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1 Introduction

1.1 Outline of Course

• p-adic numbers

• Adeles

• Tate’s thesis

• Automorphic forms on SL2(R)

• Automorphic representations of GL2(R)

• Adelic automorphic representations

• Study of congruence subgroups, Hecke operators, Atkin-Lehner theory

• Jacquet-Langlands theory of automorphic L-functions, comparison with
Atkin-Lehner
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1.2 Some Recommended Texts

(Listed in order of the chronology above)

• Koblitz [Kob]

• Robert [Rob]

• Ramakrishnan and Valenza [Ram-Val]

• Bump [Bump]

• Gelbart [Gelb]

• Iwaniec’s yellow/blue AMS book [Iwan2]

• Jacquet-Langlands (online) [Jac-Lan]

1.3 Goals and Emphasis of the Course

We want to become equally adept using the adelic and classical languages,
and understand constructions and insights provided by each language in
terms of the other; in short, to become bilingual. We assume some familiar-
ity with the classical language, either from Iwaniec’s graduate courses or his
texts [Iwan1] and [Iwan2].

1.4 A Note on these Notes

These notes often provide some unusual and unorthodox explanations of
things which are typically explained in a different, and perhaps superior, way.
This is being done for two reasons: to complement existing sources, and to
develop a background with automorphic forms itself in mind. Furthermore,
and more importantly, many technical details (such as convergence) will be
omitted, as they are explained very well in other sources. Many arguments
will be purely formal. This is being done to give a conceptual explanation of
the techniques.
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2 The p-adic Numbers Qp

The p-adic numbers are themselves divergent series! They were first in-
vented/discovered by Kurt Hensel about a century ago (see [Rosen] for a
short biography). They are comparable to the decimal (or, more correctly
base p) expansions of real numbers

1.351325 · · · ,

except that they are written

· · · 5019325.135

from right to left instead of left to right. Truncating these infinite expan-
sions gives rational numbers in either case, and both R and Qp are different
completions of the rationals Q under different metrics. Roughly speaking,
two numbers are “close” to each other in either case if a large initial stretch
of digits agree. Addition and multiplication of real numbers is done from
right to left (even though the expansions continue infinitely far to the right).
Addition and multiplication in Qp is done also from right to left; one has a
well-defined starting point, but the process literally takes forever.

The p-adic integers Zp are those p-adic numbers with nothing to the right
of the decimal point. A more formal/algebraic definition is as the inverse
limit

Zp = lim
←

Z/pnZ =

{
∞∑
n=0

anp
n, 0 ≤ an < p

}
.

When one adds or multiplies p-adic integers, one must carry as with the usual
decimal addition and mulitplication. The p-adic numbers are

Qp = ∪∞k=0p
−kZp =

{
∞∑

n=−k

anp
n, 0 ≤ an < p

}
.

Exercise 2.1. A. Show that it makes sense to reduce u ∈ Qp (mod pk) for
any integer k.

B. Prove that if u1, u2 ∈ Qp, that

u1 = u2 ⇔ u1 ≡ u2 (mod pk) for all k ∈ Z.

C. Check that the reduction is consistent with the addition and multipli-
cation laws in Zp and Z/pk.
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2.1 Division

Lemma 2.2. If x 6= 0 is in Qp, then it is invertible in Qp.

Proof: By factoring out the leading term, we may assume

x = pku (2.1)

where u =
∑
anp

n ∈ Zp starts with 1 ≤ a0 ≤ p − 1. Since a0 is invertible
in (Z/p)∗, we may multiply u by an integer and assume a0 = 1. Writing
u = 1− py, y = −

∑∞
n=0 an+1p

n ∈ Zp, we find that

u−1 = (1− py)−1 = 1 + py + (py)2 + · · · .

This last expression is convergent because the powers of p increase, and so
the n-th digit stabilizes after adding (py)n. �

This proof introduces two important concepts. First, the integer k in
(2.1) is called the order, ord(x). Secondly, the order gives a topology that
makes our infinite sum converge quite easily. Under the p-adic absolute value
|x|p = p−ord(x), two numbers are indeed close when a large initial stretch of
their digits agree. This metric has the ultrametric property

|x+ y| ≤ max(|x|, |y|) ⇐⇒ ord(x+ y) ≥ min(ord(x), ord(y)). (2.2)

Exercise 2.3. Prove (2.2), and that every convergent sequence is a also a
cauchy sequence.

