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Let K = Q(
√
−D) be an imaginary quadratic field of discriminant−D < −4,

O its ring of integers, and h its ideal class number. A Hecke character χ of K
of conductor f is a called “canonical” ([Ro1]) if

χ(ā) = χ(a) for each ideal a relatively prime to f. (1.1)

χ(αO) = ±α for principal ideals αO relatively prime to f. (1.2)

The conductor f is divisible only by primes dividing D. (1.3)

Every Hecke character of K satisfying (1.1) and (1.2) is actually a quadratic
twist of a canonical Hecke character (see Section 2 for a precise description of
these characters and which fields have them).

Let L(s, χ) denote the Hecke L-function of χ, and Λ(s, χ) its completion;
Λ(s, χ) satisfies the functional equation Λ(s, χ) = W (χ)Λ(2 − s, χ), where
W (χ) = ±1 is the root number. If χ is a canonical Hecke character with
W (χ) = 1, then the central value Λ(1, χ) 6= 0 by a theorem of Montgomery and
Rohrlich [MR]. Of course, it automatically vanishes when W (χ) = −1 by the
functional equation. The main result of this paper is

Theorem 1.1. Let χ be a canonical Hecke character whose root number
W (χ) = −1. Then the central derivative Λ′(1, χ) 6= 0.

In Theorem 2.2 we also prove that Λ′(1, χ) 6= 0 when χ is a small quadratic
twist of a canonical character with W (χ) = −1.

When D = p is a prime, canonical Hecke characters are closely connected
with the elliptic curves A(p) extensively studied by Gross [Gr]. These curves are

defined over F = Q(j(1+
√
−p

2
)), where j is the usual modular j-function, and

have complex multiplication by O. Combining Theorem 1.1 and the above result
of [MR] with Gross-Zagier [GZ] and Kolyvagin-Logachev [KL], one has

Corollary 1.2. Let p > 3 be a prime congruent to 3 modulo 4. Then
(a) The Mordell-Weil rank of A(p) is

rankZA(p)(F ) =

{
h, p ≡ 3 (mod 8)
0, p ≡ 7 (mod 8).

(b) The Shafarevich-Tate group X(A(p)/F ) is finite.
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In [Gr], Gross proved part (a) when p ≡ 7 (mod 8) using a 2-descent.
In the next section we will outline the proof of Theorem 1.1 and an analog

for quadratic twists (Theorem 2.2). Sections 3, 4, and 5 are devoted to analytic
estimates used in the proofs of the theorems. We conclude in Section 6 with the
proof of Corollary 1.2 and other arithmetic applications.
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2 Notation and Strategy

We first recall some facts about canonical Hecke characters from [Ro2]. They
exist if and only if D ≡ 3 (mod 4) or is a multiple of 8. Multiplying a canonical
character by an ideal class character always yields another canonical character.
This operation preserves the root number and defines natural families of canonical
Hecke characters. When D ≡ 3 (mod 4), there is exactly one family and it has
root number

(
2
D

)
; when D is a multiple of 8, there are two families – one has

root number 1 and the other has root number -1.
To avoid confusion, we will sometimes write χcan for a canonical Hecke

character of K. In this paper we consider Hecke characters χ of K satisfying
conditions (1.1) and (1.2), which are always of the form

χD,d = χcan · (εd ◦NK/Q). (2.1)

Here d is a fundamental discriminant and εd = (d) is the quadratic dirichlet
character with conductor d, prime to D. The root number W (χ) is explicitly
computed in [Ro2]. In particular, when D is odd

W (χD,d) =

(
2

D

)
sign(d). (2.2)
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From now on we will assume that W (χ) = −1. Set

B =
√
DN f =

{
D|d|, D odd
2D|d|, 8 | D. (2.3)

The Hecke L-function is defined as

L(s, χ) =
∑

a integral

χ(a)(Na)−s

=
∑

ideal classes C

L(s, χ, C),

where L(s, χ, C) is the partial L-series summed over integral ideals in C. Their
completed L-functions are defined by

Λ(s, χ) =

(
B

2π

)s
Γ(s)L(s, χ)

and

Λ(s, χ, C) =

(
B

2π

)s
Γ(s)L(s, χ, C).

