Lecture Notes 5 - Some Examples
Example $-C(\Omega)$
Let Ω be a nonempty subset of \mathbb{R}^{n} Cor of \mathbb{C}^{n}, viewed as the Euclidean space $\mathbb{R}^{2 n}$)
$C(\Omega)=$ vector space of continuous functions from Ω to \mathbb{C}.

Let $K_{n} \subseteq K_{n+}^{0}$ (interior) be an increasing
family of subsets of Ω which family of subsets of Ω which exhausts Ω, ie. $\Omega=\bigcup_{n \geqslant 1} K_{n}$.
The topology on $((\Omega)$ is given by seminorms

$$
p_{n}(f)=\max \left\{|f(x)| \mid x \in k_{n}\right\}
$$

(This is finite, since f is a continuous function on the compact set K_{n}),
Proposition The sets $V\left(p_{n}, n\right)=\left\{f \left\lvert\, p_{n}(t)<\frac{1}{n}\right.\right\}$ form a convex local basis for $C(\Omega)$.
Notation: $V\left(\rho_{k, n}\right)=\left\{f \mid p_{k}(f)<1 / n\right\}$ is convex by previous them,
Proof: By our earlier theorem, a convex local base is given by finite intersections

$$
V\left(\rho_{1}, n_{1}\right) \wedge \cdots \cap V\left(\rho_{3,2}, n_{k}\right)
$$

si, $\cdots, j k$ indies
since $K_{n} \leq K_{n+1}, \quad p_{1}(f) \leq p_{2}(f) \leq \cdots \cdot$,

$$
\begin{gathered}
\left.\left.V(\rho ;, n)=\left\{f \left\lvert\, p_{j}(f)<\frac{1}{n}\right.\right\} \supseteq \supseteq f \right\rvert\, \rho_{f}(f)<\frac{1}{n}\right\}=V\left(p_{k, n}\right) \\
\text { if } j \leq k
\end{gathered}
$$

Also, $V(\rho j, n) \supseteq V(\rho j, m)$ if $m \geq n$,
So $V\left(p_{i}, n_{1}\right) n \cdots \cap V\left(\rho_{k}, n_{k}\right) \geq$

$$
\begin{aligned}
& \qquad V\left(P_{M}, M\right), \\
& M=M a x\left\{j_{1}, \cdots, j j_{2}, n_{1},-M_{k}\right\},
\end{aligned}
$$

$\{V(p n, n)\}$ is countable, so $C(\Omega)$ is metrizable,
EXERCISE (HL) Prove $d(f, g)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{\ln (f-g)}{1+p_{n}(f-g)}$ is a metric which induces the same topology on $((\Omega)$,

The family \{pp\} is clearly a separating family of seminarms, since a nonzer function cannot vanish on all the subsets K_{n}.
Proposition $C(\Omega)$ is a Frechet Space (means complete, locally convex, with an invariant metric).

Proof:
The last proposition shaved it is locally convex, \& the exercise gives an invariant metric. We only need to show completeness,
Suppose $\left\{f_{i}\right\}$ is a Cauchy sequence, That means for each $k \in \mathbb{N}$

$$
\operatorname{pk}\left(f_{i}-f_{j}\right) \rightarrow 0 \text { as } i, j \rightarrow \infty
$$

"on compact" f_{i} converges uniformly on means \longrightarrow compacta, to a continuous function f. on all (uniform limit of cts functions BAts) cp tests.

Then $p_{k}\left(f_{i}-f\right) \rightarrow 0$ as $i \rightarrow \infty$ for all k, L
Proposition $C(\Omega)$ is not locally bounded (This implies $C(\Omega)$ is not normeble),
Proof Suppose, to the contrary, that $0 \in U$ if U is a bounded open set,
We may assume $U=\left\{\rho_{n}<\frac{1}{n}\right\}$, time these sets area lialbax. We showed earlier that when a TV topology is given by a separating family of seminorms, boundedness is equivalent to insisting $f_{n}(u)$ is bounded for each seminorm p_{n}.
all $f \in l^{L I}$ are uniformly bounded on each K_{n}.