Exercise 2.4. Prove that any series
∑
an converges so long as an → 0.

Exercise 2.5. Show that Zp and Z∗p are compact by using the convergent
subsequence property.

This shows that any continuous image of Zp is compact; in particular,
continuous characters of Zp and Z∗p take values in the unit circle {z ∈ C |
zz̄ = 1}.

In fact, the structure of Qp can be described naturally as follows:

Qp = {0} ∪Q∗p
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(by Lemma 2.2), and

Q∗p =
∐
k∈Z

pkZ∗p,

where Z∗p are the units in Zp; Z∗p = {|x| = 1}, a basic open set. All open sets
are unions of the basic open neighborhoods that are translates ax + b of Zp

itself, so long as a 6= 0. For example,

Z∗p =

p−1∐
j=1

(j + pZp).

This gives a tree-like structure to Qp.

2.2 Haar Measure and Integration

There is an additive measure dx, normalized to give Zp measure 1, and a
multiplicative measure d∗x, which gives Z∗p measure 1. For example, I = pZp

has additive measure 1/p, since its p translates I + j, 1 ≤ j ≤ p form Zp.

Lemma 2.6. The map x 7→ yx changes dx 7→ |y|dx, and does not change
d∗x.

Proof: This is clear if y is a unit (i.e. |y| = 1), and the example above
can be iterated for the general case. �

In fact, the multiplicative measure is

d∗x =
dx

|x|
p

p− 1
.

Example 2.7. As an example of an integral, let us compute∫
Zp

|x|sdx =
∞∑
k=0

∫
pkZ∗p

|x|sdx

=
p

p− 1

∑
p−ks =

p

(p− 1)(1− p−s)
.

This is a very typical example; it shows that p-adic integration is often
just summation. An integrand like ours (which depends only on |x|) often
turns out to be a geometric series.
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2.3 Additive and Multiplicative Characters

There is a standard additive character on Qp which is trivial on the integers
Zp:

ep(x) = e−2πiq, x ∈ q + Zp

which is well defined because it only depends on the fractional part of the p-
adic number x. As we will show momentarily, the general continuous additive
character on Qp is

ψa(x) = ep(ax), a ∈ Qp.

Its kernel is |a|Zp, the conductor of ψa. We will also refer to |a| as the
conductor here as well.

Theorem 2.8. If ψ is a continuous additive character of Qp, then ψ(x) =
ep(ax) for some a ∈ Qp.

We will use

Lemma 2.9. If a sequence of complex numbers x0, x1, . . . with xn+1 = xpn
converges to 1, then x0 = e2πiα for some α ∈ Q.

Proof of Lemma 2.9: Firstly, we must clearly have that |xn| = 1, and
that |αN | < p−2 for N sufficiently large, where xn = e2πiαn . We may also
assume that |αn| ≥ |αN | for n ≥ N . But then |αN+1| = |pαN | > |αN | unless
αN = 0. �

Proof of Theorem 2.8: We use that 1 is a topological generator of Zp,
i.e. the set N = { 1, 1+1, 1+1+1, . . . } is dense in Zp. Then ψ’s restriction
to Zp is determined purely by its values on Z. We have that ψ(n) = ψ(1)n,
and in particular

ψ(pk) = ψ(1)p
k

.

Since ψ is continuous and |pk| → 0 as k → ∞, ψ(1)p
k → 1 as k → ∞, and

Lemma 2.9 shows that ψ(1) = e2πij/p
k

for some k ≥ 0, (j, p) = 1. By using

the character ψ
(
pk

j
x
)

instead, we may thus assume that ψ is trivial on Zp.

Now, ψ(1/p)p = ψ(1) = 1, and so

ψ(1/p) = e2πia1/p.

Also,
ψ(1/p2)p

2

= 1,
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and so
ψ(1/p2) = e2πia2/p2 ,

with the compatibility condition that a2 ≡ a1 (mod p). Continuing we obtain
a p-adic integer a such that

ψ(1/pk) = e2πia/p
k

, k ≥ 0

and thus ψ(x) = ep(−ax). �

We now turn to the multiplicative characters (Theorem 2.11), but first
give an overview. Since Q∗p is isomorphic to a product of its “spine“ pZ =
{|x| | x ∈ Q∗p} with Z∗p, continuous characters of Q∗p will be of the form
|x|sχ(x), where χ(x) is a finite-order continuous character of Z∗p. By conti-
nuity, its kernel contains an open subgroup of the form 1 + pkZp, which is
called the conductor of χ for the smallest such value of k ≥ 0. Again, the
conductor is often referred to just as pk. χ is essentially a dirichlet character
on Z/pk. This is because

Exercise 2.10. Show that Z∗p/(1 + pkZp) ' (Z/pk)∗.

