Example I -

et I be a nonempty subset of R' (or of C', viewed as the Euclidean Space (R'2n)

C(I) = vector space of continuous functions from J2 to C.

Let $K_n \subseteq K_{n+1} \not\in Interior$ be an increasing family of subsets of Ω which exhausts Ω , i.e. $\Omega = UK_n$.

The topology on C(JZ) is given by Semmorms Pn(f) = max { | f(x) | | x ∈ Kn } (this is finite, since fis a continuous function on

the compact set Kn)

Proposition The sets V(pn,n)={f|pn(t)<n}

form a convex local basis for $C(\Omega)$.

Notation! $V(\rho_{k,n}) = \xi + |\rho_{k}(\rho)| < y_{n} \xi$ is convex by previous than,

Proof! By our earlier theorem, a convex local

base is given by finite intersections

V(P3, n.) A. ... A V(P, NR)

Since Kn=Kn+1, Pi(+1=Pz(+)="",	P12/1:
$V(p_{j,n}) = \{f \mid p_{j}(f) < h\} \geq \{f \mid p_{k}(f) < h\} = V(p_{k,n})$	
Also, $V(p_{j,n}) \supseteq V(p_{j,m})$ if $m \ge n$.	
$50 V(p_i,n_i) \wedge \cdots \wedge V(p_k,n_k) =$	
$\cong \vee (p_{M}, M)$	
M= Max{j,:,jk,n,-,nk}, [
{V(pn,n)} is countable, so C(I) is metrizables	
EXERCISE (Hw) Prove d(fig) = 2 I fin(fin)	9) (7-5)
is a metriz which induces the same topology on C(I),	
The family Epn3 is clearly a separating family of seminorms, since a nonzero function cannot vanish on all the subsets Kn.	
Proposition ((I) is a Frechet Space	
(means complete, locally convex, with an	
invariant metric).	·

Proof:
The last proposition showed it is p3/12 locally convex, & the exercise gives an invarient metriz. We only need to show completeness,
an invacionat metriz. We only
held to show completeness,
413
Juppose (t) à is a Cauchy Sequence,
Suppose $\{f_i\}$ is a Cauchy sequence, That means for each ke W $p_k(f_i-f_j) \rightarrow 0$ as $(i,j) \rightarrow \infty$
"on compacta" fi converges uniformly on compacta, to a continuous function f, on all cuniform limit of cts functions is cts) cotsets.
means compacta, to a continuous function f.
on all cuniform limit of cts functions is cts)
Then Pr(fi-f) > 0 as i > 0 for all k, []
There present to age - worker 1, 1
Proposition C(I) is not locally bounded
(This implies C(I) is not normable),
Proof Suppose, to the contrary that OEU
I is a bounded open set
We may assume U= Epn < n3, since these sets area local bear. We showed earlier that when a TVS
topology is given by a separating family
of seminorms, boundedness is equivalent
to insisting
Pn(U) is bounded for
each Seminorm fn.
all fell are uniformly bounded on
each tr.

We can construct, however,	P,4/1
FEEPnch3 sit, Pati(f) is	s arbitrarily large!
Small to the so on K_n+1 there is an omake a continuous function ball which is arbitrarily large	ppen ball, and you can on supported in an open
69.	
Example 2 H(J2)	
Now $\Sigma \subseteq \Omega \cong \mathbb{R}^2$, $fH(\Omega)$ consists of holomorphiz ("analytic) SC(J2) u) functions,
Limits in H(D) which converge uni on compactor (which is the C(. lie in H(D), Hence H(D) is a Subspace of a Freehet Space	chot
=> it is itself a Free Space (complete local invariant med	lly convex,
Proposition H(J2) has the Heine-P property (all closed and bound Sets are compact),	
This implies H(M) is not local Since it is namble dimension	les bounded,
Also, it implies H(R) is a	et normable,

be a differential operator of order	Pe 6/13
By convention $D = D^{(a)} = i dentity operator$ $P = D^{\alpha+\beta} = D^{\alpha}D^{\beta} = D^{\beta}D^{\beta}$	
Define $C^k(\Omega) = \{f: \Omega \to C \mid D^2 f \in C(\Omega)\}$ for all $ M \leq k\}$	
$C^{\infty}(\Omega) = O(k(\Omega)) = 5 mooth function$ $k \ge 1$ on Ω .	
For any function of, the support of f	
$Supp(f) = closure of f(C \cdot Eo3),$	
More notation: if KER" is compact	
DH= { Smooth fe co(Rn) } W/ Supp (f) Str } = "space of test functions	
Naturally, we may regard D_K as a subspace of $C^{\infty}(I)$, if $K \subseteq I$.	
Topology on $C^{\infty}(\Omega)$ We use the increasing family to C to as before, which has U to C to C .	
Seminorms: PN(f) = max { Dxf(x) X6 KN, 6	xl=N}