Lemma 2.1. When W (χ) = −1, Λ′(1, χ) = 0 if and only if Λ′(1, χ, C) = 0
for each ideal class C of K.

Proof: Associated to χ is a cuspidal new form f of weight 2 and level B2

such that L(s, f) = L(s, χ). So Corollary 2 of [GZ] implies that Λ′(1, χ) = 0
if and only if Λ′(1, χσ) = 0 for every σ ∈ Gal(Q̄/Q). On the other hand, by
Theorem 1 of [Ro3],

{χσ : σ ∈ Gal(Q̄/K)} = {χφ : φ is an ideal class character of K},

and L(s, χ) = L(s, χ̄) by (1.1). Thus Λ′(1, χ) = 0 if and only if Λ′(1, χφ) = 0
for all ideal class characters φ of K. The ideal class characters are linearly
independent and

L(s, χφ) =
∑
C

φ(C)L(s, χ, C),

so the lemma follows. 2
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To prove Λ′(1, χ) 6= 0, it now suffices to show Λ′(1, χ, c1) 6= 0 for the trivial
class c1 (i.e. the class of principal ideals). Since the root number W (χ) = −1,
we have the functional equation

Λ(s, χ, c1) = −Λ(2− s, χ, c1). (2.4)

By Cauchy’s theorem

Λ′(1, χ, c1) =
1

2πi

(∫ 2+i∞

2−i∞
Λ(s, χ, c1)

ds

(s− 1)2
−
∫ +i∞

−i∞
Λ(s, χ, c1)

ds

(s− 1)2

)
.

Applying (2.4) we arrive at the formula

1

2
Λ′(1, χ, c1) =

1

2πi

∫ 2+i∞

2−i∞
Λ(s, χ, c1)

ds

(s− 1)2
. (2.5)

It is clear from property (1.2) of χ that there is a quadratic character ε of
(O/f)∗ such that

χ(αO) = ε(α)α. (2.6)

We can express L(s, χ, c1) as a sum over real and complex ideals:

L(s, χ, c1) =
∞∑
n=1

ε(n)n1−2s +
∞∑
n=1

ann
−s, (2.7)

where

an =
∑

Na=n, a6=ā

principal,
integral

χ(a) =
∑

u2+Dv2=4n
u,v>0

ε

(
u+
√
−Dv

2

)
u. (2.8)

Let

f(x) =
Γ(0, x)

x
=

1

x

∫ ∞
x

e−t
dt

t
(2.9)
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be the inverse Mellin transform of Γ(s)
(s−1)2 . Indeed∫ ∞

0

f(x)xs
dx

x
=
∫∞

0

∫∞
x
xs−1e−t dt

t
dx
x

=
∫∞

0

∫ t
0
dx
x
xs−1e−t dt

t

= 1
s−1

∫∞
0
ts−1e−t dt

t
=

Γ(s− 1)

(s− 1)
=

Γ(s)

(s− 1)2
,

so

f(y) =
1

2πi

∫
Re(s)=2

Γ(s)

(s− 1)2
y−sds. (2.10)

Combining (2.5), (2.7), and (2.10) we obtain

1

2
Λ′(1, χ, c1) =

R︷ ︸︸ ︷
∞∑
n=1

ε(n)n · f(2πn2/B) +

C︷ ︸︸ ︷
∞∑
n=1

anf

(
2πn

B

)
. (2.11)

Formula (2.11) is essentially due to Rohrlich ([Ro4]), except that he expressed
R in terms of dirichlet L-functions.

Examples: D = 8 and 11

We will now illustrate (2.11) with the first two discriminants which occur. Since
both Q(

√
−8) and Q(

√
−11) have class number 1,

Λ′(1, χ, c1) = Λ′(1, χ).