Theorem 2.11. All continuous multiplicative characters of Q∗p are of the
form

|x|sχ(x), (2.3)

where χ is a finite order character of Z∗p.

Proof: Clearly as

Q∗p = {pk | k ∈ Z} × Z∗p,

such a decomposition as in (2.3) exists. We need only show that χ is indeed
a finite-order character. To simplify, we argue here only for odd primes (the
case p = 2 can be handled similarly). Recall that for all primes p > 2 there is
an integer g which generates any (Z/pk)∗. Such a g is a topological generator
of Z∗p. Since

g(p−1)pk−1 ≡ 1(mod pk),

χ
(
(gp−1)p

k
)

= χ(gp−1)p
k → 1 as k →∞. Thus Lemma 2.9 shows that χ(g)

is the exponential of a rational number, and χ is of finite order. �
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2.4 An Important Integral

Example 2.12. The “p-adic Gamma function”: If ψ is any additive char-
acter and χ any multiplicative character (both assumed to be continuous)

G(ψ, χ) :=

∫
Q∗p
ψ(x)χ(x)d∗x. (2.4)

This is in analogy to the classical situation of the field of real numbers,
where Γ(s) =

∫∞
0
e−tts dt

t
. We can equivalently study∫

Qp

ψ(x)χ(x)dx, (2.5)

or by changing variables, the more-explicit∫
Qp

ep(x)χ(x)|x|sdx, (2.6)

where χ is now of finite order. Then (2.6) can be broken up as∑
k∈Z

p−ks
∫

x∈Qp

|x|=p−k

ep(x)χ(x)dx,

and we shall now compute ∫
x∈Qp

|x|=p−k

ep(x)χ(x)dx (2.7)

through some exercises:

Exercise 2.13. If φ is a homomorphism from a finite group G to C, then

∑
g∈G

φ(g) =

{
|G| , if φ is trivial,

0 , otherwise.

Exercise 2.14. Assume that χ is trivial. Show that

∫
x∈Qp

|x|=p−k

ep(x)χ(x)dx =


p−1
p
p−k , k ≥ 0,

−1 , k = −1,

0 , otherwise.
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Deduce that (2.6) equals
1− ps

1− p−s−1
.

Hint: when k < 0 the integral is the sum
∑

j∈(Z/p−k)∗ e(−j/p−k).

Now assume that χ is nontrivial of conductor pn, n > 0. To simplify
notation, let ν = −k so that ` = max(n, ν).

Exercise 2.15. Show that if ν < n,∫
x∈Qp

|x|=pν

ep(x)dx = 0.

Hint: First express it in terms of the sum∑
j∈(Z/pn)∗

e(−j/pν)χ(j) =
∑

j∈(Z/pν )∗
`∈Z/pn−ν

e

(
−j + pν`

pν

)
χ(j + pν`),

where we also use χ to refer to the associated dirichlet character. Then show
that the inner sum∑

`∈Z/pn−ν

χ(j + pν`) = χ(j)
∑

`∈Z/pn−ν

χ(1 + pν`) = 0

because {1 + pν`} forms a subgroup of order pn−ν , which is strictly smaller
than the conductor pn.

Exercise 2.16. Show that if ν = n, then∫
x∈Qp

|x|=pν

ep(x)χ(x)dx = χ(−1)τχ,

where the Gauss sum

τχ =
∑

j∈(Z/pn)∗

e(j/pn)χ(j).

Exercise 2.17. Use Exercise 2.13 to show that∫
x∈Qp

|x|=pν

ep(x)χ(x)dx = 0

also if ν > n.
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We conclude:

Proposition 2.18. Let s ∈ C and χ be a finite-order continuous character
of Q∗p. Then the integral∫

Qp

ep(x)χ(x)|x|sdx =

{
1−ps

1−p−s−1 , χ ≡ 1,

pnsχ(−1)τχ , otherwise.

