} + (\frac{t^3}{6} + t)\mathbf{j} + (e^t - t)\mathbf{k}$)

6. (12 points) Find $\frac{\partial z}{\partial x}$ if $x^3 + y^3 + z^3 = xy + xz + yz$. (ANSWER: $\frac{3x^2 - y - z}{-3z^2 + x + y}$)

7. (12 points) If $z = xy \sec(x)$, $x = t^2 + u$, and $y = u^2 + tv$, find $\frac{\partial z}{\partial u}$ when $t = 1$, $u = -1$, and $v = 3$. (For those who've forgotten, $\frac{d}{dx} \sec x = \sec x \tan x$). (ANSWER: 4)

8. (15 points) Find all local maxima, minima, and saddles of the function $f(x, y, z) = x^3 - 6xy + 8y^3$. (ANSWER: saddle at $(0, 0)$ and local min at $(1, \frac{1}{2})$)

9. (12 points) Calculate the integral $\int_0^1 \int_x^1 e^{x/y} dy dx$ by first reversing the order of integration. (ANSWER: $\frac{e-1}{2}$)

10. (15 points) Find the maximum and minimum values of $f(x, y) = x^2y$ subject to the constraint $x^2 + y^2 = 1$. (ANSWER: max = $\frac{2\sqrt{3}}{9}$, min = $-\frac{2\sqrt{3}}{9}$)

11. (12 points) Find the volume above the paraboloid $z = x^2 + y^2$ and below the half cone $z = \sqrt{x^2 + y^2}$. (ANSWER: $\frac{\pi}{6}$)

12. (12 points) Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = \sin x \mathbf{i} + \cos y \mathbf{j} + xz \mathbf{k}$ and $\mathbf{r}(t) = t \mathbf{i} + t^2 \mathbf{j} + t^4 \mathbf{k}$, $0 \leq t \leq 1$. (ANSWER: $\frac{13}{9} - \cos(1) + \sin(1)$)

13. (12 points) If $\mathbf{F} = 4xe^z \mathbf{i} + \cos y \mathbf{j} + 2x^2e^z \mathbf{k}$, find a function $f(x, y, z)$ such that $\nabla f = \mathbf{F}$. (ANSWER: $f(x, y, z) = 2x^2e^z + \sin(y)$)

14. (15 points) Use Green's Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = x^2y \mathbf{i} - 3y^2 \mathbf{j}$ and C is the curve $x^2 + y^2 = 1$. (ANSWER: $-\frac{\pi}{4}$)

15. (15 points) Use Stokes' Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = 2z \mathbf{i} + 4x \mathbf{j} + 5y \mathbf{k}$ and C is the curve of intersection of the plane $z = x + 4$ and the cylinder $x^2 + y^2 = 4$. (ANSWER: WE SKIPPED STOKES' THEOREM.)

16. (12 points) Use the Divergence Theorem to calculate the surface integral $\iint_S \mathbf{F} \cdot d\mathbf{S}$ where $\mathbf{F} = x^3 \mathbf{i} + y^3 \mathbf{j} + z^3 \mathbf{k}$ and S is the surface of the solid bounded by the cylinder $x^2 + y^2 = 1$ and the planes $z = 0$ and $z = 2$. (ANSWER: 11π)

Bonus. (10 points) Find the simple closed curve for which the line integral $\int_C (y^3 - y)dx - 2x^3dy$ is a maximum. (ANSWER: C is given by $6x^2 + 3y^2 = 1$, but you had to supply a valid reason to get credit.)