In order to compute it using (2.11), we must first describe the character ε :
(O/f)∗ → {±1}. When D = 8, f = 2

√
−DO = Z8 ⊕ Z

√
−32, and (O/f)∗ is

generated by (Z/8)∗ and 1 +
√
−2. The character ε(n) must restrict to

(−8
n

)
for n ∈ (Z/8)∗, and is thus determined by its value on 1 +

√
−2. In fact,

W (χ) = ε(1 +
√
−2), so in our case the values of ε on the relatively-prime

residue classes are given in the following chart:
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ε(u+ v
√
−2) u 1 3 5 7

v
0 1 1 -1 -1
1 -1 -1 1 1
2 -1 -1 1 1
3 -1 -1 1 1

When D = 11, ε
(
u+
√
−11v
2

)
=
(

2u
11

)
. We now compute L′(1, χ) for these

canonical characters, and check (2.11) by comparing the known values of L′(1, E)
for the associated elliptic curves E.

D = 8 D = 11

Term R with n2 ≤ 50 1.82582357875147 0.81497705252487
Term C with n ≤ 50 -0.28596530872740 -0.0600975766040368
L′(1, χ) =

(
2π
B

)
Γ(1)Λ′(1, χ) 1.209401857169272 0.862372296690396

= 4π
B

(R + C)

Associated curve E y2 = x3 + 4x2 + 2x y2 + y = x3 − x2 − 7x+ 10
([Cr], curve 256A) ([Cr], curve 121B)

L′(1, E) from [Cr] 1.2094018572 .8623722967

Proof of Theorem 1.1

By Lemma 2.1 and (2.11), it suffices to prove R > |C|. In the next section, we
will prove that R is bounded below by

R >

∞∑
n=1

λ(n)n · f
(

2πn2

B

)
> .5235B − .8458B3/4 − .3951B1/2. (2.12)

Here λ(n) is Liouville’s function – the completely multiplicative function which
is -1 at each prime.

In Section 4 we consider the special case d = 1, and bound term C by
Proposition 4.1:

|C| <
{
.2369D, D even
.0269D, D odd.

(2.13)
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Having collected these estimates, proving R > |C| is a simple calculation.
Indeed, if D ≥ 24 is even, then B = 2D, and

R > .5235(2D)− .8458(2D)(48)−1/4 − .3951(2D)(48)−1/2 = .2902D,

so

R > .2369D > |C|.

If D ≥ 19 is odd then

R > .5235D − .8458 ·D · 19−1/4 − .3951 ·D · 19−1/2 > .0277D,

R > .0269D > |C|.

There are only two values of D not covered by this argument: D = 8 and
11, which were dealt with in the examples.

2

Quadratic twists

To prove non-vanishing for quadratic twists of canonical characters, the bound
(2.13) is not useful. In Section 5 we apply Rohrlich’s method to obtain the
following bound on C for χD,d (Proposition 5.1):1

|C| � D15/16+δ|d|51/16+δ, (2.14)

where δ > 0 is arbitrary and the implied constant depends only on it. Combining
(2.11), (2.12), and (2.14) we conclude

Theorem 2.2. For any fixed δ > 0,

Λ′(1, χD,d) 6= 0

for |d| � D1/35−δ and W (χD,d) = −1.

1The notation A � B means A = O(B), i.e. there exists a positive constant C such
that |A| ≤ CB.
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Remarks. When the root number W (χ) = 1, similar non-vanishing results
for twists were obtained in [Ro1], [RVY], and [Ya] for the central L-value.

For canonical Hecke characters, Rohrlich ([Ro4]) computed R as a contour
integral of dirichlet L-functions. By shifting contours, R can be expressed as
the sum of a residue and a remainder integral. He showed the residue is of size
� D, and used Burgess’ sub-convexity estimate to bound the remainder integral
by� Dα, α < 1. Also, he used the method in Section 5 to show C � Dα. The
power of the main term is larger than that of the other two terms, and positivity
follows for large D. However, the implied constants one gets for these estimates
are quite unfavorable. In our proof of Theorem 1.1 we sacrifice the gain in the
powers of D for a tie – in favor of better constants.

3 The Main Term R

The purpose of this section is to prove (2.12). We will show term R is large and
positive by eventually bounding it from below by the following sum.

Proposition 3.1.
∞∑
n=1

λ(n)n · f
(

2πn2

x

)
is always positive for x > 0 and in fact

∞∑
n=1

λ(n)n · f
(

2πn2

x

)
> .5235x− .8458x3/4 − .3951x1/2 (3.1)

for x > 1.