3 Adeles

In this section we will introduce and motivate the adeles by their use in
harmonic analysis.

3.1 The Adelization of the Unit Interval

To start let us recall our definition of the p-adic exponential function

ep(x) = e−2πiq = e(−q),

where q is a rational number such that x ∈ q + Zp. We saw that ep(x) is
well-defined since the exponential function is trivial on integers. In fact, any
periodic function can be extended to the p-adics in this fashion. By the same
principle, we can also translate periodic functions by Qp through the action

f(x) 7→ f(x− y), y ∈ Qp. (3.1)

This is again well-defined, because Zp, the closure of Z in Qp, acts trivially.
Thus Qp acts by shifting the argument of f by a rational number whose
denominator is a power of p:

Qp/Zp ' { a
pk
| (a, p) = 1, 0 ≤ a < pk}.

In fact, we may act by Qp1 ×Qp2 or any finite product
∏

p∈S Qp, or even[∏
p∈S

Qp

]
×

∏
p/∈S

Zp

 , S finite.
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To make this universal, we take the union of these sets over all finite sets of
primes S. This is the finite adeles Af , a restricted direct product of the Qp

with respect to the Zp. The adeles

A = R× Af = {(a∞; a2, a3, a5, . . .) | almost all ap ∈ Zp}

are the restricted direct product of all Qp, p ≤ ∞, using the convention that
Qp = R. The “prime” p = ∞ is called the archimedean prime, because its
valuation (the usual absolute value on R) obeys Archimedes’ Axiom

for all |y| > |x| > 0, there exists n ∈ Z such that |nx| > |y|. (3.2)

This fails for the “non-archimedean” valuations | · |p, p <∞, because |nx|p ≤
|x|p by the ultrametric property (2.2).

We can thus define an adelization any function f on R/Z by

fA(a) = fA(α∞; af ) = f(a∞ − q) (3.3)

where a = (a∞; af ) ∈ A and

ap ∈ q + Zp for all p <∞. (3.4)

Thus Af acts to shift periodic functions. One might think of R as the melody,
but Af as its key.

Exercise 3.1. Prove that such a q as in (3.4) always exists.

Hint: Use the Chinese Remainder Theorem. Alternatively, first suppose
that af ∈ Zp except at one prime, and conclude the general case by summing
the rational numbers obtained this way.

3.2 Diagonal Embedding of Q
On abstract grounds, each Qp is a completion of Q, and hence Q embeds into
each Qp. To be more precise, let us recall from §2.1 that

Proposition 3.2. If m,n ∈ Z and p - n 6= 0, then m
n
∈ Zp.

Proof: This follows from the proof of Lemma 2.2. �

It thus makes sense to diagonally embed Q ↪→ A because almost all
components will be in Zp. We will also refer to this image as Q.
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Proposition 3.3. fA(a) as defined in (3.3) is invariant under the diagonally-
embedded Q.

It is not surprising that A/Q is similar to R/Z. After all, in this setting
Af , the non-archimedean component of A, serves to act on R via the diagonal
embedding of Q. Let

Ẑ =
∏
p<∞

Zp ' lim
←N

Z/NZ.

We have the

Theorem 3.4. (Strong Approximation Theorem)

A = Q + R + Ẑ.

Corollary 3.5. A fundamental domain for A/Q is (R/Z) + Ẑ.

Since Ẑ acts trivially on periodic functions, these facts are readily visible
from our viewpoint in the discussion above. Also, Corollary 3.5 shows us
how to reverse the f 7→ fA correspondence: if a function on A/Q is trivial
on the compact subgroup Ẑ, it corresponds to a periodic function on R/Z.

If we had replaced some of the Zp in Ẑ =
∏

p<∞ Zp by their open, com-

pact subgroups pkpZp, we would obtain NẐ and functions periodic on R/NZ,

where N =
∏
pkp . Indeed, the “missing” translations in Ẑ rN Ẑ correspond

to shifts by the integers 1, . . . , N − 1. Equivalently, one could view periodic
functions on R/NZ as vector-valued functions on R/Z which transform ac-
cording to a shift matrix. This viewpoint is very important when considering
congruence subgroups of GL2(Z) adelically.