These are like the ones on C(2), 1,7/12 but taking derivatives into account. EIN(f) is a separating family of seminorms (since if puct)=0 for sell N, f=0 on all the & thus f=0 on 52, Thus we can use earlier theorems. Proposition For any fixed XEI, the map is a continuous linear functional on $C^{\infty}(\Omega)$. $\delta_{\mathbf{x}} : f \mapsto f(\mathbf{x})$ (is the "Dirac of function" act X), Proof It is abviously a linear functional,

To prove continuity let \(\varepsilon\). The inverse

mage of (-\varepsilon\varepsilon) contains \(\varepsilon\), (\varepsilon\varepsilon\varepsilon)

thence is open, Thus \(\varepsilon\varepsilon\), is

continuous at zero, & thus on

all of \(\cappa(\varepsilon)\), Remark The proof shows &x extends to a continuous linear functional Proposition For any compact subset HSD, Dr is closed in Co(1) If Dr is the intersection of the Ker(Fx) -accosed subspaceover all XEJZ-K. II

Proposition The sets & f & C (2) | pn(f) = 18/13
form a local open base of convex sets. Proof these sets are obviously open from from some semmorms.

We must show every open nul of O contains one of them. Our earlier theorem says a local base is challed by sets of the form (\mathcal{A}) $V(p_{j_k}n_i)n - \cdots n V(p_{j_k}n_k)$ where V(Pin)= {f|Pi(f|c'n} As we can we have the relations $V(\beta_{j,n}) \geq V(\beta_{j,n}) \qquad \forall j \leq j$ $V(p_{j,n}) = V(p_{m,m})$ 14 M=max(j, B, 50 (4) 2V (fm,m), where M= Max { j, -, jk, M, -, MB, heven CP(I) Lits Subspaces

DK, It compact, are Frechet spaces They are locally convex. Since they are acountable local basis (given in the proposition), they are metrizable with an invariant metric.

We need to only show (2) is complete, fig/13 because then the closed subspaces. Dr will automatically be complete. Sceppose { fi3 is a Cauchy sequence. Then for each fixed N, pr(fo-fi) to for N) large. So on Kn, 100 fi-Dafi / c to it lake V. Diffice(I) converges

Uniformly on compacts

to a function $g_{\lambda} \in C(\Omega)$, $f_{i} \rightarrow g_{0}$ uniformly There is a bit of a gap in Rudin towards showing n Kuckin Dgo=ga & that fo>go the Co topology - obvious go Actually, recall that it a sequence of cts functional him h uniformly on an interval (or more generally, a compact set), then $h_n \rightarrow \hat{J}h$ over the compact

More generally, Q is any cts Thus if It we have lusing the fundamental theorem of calculus) that f: = 5 one integral of f(x) = Safe (t)dt -> Sag, (t)dt 10°fi - D°go | € | D°fi -ga | + (9a-D°go) = 104i-92 -0 So fing in the coch topology, & coch is complete. I

	Pell/1
Remark Using Ascoli's Theorem, one can Show Co (J2) has the Herne-Barel property, Thus it is not locally	
property, Thus it is not locally	
property. Thus it is not locally bounded enot normable like	
Example y LP([0,1]), OEPE)	
(this is an example of a quotrent space,	
We already noted this is a metric	
$J(f,g) = \int_0^1 f(x) - g(x) ^2 dx,$	
Which is not a norm. In fact, this metric is not normable, as tollows from this!	
Prop LP([0,1]) has only 2 convex open sets! {03 & LP([0,1]) itself,	
It follow also that C([C1]) is not a Freehet space.	
It suppose fto fuis an open cenvex nhdof Olf u closs not contamo,	

We may translate it), Thus U contains an open ball	p.1412
	2
B= \(\frac{2}{9} \in L^{\langle}(\tau_117)\) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
for some E-O,	
Let fell. We will show fell, 4 hence conclude U= LP([OID),	
There exist n points $0 = x, < x_2 < - < x_m = 1 s.t.$ $\int_{X_{i-1}}^{X_i} f ^2 = \int_{\Omega} \int_{\Omega}^{1} f ^2 = \int_{\Omega} \int_{\Omega}^{1} f ^2 = \int_{\Omega} \int_{\Omega}^{1} f ^2 = \int_{\Omega}^{1} f ^2 = \int_{\Omega}^{1} \int_{\Omega}^{1} f ^2 = \int_{\Omega}$	
(this follows from the fact that the definite integrals of	
L' functions are continues)	The state of the s
Let gi = n.f. X[xi-1,Xi].	
Then $d(g_i, 0) = \int_{x_i}^{x_i} n^i f^i = n^{i-1} d(f_i, 0)$. PCI, so for n large this is $< \varepsilon$. Thus $g_i \in B \subseteq U$.	
261, 50 for in large this is < 9	
•	
But $f = \frac{1}{n}g_1 + \frac{1}{n}g_2 + \dots + \frac{1}{n}g_n$	According to the second

is thus a convex linear combination of elements fell, so fell. If

Remarks Any cts linear functional on $L^p(\Sigma_0, \overline{U})$ must be trivial because the inverse mage of $(-\xi, \xi)$ is a convex set hence all of $L^p(\Sigma_0, \overline{U})$, (A linear functional is trivial if its range is bounded