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January 15, 2006

These are course notes for Mathematics 80600, Musagei Yisod B’analiza.
They are meant to complement the material in the handwritten notes which
I have already distributed. One should also refer to Paul Garrett’s material
at http://www.math.umn.edu/~garrett/m/fun/.

1 The Dirac δ-function

Formally, distributions are usually defined as continuous linear functions on
a certain topological vector space of “test functions”. However, it is not
surprising that useful mathematical objects such as distributions also have a
natural, concrete description. We shall start from this viewpoint, and later
explain the abstraction to topological vector spaces, and explain why the
latter is important also.

We begin with the example of the most famous distribution: δ0, the Dirac
δ-function on R. This is colloquially described as a nonnegative function from
R to R with the contradictory properties that it equals zero at all nonzero
arguments, but yet that its integral over R equals 1. Of course no such
function can exist.

Nevertheless, there are two complementary ways to make sense out of
δ0. One is to relate it to the linear functional Λ : C(R) → C which sends a
function ψ(x) to Λψ := ψ(0). Another is to take a fixed, smooth nonnegative
function with rapid decay1 and integral 1, such as f(x) = e−πx2

, and study
the sequence fT (x) = Tf(xT ) as T → ∞. Each of the functions fT also

1A perfect example is an element of the Schwartz space S(R), which consists of all
smooth functions g on R such that lim|x|→∞ |x|ng(m)(x) = 0 for all n, m ≥ 0.
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has integral 1, and limT→∞ fT (x) = 0 for all x 6= 0. Of course fT does not
converge to a function, but one has that

lim
T→∞

∫
R
fT (x)ψ(x) dx = ψ(0) , (1.1)

which agrees with Λψ. Here we can already see a couple of important prop-
erties of distributions:

• They are linear functionals on spaces of functions.

• They can be viewed as limits of sequences of smooth functions, meaning
that distributions are a type of completion of functions.

• The definition of distribution is localized: in this example, the proper-
ties of ψ away from zero are irrelevant to δ0.

With a bit more work we can see some other general features of distributions
in this example. The first is that we may formally view distributions as
transforming like functions, although to do this technically we must insist
that distributions not act on functions like ψ(x), but instead on measures
like ψ(x)dx. Formally we write∫

R
δ0(x)ψ(x) dx (1.2)

for the expression in (1.1). This is purely a notational convenience; it really
means the action of the linear functional Λ acting on ψ, but we write it this
way to remind us that reasonably integrable functions give linear functionals
when integrated against functions this way (like the terms in the limit in
(1.1)).

With the mantra “distributions transform like functions” we may apply
some operations to distributions that are valid on functions. The first which
comes to mind is that distributions can be differentiated: we define∫

R
δ′0(x)ψ(x) dx = −

∫
R
δ0(x)ψ

′(x) dx = −ψ′(0) , (1.3)

because the first equality is what we expect from integration by parts. Note
that we have no boundary terms in this integration by parts formula because
the distribution δ0(x) has no association with the properties of functions
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ψ(x) away from x = 0. We might as well even assume that ψ has compact
support. However, it is crucial that ψ be differentiable now, or else of course
the righthand side cannot make sense. We see that the regularity of the
functions on which distributions may act depends on the distribution itself.

By repeated differentiation, one obtains the n-th derivatives δ
(n)
0 (x), which

have the property that
∫

R δ
(n)
0 (x)ψ(x) = (−1)nψ(n)(x) for ψ ∈ C∞

c (R), the
sign of course coming from an n-fold application of integration by parts. We
can also attempt to integrate distributions, or at least take their antideriva-
tives. Since δ0 can be integrated against any continuous function, we can
make sense of its antiderivative as

δ
(−1)
0 (x) =

∫ x

−∞
δ0(t) dt =

∫
R
χ(−∞,x)(t) d0(t) dt =

{
0, x < 0
1, x > 0

(1.4)

Of course we have not specified δ
(−1)
0 (0); perhaps giving it the value of 1/2

is the fairest solution. That means that δ0 does not have a canonical an-
tiderivative (of course we could also shift it by constants), but any of these
definitions satisfies the property that∫

R
δ
(−1)
0 (x)ψ′(x) dx =

∫ ∞

0

ψ′(x)dx = −ψ(0) = −
∫

R
δ0(x)ψ(x)dx ,

(1.5)
which is what we expect from integration by parts. Taking a second an-
tiderivative gives (up to linear polynomials) the continuous function δ

(−2)
0 (x) =

|x|
2

. We see here the important principle that distributions are locally express-
ible as higher order derivatives of continuous functions.