We can construct, however, $f \in\left\{p_{n}<\frac{1}{n}\right\}$ sit. $p_{n+1}(f)$ is arbitrarily la ge!

Example $2 H(\Omega)$
Now $\Omega \subseteq \mathbb{C} \cong \mathbb{R}^{2}, \& H(\Omega) \subseteq C(\Omega)$ consists of holomorphic ("analytri") functions,
Limits in $H(\Omega)$ which converge uniformly on compactor (which is the C(Ω topology) lie $n H(r)$ Hence $H(\Omega)$ is a closed subspace of a Freshet space
\Rightarrow it is itself a Frechet. space (complete locally convex, muariant nefir),
Proposition $H(\Omega)$ has the Heine-Borel property call closed and bounded sets are compact,
This implies $H(\Omega)$ is not locally bounded, sue it is uftrilte dimensional
Also, it implies $H(\Omega)$ is not normable.

Proof Recall if C is a subset $R S / R$ of ametrir spare with the convergent subsequence property loll sequences have a caverent subsequence), then C is compar.
Let C be a closed and bounbeel subset of $H(\Omega)$,

Earlier we saw bounded means all f in C are uniformly bounded on any fixed compact subset $\pi \leq \Omega$,
Mantel's Theorem on Normal Families implies that all subsequences mC have a subsequence which converges uniformly on all compact sets to a function f. $f \in C$, sine C B closed so C has the convergent subsequence property, \& hence is compact,
Example $3 C^{\infty}(\Omega)$
First, we need notation,

$$
\Omega \subset \mathbb{R}^{n} \text { open set }
$$

$\alpha=$ "multi-index ${ }^{p}=\left(\alpha_{1}, \cdots, \alpha_{n}\right) \in \mathbb{Z}_{30}$
α describes partial derivatives:

$$
\text { Let } D^{\alpha}=\left(\frac{\partial}{\partial x_{1}}\right)^{\alpha_{1}}\left(\frac{\partial}{\partial x_{2}}\right)^{\alpha_{2}} \cdots\left(\frac{\partial}{\partial x_{n}}\right)^{\alpha_{n}}
$$

be a differential operator of order

$$
|\alpha|=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}
$$

By convention $D^{(0)-1)}=D^{(0)}=$ identity operation

$$
\& D^{\alpha+\beta}=D^{\alpha} D^{\beta}=D^{B} D^{\alpha}
$$

Define $C^{k}(\Omega)=\left\{\begin{array}{l}f: \Omega \rightarrow \mathbb{C} \mid D^{\alpha} f \in C(\Omega) \\ \text { for all }|k| \leq k\end{array}\right\}$

$$
C^{\infty}(\Omega)=\bigcup_{k \geq 1} C^{k}(\Omega)=\text { smooth functions }
$$

For any function f, the support of f

$$
\left.\operatorname{supp}(f)=\text { closure of } f^{-1}(a \backslash<0\}\right)
$$

More notation: if $K \subseteq \mathbb{R}^{n}$ is compact

$$
D_{H}=\left\{\begin{array}{l}
\operatorname{smooth} f \in C^{\infty}\left(\mathbb{R}^{n}\right) \\
w / \operatorname{supp}(f) \leq K
\end{array}\right\}
$$

" "space of test functions".
Naturally, we may regard D_{k} as a subspace of $c^{0}(\Omega)$, if $k \leq \Omega$,

Topology on $C^{\infty}(\Omega)$ We use the increasing before, which has $\cup k_{n}=\Omega$,
Seminorms: $P_{N}(f)=\max \left\{\left|D^{\alpha} f(x)\right|\left|x \in K_{W},|\alpha| \leq N\right\}\right.$