Proof: Using (2.10) and the identity

∞∑
n=1

λ(n)n−s =
ζ(2s)

ζ(s)
,
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we write∑∞
n=1 λ(n)n · f

(
2πn2

x

)
=

1

2πi

∫
Re s=2

( x
2π

)s Γ(s)

(s− 1)2

ζ(4s− 2)

ζ(2s− 1)
ds

=
1

2πi

∫
γ

( x
2π

)s Γ(s)

(s− 1)2

ζ(4s− 2)

ζ(2s− 1)
ds

+Ress=1

( x
2π

)s Γ(s)

(s− 1)2

ζ(4s− 2)

ζ(2s− 1)

+Ress=3/4

( x
2π

)s Γ(s)

(s− 1)2

ζ(4s− 2)

ζ(2s− 1)
.

Here γ = C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 is the contour consisting of the union of the
following five line segments:

C1 from 1− i∞ to 1− 7i,

C2 from 1− 7i to
1

2
− 7i,

C3 from 1
2
− 7i to

1

2
+ 7i,

C4 from 1
2

+ 7i to 1 + 7i,

C5 from 1 + 7i to 1 + i∞
(7 is chosen because the first critical zeroes of ζ(s) are approximately 1

2
±

14.13472i). The residue at s = 1 is πx
6
≈ .523599x and the residue at s = 3/4

is

Ress=3/4

( x
2π

)s Γ(s)

(s− 1)2

ζ(4s− 2)

ζ(2s− 1)
=

25/4x3/4Γ(3/4)

π3/4ζ(1/2)
≈ −.845767x3/4.

One can easily estimate the integrals over γ as follows.2 First,∣∣∣∣∫
C1

( x
2π

)s Γ(s)

(s− 1)2

ζ(4s− 2)

ζ(2s− 1)
ds

∣∣∣∣
=

∣∣∣∣∫
C5

( x
2π

)s Γ(s)

(s− 1)2

ζ(4s− 2)

ζ(2s− 1)
ds

∣∣∣∣
≤ x

2π

∫ ∞
t=7

|Γ(1 + it)|
t2

|ζ(2 + 4it)|
|ζ(1 + 2it)|

dt

≤ x(5 · 10−7).

2All computations were done using Mathematica v4.0 on an Intel Celeron processor
under Windows 98.
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Next ∣∣∣∣∫
C2

( x
2π

)s Γ(s)

(s− 1)2

ζ(4s− 2)

ζ(2s− 1)
ds

∣∣∣∣
=

∣∣∣∣∫
C4

( x
2π

)s Γ(s)

(s− 1)2

ζ(4s− 2)

ζ(2s− 1)
ds

∣∣∣∣
≤ x

∫ 1

σ=1/2

(2π)−σ
|Γ(σ + 7i)|

(σ − 1)2 + 49

|ζ(4σ − 2 + 28i)|
|ζ(2σ − 1 + 14i)|

dσ

≤ x(2 · 10−6).

Finally, ∣∣∣∣∫
C3

( x
2π

)s Γ(s)

(s− 1)2

ζ(4s− 2)

ζ(2s− 1)
ds

∣∣∣∣
≤
√

x

2π

∫ 7

t=−7

|Γ(1/2 + it)|
1/4 + t2

|ζ(4it)|
|ζ(2it)|

dt

≤ 2.48218
√
x.

Combining these estimates proves (3.1). For x ≥ 20,

.5235x− .8458x3/4 − .3951x1/2

≥ (.5235− .8458 · 20−1/4 − .3951 · 20−1/2)x

≥ .0351x > 0.

The positivity for x < 20 is handled by the next lemma. 2

Lemma 3.2. For 0 < x < 20, one has

f(
2π

x
) >

∞∑
n=2

n · f
(

2πn2

x

)
.

Proof: It is easy to see that for any 0 < a < 1 and t > a
1−a

f(t) > ae−t/t2.

Take a = π
10+π

> .23. Then for 0 < x < 20, one has

f(
2π

x
) > .23

x2

4π2
e−

2π
x .
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One the other hand, clearly, f(x) < e−x/x2, and so

∞∑
n=2

n · f
(

2πn2

x

)
≤

∑∞
n=2 n

x2

4π2n4 e
−2πn2/x

≤ x2

4π2

∑∞
n=2 n

−3e−2πn2/x.