We said “locally” expressible here because actually, by the local nature of
the action of distributions, these antiderivatives can still be antiderivatives if
they are multiplied by a smooth function which vanishes off a neighborhood
of {0}, naturally termed the support of the distribution δ0. The example

τ(x) =
∑
n≥ 0

δ(n)(x− n) (1.6)

shows that distributions do not always have global expressions as a finite num-
ber of derivatives of a continuous function. This leads us to the final general
property we wish to discuss in this example, namely that distributions can be
multiplied by smooth functions. If φ is a smooth function, then φ(x)δ0(x) can
be made sense of, again through the mnemonic that distributions transform
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like functions: ∫
R
φ(x)δ0(x)ψ(x) = φ(0)ψ(0) . (1.7)

In other words, φ(x)δ0(x) = φ(0)δ0(x), which in this special case is just a
scalar multiple of δ0(x).

2 Distributions on an open subset of Rn

We have now seen enough features of the δ-function to give a general defini-
tion of distribution. We begin with a few other examples which help phrase
the eventual definition compactly. Our general context will be an open sub-
set Ω of Rn, and our integrations will in general be against smooth measures
with compact support in Ω, i.e. measures of the form ψ(x)dx for ψ ∈ C∞

c (Ω).
We start with the observation that any function f ∈ C(Ω) can be inte-

grated against ψ ∈ C∞
c (Ω) by the usual pairing∫

Ω

f(x)ψ(x) dx , (2.1)

which defines a linear functional on C∞
c (Ω). To talk about derivatives in

Rn we need some notation. If α = (α1, . . . , αn) ∈ Zn
≥0 is a multi-index,

then Dα represents the differential operator dα1

dx
α1
1

dα12

dx
α2
2
· · · dαn

dxαn
n

of order |α| :=

α1 + α2 + · · · + αn. We can think of the derivative Dαf of f (as above) as
distribution defined by the following rule:∫

Ω

(Dαf)(x)ψ(x) dx = (−1)|α|
∫

Ω

f(x)(Dαψ)(x) dx . (2.2)

Of course if f happens to be smooth, then this last identity is simply inte-
gration by parts, and holds anyway. We use it as a mechanism to extend the
notion of derivative to nondifferentiable functions.

Definition 2.1. A distribution τ on an open subset Ω of Rn is a sum

τ =
∑
α≥ 0

Dαfα (2.3)

where the fα ∈ C(Ω) have the property that all but a finite number of fα

vanish on any given compact subset of Ω (i.e. the sum is finite on any compact
set).

We use the notation D′(Ω) to denote the vector space of distributions τ
on Ω.
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3 Distributions as linear functionals

Now, having given a concrete, workable definition of distributions, we give a
more abstract characterization in terms of topological vector spaces. Again,
our setting is an open subset Ω or Rn. Let us recall the Frechet spaces
DK = C∞

c (K), for K a compact subset of Ω, which have topologies given by
the seminorms

‖f‖N = max{|(Dαf)(x)| | x ∈ Ω , |α| ≤ N} . (3.1)

The space of test functions D(Ω), so called because distributions are deter-
mined by their action on them, is the vector space union

D(Ω) = ∪K⊂Ω,compactDK . (3.2)

We make D(Ω) into a topological vector space by giving in the following local
base:

B = {balanced convex subset W ⊂ D(Ω) such that W ∩ DK

is open in DK for all compact subsets K ⊂ Ω} . (3.3)

Of course we need to justify that this gives a TVS topology. This topology is
also known as the direct limit or ascending union of the Frechet spaces DK ,
where K is a compact subset of Ω. This is the finest locally convex topology
on D(Ω) such that all the inclusion maps DK ↪→ D(Ω) are continuous.

Proposition 3.1. The translates f+W , for f ∈ D(Ω) and W ∈ B, are closed
under finite intersection (unless, of course, the intersection is empty). Thus
the topology generated by B consists of unions of translates of set W ∈ B.

Proof. Suppose that f1, f2 ∈ D(Ω) and W1,W2 ∈ B, and that f is a member
of both f1+W1 and f2+W2. We need to show the existence of a subsetW ∈ B
such that f+W ⊂ (f1+W1)∩(f2+W2). Since functions inD(Ω) have compact
support, there exists a compact subset K of Ω containing the support of f ,
f1, and f2, i.e. f, f1, f2 ∈ DK . By definition of the putative local base B,
DK ∩W1 and DK ∩W1 are open subsets of DK . The former contains f − f1,
and the latter, f−f2. As scalar multiplication is continuous in the topological
vectors space DK , there exists some ε > 0 such that (1− ε)−1(f − f1) ∈ W1

and (1− ε)−1(f − f2) ∈ W2, i.e. f − f1 ∈ (1− ε)W1 and f − f2 ∈ (1− ε)W2.
The sets W1 and W2 are convex, so

f − fj + εWj ⊂ (1− ε)Wj + εWj ⊂ Wj , j = 1, 2 . (3.4)
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So, choosing W to be the intersection of εW1 and εW2, we see that f indeed
is a member of both f1 +W and f2 +W .