These are like the ones on $C(\Omega)$, but taking derivatives into account.
$\left\{\rho_{N}(f)\right\}$ is a separating family of semininus (sine if $p_{N}(f)=0$ for all $N, f=0$ on all K_{N} \& thus $f \equiv 0$ on Ω. Thus we can use earlier theorems.
Proposition for any fixed $x \in \Omega$, the map

$$
\delta_{x}: f \mapsto f(x)
$$

is a continuous linear functional on $C^{\infty}(\Omega)$.
(δx is the "Dirac δ function" ot x).
Proof It is obviously a linear functional, To prove continuity let $\varepsilon>0$, The muse image of $(-\varepsilon, \varepsilon)$ contains $\left\{p_{1}(f)<\varepsilon\right\}_{1}$,
thence is open, Thus δx is continuous at zero, f thus on
all of $C^{\infty}(\Omega)$,
Remark The proof shows δ_{x} extends to a conthuous linear functional on $C(\Omega)$.

Proposition For any compact subset $K \leq \Omega$ D_{K} is closed in $c^{\infty}(\Omega)$
If $D k$ is the intersection of Her (fr) - accused subspaceover del $x \in \Omega \cdot \pi . \pi$

Proposition The sets $\left.\left\{f \in C^{\infty}(\Omega) \mid p_{n}(f)<n\right\} p, 8 / 1\right\}$ form a local open base of convex sets.
Prof these sets ane obviously open \& convex sue $\left\{\mathrm{f}_{n}\right\}$ are seminorim. We must show every open nh d of O contains one of them. Our earlier theorem says a local base is generated by sets of the form
(*) $V\left(\rho_{\psi_{j}} n_{1}\right) n \cdots V\left(\rho_{j_{k}} n_{k}\right)$,

- Where $V\left(\rho_{j}, n\right)=\left\{f \left\lvert\, p_{j}(f)<\frac{1}{n}\right.\right\}$.

As we $C(\Omega)$, we have the relations

$$
\begin{aligned}
& V\left(p_{j}, n\right) \geq V\left(\rho_{j}^{\prime}, n\right) \quad \text { if } j \leq j \\
& V(p ; n) \geq V\left(p_{m}, m\right) \quad \text { if } \\
& (n)=\max \{j, n\},
\end{aligned}
$$

So $(x) \geq V\left(\rho_{m}, m\right)$,
where $m=\max \{j, \cdots, j k, n,-1 k\}$,
Thevern $C^{\infty}(\Omega)$ \&its subspaces Dk, 1 compact, are Frechet space
Proof Sine the topology is defined by seminorms, They are locally convex. Sue they have a countable local basis (given in the proposition), they are metrizoble with an invariant metre.

We need to only show $C_{(x)}^{\infty}$ is complete, $f, q / 13$ because then the closed subspaces D_{k} will automatically be complete.
Suppose $\left\{f_{i}\right\}$ is a Cauchy sequence Then for each fixed N, $f_{N}\left(t_{0}-f_{j}\right)<\frac{1}{N}$ for
oj large.
So on $K_{N}, 1 D^{\alpha} f_{i}-D^{\alpha} f_{j} \left\lvert\,<\frac{1}{N}\right.$ if $|\alpha| N$,
\forall
$D^{\alpha} f_{i} \in C(\Omega)$ converges
uniformly on compacta to a function $g_{\alpha} \in C(\Omega)$. $f i \rightarrow g_{0}$ uniformly

There is a bit of a gap
in Rudin towards showing
$D^{\alpha} g_{0}=g_{\alpha}$ \& that $f_{i} \rightarrow g_{0}$ in
the C^{∞} topology,
For one thing, it by not obvious g_{0}
is offleventiaffe?
Actually, recall that if a sequence
of cts functions $h_{n} \rightarrow h$ uniformly
on an interval (or move generally, a compact set), then
$\int_{h_{n}} \rightarrow \int_{h}$ der the complect set.