(3.2)

Since n2 ≥ n+ 2 for n ≥ 2, this is

≤ x2

4π2

e−8π/x

8

∞∑
n=0

e−2πn/x =
x2e−2π/x

4π2

1

8

e−6π/x

(1− e−2π/x)
. (3.3)

Since 1
8

e−6π/x

(1−e−2π/x)
is clearly increasing, it is thus bounded above in 0 < x < 20

by its value ≈ .181 at x = 20. Therefore (3.3) is bounded above by

.19
x2

4π2
e−2π/x < f(2π/x).

2

Proposition 3.3. (1) If m is any completely multiplicative function with
values −1, 0, or 1, then

∞∑
n=1

m(n)n · f
(

2πn2

x

)
> 0 , x > 0. (3.4)

(2) If m1 and m2 are two distinct such functions with m1(p) ≥ m2(p) for
every prime p, then

∞∑
n=1

m1(n)n · f
(

2πn2

x

)
>

∞∑
n=1

m2(n)n · f
(

2πn2

x

)
(3.5)

for all x > 0.

Proof: We first assume that the functions m, m1, and m2 differ from λ at
only finitely many primes. Therefore, by Proposition 3.1 and induction, it suffices
to prove (3.5) under the following conditions:
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(a) m2 satisfies (3.4) for all x > 0.
(b) m1 and m2 differ at exactly one prime, say p, and m1(p) = m2(p) + 1.

Under assumption (b), the difference is

∞∑
n=1

m1(n)n · f
(

2πn2

x

)
−
∞∑
n=1

m2(n)n · f
(

2πn2

x

)

=
∑
p|n

(m1(n)−m2(n))n · f
(

2πn2

x

)
.

When m2(p) = −1, m1(p) = 0, the difference is then

−
∑
p|n

m2(n)n · f
(

2πn2

x

)
= p

∞∑
n=1

m2(n)n · f
(

2πn2

x/p2

)
> 0

by assumption (a). When m2(p) = 0, m1(p) = 1 and m1(pkn) = m2(n) for
p - n. So the difference is∑

p|n

m1(n)n · f
(

2πn2

x

)
=
∞∑
k=1

pk
∞∑
n=1

m2(n)n · f
(

2πn2

x/p2k

)
> 0

by assumption (a) again.
In the general case, define mN(n) to be the completely multiplicative function

derived from m by

mN(p) =

{
m(p), p ≤ N
λ(p), p > N.

(3.6)

Then mN differs from λ at only a finite number of primes, and thus

∞∑
n=1

mN(n)n · f
(

2πn2

x

)
≥

∞∑
n=1

λ(n)n · f
(

2πn2

x

)
> 0.

Taking the limit as N →∞,

∞∑
n=1

m(n)n · f
(

2πn2

x

)
≥

∞∑
n=1

λ(n)n · f
(

2πn2

x

)
> 0.

This completes the proof of part (1); part (2) can be handled similarly. 2
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Corollary 3.4. One has

R ≥
∞∑
n=1

λ(n)n · f
(

2πn2

B

)
.

Combining Proposition 3.1 with Corollary 3.4, one obtains (2.12).

4 The Trivial Bound on Remainder Term C

In this section, we will only treat canonical characters, and prove (2.13):

Proposition 4.1. When d = 1 and D ≥ 7, term C is bounded by

|C| <
{
.0269D, D odd
.2369D, D even.

(4.1)

Proof: We first assume D is odd, so B = D. From (2.8) we can bound C
term-wise, without appealing to cancellation from the character. To wit,

|C| ≤
∑
u,v>0

u≡v (mod 2)

uf
(π

2
(v2 + u2/D)

)
.

Since f(x) < e−x/x2,

|C| <
∑
u,v>0

v≡u (mod 2)

ue−
πu2

2D
e−πv

2/2(
π
2
(v2 + u2/D)

)2

<
∞∑
u=1

ue−
πu2

2D
4

π2

∞∑
v=1

v≡u (mod 2)

v−4e−πv
2/2.