Theorem 3.2. The topology on D(Ω) with local base B makes it into a locally
convex topological vector space.

Proof. First we show that singletons are closed by demonstrating that for any
two functions f, g ∈ D(Ω) there exists some W ∈ B such that f /∈ g + W .
This can be accomplished by choosing W = {φ ∈ D(Ω) | ‖φ‖0 < ‖f − g‖0}
(the norms here are just sup-norms). This set is obviously balanced and
convex, and its intersection with any DK is of course open, so it is indeed a
member of the local base B.

Next we demonstrate addition is continuous, which follows immediately
from the fact that 1

2
W + 1

2
W ⊂ W for any W ∈ B (these sets are all convex).

For continuity of scalar multiplication, let α be a scalar and f ∈ D(Ω). Given
any W ∈ B there exists some small constant δ > 0 such that δf ∈ 1

2
W .

Then for all β such that |β − α| < δ and all φ ∈ f + 1
2(|α|+|δ|)W we have that

βφ−αf = β(φ−f)+(β−α)f ∈ 1
2
W + 1

2
W ⊂ W . Thus scalar multiplication

is indeed continuous.

We have said all this to give another definition of distribution, whose
equivalence is not obvious: D′(Ω) is the space of continuous linear functionals
on D(Ω) under the above topology.

4 Interlude: Fourier theory

Let us quickly recall some facts about Fourier series and integrals, restricted
to the convenient setting of smooth functions and Schwartz functions, re-
spectively. If f : Rn/Zn → C is a smooth periodic function, then it equals

its Fourier series f(x) =
∑

m∈Z f̂(n)e(mx), where as usual e(x) = e2πinx and

mx is shorthand for m1x1 + · · · + mnxm. The Fourier coefficients f̂(m) =∫
R/Z f(x)e(−mx) dx have rapid decay as |m| → ∞ and thus the Fourier series

converges absolutely.
If τ is a periodic distribution, meaning one for which∫

R
τ(x)ψ(x) dx =

∫
R
τ(x)ψ(x+m) dx (4.1)
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for all ψ ∈ C∞
c (R) and m ∈ Zn, then in fact it can be written as a Fourier

series – but one that converges only as a distribution (i.e. in the weak∗ topol-
ogy). It makes sense to integrate τ(x) against e(−mx) over any fundamental
period of Rn/Zn, such as [0, 1)n. It is not hard to see that these integrals,
whose values we denote by am, must be bounded by some polynomial in |m|
(this comes from the description of distributions as finite derivatives of con-
tinuous functions on compact sets, such as [0, 1]). Then τ(x) in fact must
equal the infinite sum

∑
m∈Z ame(mx) – viewed as a distribution – because

the exponentials e(mx) span C∞(Rn/Zn). It is clear from the Fourier series
that some finite antiderivative of τ is continuous, but not necessarily peri-
odic; if, however, a0 = 0 and n = 1 then τ has canonical antiderivatives of
the form

τ (−k)(x) =
∑
m6=0

an(2πim)−ke(mx) . (4.2)

Similar formulas can be written when n > 1, but one must separate out
more types of terms (i.e. those in which a fixed number of the mi vanish).
These are crucial in the next section for showing the equivalence of the two
definitions of distribution which we have put forward thus far.

Let f ∈ S(Rn) be a Schwartz function. The Fourier transform of f is
defined by the absolutely convergent integral

f̂(r) =

∫
Rn

f(x)e(−rx) dy (4.3)

and is also a Schwartz function. One has the inversion formula

f(x) =

∫
Rn

f̂(r)e(rx) dr . (4.4)

The following formula is a very important connection between Fourier series
and transforms.

