Homework in complex analysis

Stephen Miller

Assignment 1
Due Wednesday March 23rd, 2005 at 17:00

You only need to do $\underline{2}$ out of the $\underline{3}$ problems. Be sure to indicate which 2 you want me to grade. My advice is that you try all 3 first, because they will help you to see if you understand the material. You may try to solve the problems in working groups together; however, you should submit your own solutions that are written without looking at any notes or papers from work you did with other people. Questions? E-mail me at miller@math.huji.ac.il.

1. The purpose of this exercise is to give another proof of the Poisson summation formula. Recall that $\mathcal{F}_{a}=\{$ functions which are holomorphic in the strip $|\operatorname{Im} z|<a\}$ and that $\mathcal{F}=\cup_{a>0} \mathcal{F}_{a}$. The Poisson summation formula asserts that $\sum_{n \in \mathbb{Z}} f(n)=\sum_{n \in \mathbb{Z}} \widehat{f}(n)$ for $f \in \mathcal{F}$.
a. Prove that \mathcal{F} is a vector space over the field of complex numbers \mathbb{C}.
b. Prove that, as a vector space, \mathcal{F} is the direct sum of the subspaces

$$
\mathcal{F}^{+}=\{f \in \mathcal{F} \mid f(z)=f(-z)\} \quad \text { and } \quad \mathcal{F}^{-}=\{f \in \mathcal{F} \mid f(z)=-f(-z)\}
$$

c. Explain why the Poisson Summation Formula for $f \in \mathcal{F}^{-}$is trivial. Be sure to explain the convergence.
d. Consider the contour integral

$$
\mathcal{I}_{\varepsilon}:=\frac{1}{2 \pi i} \int_{\operatorname{Im} z=\varepsilon} f(z) \pi \cot \pi z d z
$$

for $\varepsilon \in \mathbb{R}$. Explain why for $f \in \mathcal{F}^{+}$and $\varepsilon>0$ sufficiently small that

$$
-2 \mathcal{I}_{\varepsilon}=\sum_{n \in \mathbb{Z}} f(n)
$$

This will use the fact that the residue of $\pi \cot \pi z$ at any integer z is equal to 1.
e. Prove that

$$
\pi \cot \pi z=-i \pi\left(1+2 \sum_{n \geq 1} e^{2 \pi i n z}\right)
$$

for $\operatorname{Im} z>0$.
f. Use parts c, d, and e to give a new proof the Poisson summation formula for functions in \mathcal{F}.
2. Use a contour shift to prove that the function $\operatorname{sech}(\pi x)=\frac{2}{e^{\pi x}+e^{-\pi x}}$ is equal to its own Fourier transform. Hint: Examine the rectangular contour C_{R} whose corners are at the points $\{-R, R, R+2 i,-R+2 i\}$.
3. For this exercise we will use the space of Schwartz functions

$$
\mathcal{S}(\mathbb{R}):=\left\{\left.f \in C^{\infty}(\mathbb{R}) \quad\left|\quad \lim _{|x| \rightarrow \infty}\right| x\right|^{k} \frac{d^{n}}{d x^{n}} f(x)=0 \text { for each } k, n \geq 0\right\}
$$

Suppose $f \in \mathcal{S}(\mathbb{R})$ is an arbitrary Schwartz function in each part of this exercise.
a. Let $g(x):=f(x t)$. Prove that for any $t \neq 0$ that $\widehat{g}(r)=\frac{1}{t} \widehat{f}(r / t)$.
b. Let $g(x):=f(x+u), u \in \mathbb{R}$. Prove that $\widehat{g}(r)=e^{2 \pi i r u} \widehat{f}(r)$.
c. Let $g(x)=f^{\prime}(x)$. Prove that $\widehat{g}(r)=2 \pi i r \widehat{f}(r)$.
d. Let $g(x)=x f(x)$. Prove that $\widehat{g}(r)=-\frac{1}{2 \pi i} \frac{d}{d r} \widehat{f}(r)$.