The inside sum is bounded by

∞∑
v=1, odd

v−4e−πv
2/2 ≈ .20788,
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so

|C| ≤ .0843
∞∑
u=1

ue−
πu2

2D .

If D is even, then B = 2D,and the same argument shows that

|C| < 2

(
16

π2

∞∑
v=1

v−4e−πv
2/4

)(
∞∑
u=1

ue−πu
2/D

)

≤ 1.488
∞∑
u=1

ue−πu
2/D.

The proof of (4.1) now follows from bound in the Lemma below. 2

Lemma 4.2. For a ≥ 1,

∞∑
n=1

ne−n
2/a < a/2. (4.2)

This conclusion actually holds for all a > 0.

Proof: Using the Poisson summation formula applied to |n|e−n2/a,

∞∑
n=1

ne−n
2/a =

∫ ∞
0

ne−n
2/adn+ 2

∞∑
r=1

∫ ∞
0

ne−n
2/a cos(2πrn)dn.

The first integral is a/2 and the others are actually negative. This is because∫ ∞
0

ne−n
2/a cos(2πrn)dn =

a

2

(
1− e−aπ2r2

2πr
√
a

∫ πr
√
a

0

et
2

dt

)

(cf. [GR], 17.13.27) and∫ πr
√
a

0

et
2

dt > 1 +

∫ aπ2r2

1

et

2
√
t
dt = 1 +

1

2πr
√
a

(
eaπ

2r2 − e
)
>

eaπ
2r2

2πr
√
a
.

2
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5 Rohrlich’s Bound on Remainder Term C

We now return to the general case of a canonical character twisted by εd =
(
d
)
.

The method here is adapted from [Ro1] and [Ro4].

Proposition 5.1. For any δ > 0, term C is bounded by

|C| � D15/16+δ|d|51/16+δ,

where the implied constant depends only on δ.

Proof: Set A(t) =
∑

n<t an. Integration by parts gives

C =

∫ ∞
D/4

f

(
2πt

B

)
d

dt
A(t)dt = −

∫ ∞
D/4

A(t)
d

dt
f

(
2πt

B

)
dt, (5.1)

because there are no complex ideals of norm < D/4. By [Ro1], p. 553(27), A(t)
is bounded above by

|A(t)| � t5/4D−5/16+δ|d|19/16+δ

for D > 8 and t > 0 (the implied constant again depends only on δ). Along
with the inequalities

0 < − d

dt
f

(
2πt

B

)
<

B

2πt2
e−2πt/B

(
1 +

B

2πt

)
,

(5.1) implies

|C| � D−5/16+δ|d|19/16+δ

∫ ∞
D/4

[
t5/4

B

2πt2
e−2πt/B

(
4

3
+

B

2πt

)]
dt

� D−5/16+δ|d|19/16+δ

∫ ∞
D/4

d

dt

[
− B

2

2π2
t−3/4e−2πt/B

]
dt

� D−17/16+δ|d|19/16+δB2.

Since either B = D|d| or 2D|d|, this completes the proof. 2
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6 Arithmetic Applications

Having completed their proofs, we will now give some arithmetic applications of
Theorems 1.1 and 2.2, including Corollary 1.2.

Let j be the j-invariant of a fixed isomorphism class of elliptic curves with
complex multiplication (CM) by O. Then H = K(j) is the Hilbert class field of
K. We can extend any Hecke character χ of K to one on H by

ψ = χ ◦NH/K .

When χ satisfies (1.1) and (1.2),

ψ(Aσ) = ψ(A)σ, σ ∈ Gal(H/Q)

for every ideal A of H relatively prime to the conductor of ψ. By Theorem 9.1.3
and Lemma 11.1.1 of [Gr], there is a unique elliptic Q-curve A over H with

j(A) = j and L(s, A/H) = L(s, ψ)L(s, ψ̄).