Theorem 4.1. (Poisson Summation Formula). Given f ∈ S(Rn),∑
m∈Zn

f(m) =
∑

m∈Zn

f̂(m) . (4.5)

Proof. Let F (x) =
∑

m∈Zn f(x+m), which is an absolutely convergent sum
and hence defines an element of C∞(Rn/Zn). It has a Fourier series whose

coefficients F̂ (m) =
∫

Rn/Zn F (x)e(−mx) = f̂(m) (combine the sum over m

to remove the quotient of Rn by Zn in the integral). Then the Fourier series

for at x = 0 is F (0) =
∑
f(m) =

∑
f̂(m).
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Finally, we come to the following important inner product relation in-
volving the Fourier transform:

Theorem 4.2. (Parseval’s Theorem). For any functions f, g ∈ S(Rn) one
has that ∫

Rn

f(x)ĝ(x) dx =

∫
Rn

f̂(x)g(x) dx . (4.6)

Proof. Substitute the definition ĝ(x) =
∫

Rn g(y)e(−xy)dy into the lefthand
side. Since both f and g have rapid decay, Fubini’s theorem allows us to write
it as the double integral

∫∫
Rn×Rn f(x)g(y)e(−xy)dxdy, which is obviously

symmetric in f and g.

5 Equivalence of the two definitions

It is not hard to see that the definition of distribution at the end of section 2
implies that they are continuous linear functionals on D(Ω) with its direct
limit topology. It is harder to see the converse, namely that all continuous
linear functionals on D(Ω) are given as sums of derivatives of continuous
functions. Since the definition of derivative can be localized, it suffices to
prove this for distributions which are supported in the interior of the unit
cube [0, 1]n ⊂ Rn. From this stage, it is no loss of generality to assume it
is periodic. We shall prove this converse, then, by showing that any peri-
odic distribution on Rn is a finite sum of derivatives of continuous periodic
functions.

One of the equivalent criteria for a continuous linear functional Λ on
D(Ω) to be continuous is that on each compact subset K of Ω there exists
constants C > 0 and N ∈ Z≥0 such that |Λφ| ≤ C‖φ‖N for all φ ∈ DK .
Since we are speaking of periodic distributions, which are determined on a
compact set, we may assume this estimate holds uniformly over all φ ∈ DK .
If φ is a periodic exponential e(mx), then all its derivatives of order k are
multiplies by polynomials of degree k in m, so that ‖φ‖N = O(|m|N). Thus,
if τ ∈ D′(Ω) is a distribution, then its Fourier coefficients are polynomially
bounded:

am :=

∫
Rn/Zn

τ(x)e(−mx) dx = O(|m|N) . (5.1)

We may formally write τ(x) =
∑

m∈Zn ame(mx). It is clear that, by separat-
ing out the terms for which some of the indices of m = (m1, . . . ,mn) are 0,
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that τ(x) may be written as a finite sum of derivatives of continuous periodic
functions. For example, when n = 1, we write

τ(x) = a0 +
dN+2

dxN+2

∑
m 6= 0

ame(mx)/(2πim)N+2 .

6 Tempered distributions

The Schwartz space S(R) properly contains C∞
c (R), so not every distribution

can be evaluated on Schwartz functions. Those which can are called tempered
distributions S ′(R). They have the following characterization:

Theorem 6.1. The tempered distributions are precisely those elements of
D′(R) of the form dk

dxk f , where f is a continuous function of at most polyno-
mial growth at infinity.

The Parseval Theorem 4.2 allows us to extend the notion of Fourier trans-
form to a tempered distribution τ by the rule∫

R
τ̂(x)ψ(x) dx =

∫
R
τ(x)ψ̂(x) dx for ψ ∈ S(R) . (6.1)

As usual, this definition of Fourier transform agrees with the usual definition
for tempered distributions which are already Schwartz functions.

As an example, the Poisson summation formula (Theorem 4.1) can be
compactly restated in terms of the distribution δZ(x) :=

∑
n∈Z δ0(x− n):

δZ = δ̂Z , (6.2)

i.e., the tempered distribution δZ is its own Fourier transform.

7 Application: the Riemann ζ-function

As an example of how these techniques can be applied, we will now quickly
go through a proof of the functional equation and analytic continuation of
the Riemann ζ-function ζ(s) =

∑
n≥1 n

−s. Fix a smooth cutoff function
φ(x) which is supported in (−1, 1) and which is identically equal to 1 in a
neighborhood of the origin.
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Consider the distribution

τ(x) =
∑
n 6= 0

δn(x) − 1 + φ(x) =
∑
n 6=0

e(nx) − δ0(x) + φ(x) . (7.1)