More genially,
$\int \ln \varphi \rightarrow S h \varphi$ where φ is any ot function.
Thus if fur
$D^{\alpha} f_{i} \rightarrow g_{\alpha}$, we have (using the fund a mental theorem of (calculus)
that
$f_{i}=$ some integral of $D^{\alpha} f_{c}$
$g_{0} \quad$ the same integral of g_{α} $\uparrow_{\text {therefore, }} g_{\alpha}=D^{\alpha} g_{0}$
${ }^{2}$ Example: in ore variable, if $f_{i}^{\prime} \rightarrow g_{1}$

$$
\begin{aligned}
& f_{i}(x)=\int_{a}^{x} f_{c}^{\prime}(t) d t \rightarrow \int_{a}^{x} g_{1}(t) d t \\
& d \\
& g_{0}(x) \\
& \text { so } \quad g_{0}^{\prime}(x)=g_{1}(x),
\end{aligned}
$$

So $D^{\alpha} g_{0}=g_{\alpha}$,
Finally, we need to observe

$$
\begin{aligned}
\left|D^{\alpha} f_{i}-D^{\alpha} g_{0}\right| & \leq\left|D^{\alpha} f_{i}-g_{\alpha}\right|+\left|g_{\alpha}-D^{\alpha} g_{d}\right| \\
& =\left|D^{\alpha} f_{i}-g_{\alpha}\right| \rightarrow 0
\end{aligned}
$$

as $i \rightarrow \infty_{1}$
So $f_{i} \rightarrow g_{0}$ in the f uniformly on any cptsed,

Remark Using Ascoli's theorem, one can
Show $C^{\infty}(\Omega)$ has the Heine-Bard property, Thus it is not locally bounded \¬ normable, the $C(\Omega)$
Example 4 LP($[0,17), \quad 0<p<1$
(this is an example of a quetrint space,
Wealveady noted this is a metric space under the metric

$$
d(f, g)=\int_{0}^{1}|f(x)-g(x)|^{p} d x
$$

Which is not a norm, In fact this metre is not normable, at follows from this:

Prop $L P([0,1])$ has only 2 convex open sets! sO\} ~ $\& Q^{P}[[0,1])$ itself.
It follow also that $L P([a, 1])$ is not a Frechet space.
If suppose $f \neq 0$
\& u is an open convex ind of O (if U clos not contain 0 ,
we may translate it),
Thus U contains an open ball

$$
\left.B=\left\{g \in L^{p}([0,1])\right) \int_{0}^{1}|g|^{p}<\varepsilon\right\}
$$

for same $\varepsilon>0$,
Let $f \in l^{P}$. We will show fell, thence conclude $U=L P([0,1])$.

There exist n points

$$
\begin{aligned}
& \int_{x_{i-1}}^{x_{i}}|f|^{p}=\frac{1}{n} \int_{0}^{1}|f|^{p}=\frac{1}{n} d(f, 0)
\end{aligned}
$$

$\left\{\begin{array}{l}\text { this follows from the fact that } \\ \text { the de finite integrals of }\end{array}\right.$ L' functions are continual)

Let $g_{i}=n \cdot f \cdot X_{\left[x_{i-1}, x_{i}\right]}$,
Then $d\left(g_{i}, 0\right)=\int_{x_{i-1}}^{x_{i}} n^{p} f^{p}=n^{p-1} d(t, 0)$.
$p<1$ so for n large this is $<\mathcal{E}$.
Thus $g_{i} \in B \subseteq U$.
But $f=\frac{1}{n} g_{1}+\frac{1}{n} g_{2}+\cdots+\frac{1}{n} g_{n}$
is thus a convex I meas combination of elements ell, so fell,
Remarks Any cts linear functional on $\ell^{P}([0,1])$ must be trivial, because the muse mage of $(-\varepsilon, \varepsilon)$ is a conner set hence all of $L P(E, G)$, (A linear functional is trivial if its range is bounded