(Here we recall that a “Q-curve” is an elliptic curve over a number field which
is isogenous to all of its Galois conjugates.) Furthermore, A descends to two
isogenous elliptic curves over the subfield F = Q(j) ([Gr], Theorem 10.2.1). By
abuse of notation we will also refer to these curves as A. Let B = ResF/QA
be the abelian variety over Q obtained from A by restriction of scalars. When
D = p is prime, Gross proved ([Gr], Theorem 15.2.5) that T = EndKB⊗Q is a
CM number field of degree 2h; thus B is also a CM abelian variety. This result
actually extends to composite D via a different argument:

Lemma 6.1. (a) Let T be the subfield of C generated by χ(a), where a runs
over all ideals of K prime to χ’s conductor. Then T is a CM number field of
degree 2h, and Φ = {σ : T → C | σ trivial on K} is a CM type of T.

(b) B is a CM abelian variety of type (T,Φ).

Proof: For each embedding σ : T → C fixing K, σ ◦χ is another canonical
Hecke character of K, and thus it is of the form χφ, where φ is an ideal class
character of K. By Theorem 1 of [Ro3], σ 7→ φ actually gives a one-to-one
correspondence between the complex embeddings of T into C fixing K, and the
ideal class characters of K. Thus [T : K] = h and [T : Q] = 2h. It is a general
fact that T is a CM number field; in this case it can easily be verified using
property (1.1) of χ.
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By [Sh], Theorem 10, there is a CM abelian variety B′/Q of type (T,Φ)
associated to χ, and it is unique up to isogeny. In particular

L(s, B′) =
∏

σ:T+−→C

L(s, χσ) =
∏
φ

L(s, χφ), (6.1)

where T+ is the maximal totally-real subfield of T . On the other hand,

L(s, B) = L(s, A/F ) = L(s, ψ) =
∏
φ

L(s, χφ).

This shows L(s, B) = L(s, B′), so a theorem of Faltings [Fa] guarantees B and
B′ are isogenous, proving (b). 2

Lemma 6.2. Let χ be a Hecke character of K of the form (2.1). Let A be an
associated Q-curve over F = Q(j) with j-invariant j, and let B = ResF/QA.
If ords=1L(s, χ) ≤ 1 then

(a) The Mordell-Weil ranks of A and B are given by

rankZA(F ) = rankZB(Q) = h · ords=1L(s, χ).

(b) The Shafarevich-Tate groups X(A/F ) and X(B/Q) are finite.

Proof: Since the Mordell-Weil and Shafarevich-Tate groups of A over F are
identical to those of B over Q, it is sufficient to prove the Lemma for B. Let f be
the normalized weight 2 new-form associated to χ as in the proof of Lemma 2.1.
The field generated by f ’s Fourier coefficients is generated by χ(a) + χ(a), and
is thus T+. Equation (6.1) implies

L(s, B) =
∏

σ:T+−→C

L(s, fσ).

Now the Lemma follows from a result of Kolyvagin and Logachev ([KL]). 2

Combining Lemma 6.2 with the non-vanishing theorems above (Theorems
1.1 and 2.2) and in [MR], one gets the following two corollaries.
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Corollary 6.3. Let χ = χcan be a canonical Hecke character of K, and
let A and B = ResF/QA respectively be associated Q-curves and CM abelian
varieties as above. Then

(a) The Mordell-Weil ranks of A and B are given in terms of the root
number W (χ) by

rankZA(F ) = rankZB(Q) =

{
h, W (χ) = −1
0, W (χ) = 1.

In particular, when D is odd, these ranks are h or zero depending on whether
D ≡ 3 or 7 mod 8.

(b) The Shafarevich-Tate groups X(A/F ) and X(B/Q) are finite.

Proof of Corollary 1.2: Take D = p, j = j
(

1+
√
−p

2

)
, A = A(p), and

apply Corollary 6.3. 2

Corollary 6.4. Let χ = χD,d be a Hecke character of K of the form (2.1).
Let A and B = ResF/QA be as above, and fix any δ > 0. If |d| � D1/35−δ

(the implied constant depending on δ) and W (χD,d) = −1, then

(a) The Mordell-Weil ranks of A and B are

rankZA(F ) = rankZB(Q) = h.

(b) The Shafarevich-Tate groups X(A/F ) and X(B/Q) are finite.

Finally, we wish to point out that when D is prime, all Q-curves over F are
associated to Hecke characters of the form (2.1), though this is not true for every
composite D. See [Na] for a more-precise description.
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