The first expression exhibits τ(x) as a distribution which vanishes in a neigh-
borhood of the origin, while the second as one which has a Fourier expansion
without constant term away from the origin. We would like to integrate τ(x)
against the “Mellin kernel” |x|s−1 despite that fact that it does not have
compact support (nor is it defined at x = 0). The Mellin kernel is, how-
ever, smooth on any compact subset away from the origin, and so it locally
makes sense to integrate τ(x) against it away from the potential singularities
of τ(x) at x = 0 and ∞. Since the distribution τ(x) is identically zero in
a neighborhood of the origin, the integration is justified near there because
|x|s−1 is smooth on the support of τ(x). Near x = ∞, τ(x) reduces to the
periodic distribution σ(x) =

∑
n6=0 e(nx), which has bounded antiderivatives

σ(−N)(x) =
∑

n6=0 e(nx)/(2πin)N of arbitrarily high order. The integration
by parts relation says∫

R
σ(x)|x|s−1 dx = (−1)N

∫
R
σ(−N)(x)

(
dN

dxN
|x|s−1

)
dx . (7.2)

The derivative on the righthand side is a polynomial in s times |x|s−1−N ,
and so the pairing integral on the righthand side is in fact valid in the much
larger range Re s < N . We use this to extend the definition of the lefthand
side to all values of s, so it is hence entire (it is easy to see this defines the
same extension since both are holomorphic and agree in a right half plane).
Thus

∫
R τ(x)|x|

s−1dx makes sense as an entire function of s.
For Re s < 0, one may calculate this integral term by term to obtain the

identity∫
R
τ(x)|x|s−1 dx = 2ζ(1− s) +

∫
R
(φ(x)− 1)|x|s−1 dx . (7.3)

This operation is valid because the sum for ζ(1 − s) converges absolutely
here. The integrand in the last term is supported away from 0, and thus
makes sense as an ordinary integral. In fact it is not difficult to see that∫

R
(φ(x)− 1)|x|s−1 dx has a holomorphic continuation to C− {0} (7.4)
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with a simple pole at s = 0 of residue 2. Thus τ(x) has an entire Mellin
transform, and by (7.3) and (7.4), ζ(s) has a holomorphic continuation to
C − {1} and a simple pole with residue 1 at s = 1. This is the analytic
continuation of the Riemann ζ-function.

The functional equation of ζ(s) can also be seen using this argument. We
may also calculate

∫
R τ(x)|x|

s−1dx using the righthand side of (7.1), but for
Re s large:∫

R
τ(x)|x|s−1 dx =

∑
n6=0

∫
R
e(nx)|x|s−1 dx +

∫
R
φ(x)|x|s−1 dx . (7.5)

The term for δ0(x) drops out since when Re s is large, |x|s−1 is a continuous
function equal to 0 at x = 0. Using elementary calculus one sees that the
second terms on the righthand sides of (7.3) and (7.5) cancel. Changing
variables x→ x/n, the first term becomes

∑
n6=0 |n|−s

∫
R e(x)|x|

s−1. Of course
this integral must be interpreted using the fact that e(x) has antiderivatives
of arbitrarily high order; it is a standard result about the Γ-function that it

equals π−s/2Γ(s/2)

π−(1−s)/2Γ((1−s)/2)
, while the infinite sum over n of course gives 2ζ(s).

We have now proved the following important theorem:

Theorem 7.1. (Functional equation and analytic continuation of the Rie-
mann ζ-function). The Riemann ξ-function ξ(s) = π−s/2Γ(s/2)ζ(s) has a
holomorphic continuation to C−{0, 1} with simple poles at s = 0 and 1 with
residues −1 and 1, respectively. It also obeys the functional equation

ξ(s) = ξ(1− s) . (7.6)

8 Application: Venkatesan’s model of vision

Ramarathnam Venkatesan has proposed a model of human vision which is
inspired by the theory of distributions. He notes that many important signal
processing operations involve treating an image as a 2- or 3-dimensional grid
of data, integrated against a smooth function. Though the image of course
makes sense as a function, Venkatesan posits that the human brain actually
views it as a distribution, in the sense that it measures its integral against
localized test functions. This is supported by experimental observations; for
example, the human eye constantly shift its angle of focus, and the brain
reassembles these pieces together.
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Empirically, Venkatesan has developed this into a creating a metric for
how close two images are to human perception, even though they might
have other statistics which distinguish them. His randomized algorithms
integrate the image distributions against a variety of randomly chosen test
functions, and compare the outcomes. His randomized basis of wavelets, or
“randlets”, performs up to 3 times better than Daubechies’ wavelets in some
instances. More importantly, the randomization is crucial for cryptographic
purposes because repeatedly using a known, canonical basis of wavelets can
be exploited by an adversary.
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