4 Fourier Analysis on the Adeles

Suppose, completely formally, that f is a function on A invariant under Q
and Ẑ, which is equivalently a function on R/Z. By general principles we
have a Fourier series

f(a) =
∑

characters ψ of A trivial on Q

∫
A/Q

f(a+x)ψ(x)−1dx =
∑
ψ

ψ(a) < f, ψ > .

(4.1)
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It is worthwhile to understand how this corresponds to the usual Fourier
series on R/Z. First, we need to extend our classification of the characters
of Qp from §2.3 to A. One character is clearly given by

eA(x) =
∏
p≤∞

ep(x), e∞(x) = e(x) = e2πix,

which is the adelization of e(x), the example we started with.

Proposition 4.1. The continuous additive characters of A which are trivial
on Q are precisely those given by e(qx) for some q ∈ Q.

Proof: Clearly these characters e(qx) are all trivial on Q. Conversely,
any additive character can be decomposed as a product ψ =

∏
p≤∞ ψp of

continuous additive characters ψp of Qp. When p = ∞, all characters are
of the form e(c∞x), and we have already seen in §2.3 that for p < ∞ all
continuous additive characters are of the form ep(cpx). Let U = {|z − 1| <
1/10}, so that the only subgroup of C∗ contained in U is the trivial subgroup
{1}. Since ψ is continuous, the inverse image ψ−1(U) is an open subset of
A, and hence contains a basic open neighborhood of the form R × N Ẑ for
some integer N . Then the image ψ(N Ẑ) is a subgroup contained in U , and
hence trivial. We conclude that ψp = e(cpxp) is trivial on Zp for almost all
p, i.e. those not dividing N . Writing cp = pku, where |u| = 1, we see that

e(cpu
−1) = e−2πipk

= 1, and and thus these k ≥ 0, i.e. cp ∈ Zp for all p - N .
Thus, we conclude that globally ψ(x) = eA(cx), for c ∈ A.

Because e(c+ q) = e(c · 1)e(q) = 1, we may use the strong approximation
theorem to reduce to the case that c ∈ R × Ẑ. Thus e(c) = e2πic∞ = 1, and
c∞ ∈ Z. The condition e(cq) = 1 for any rational q, in particular q = p−k,
forces

e2πic∞/p
k

= e2πicp/p
k

.

Thus cp ≡ c∞ (mod pk) for all k, and cp is the image of the integer c∞ for
each p. We conclude that c is in the diagonal embedding of Q. �

With this description of the additive characters, we can understand the
meaning of < f, ψ >, where ψ = e(qx).

< f, ψ >=

∫
A/Q

f(x)ψ(x)−1dx
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=

∫
A/Q

f(x)e(−qx)dx

=

∫
R/Z

∫
Ẑ
f(x∞ + xf )e(−qx∞)e(−qxf )dxfdx∞,

using the fundamental domain in Corollary 3.5. Since f is periodic on R/Z,
this is

=

∫
R/Z

f(x∞)e(−qx∞)dx∞

∫
Ẑ
e(−qxf )dxf .

Now, this inner integral factors as a product∏
p<∞

∫
Zp

ep(−qpxp)dxp =

{
1 , qp ∈ Zp for all p

0 , otherwise

=

{
1 , q ∈ Z,
0 , otherwise.

So < f, ψ > is the usual Fourier coefficient if q ∈ Z and is zero other-
wise. Hence if the classical Fourier expansion of a periodic function f(x) =∑

n∈Z ane(nx), then the adelic Fourier expansion of its adelization is∑
n∈Z

aneA(nx).

In other words, our original adelization (that of e2πix) is in some sense the
only example!

4.1 The Poisson Summation Formula

The classical Poisson Summation Formula∑
n∈Z

f(n) =
∑
n∈Z

f̂(n) (4.2)

can be proven by periodizing f(x) 7→
∑

n∈Z f(x + n), and then expanding
its Fourier series at x = 0. One needs, of course, to assume f decays rapidly
enough so that the average converges, and that it is regular enough so that
the right hand side of (4.2) does also. The space of Schwartz functions

S(R) =
{
f ∈ C∞(R) | |xmf (n)(x)| → 0 as |x| → ∞ for all m,n ≥ 0

}
is certainly sufficient for this purpose.
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Exercise 4.2. Prove that the Fourier transform maps S(R) to itself.

There is a p-adic analogue, the Schwartz-Bruhat space

S(Qp) = {f ∈ C(Qp) | f has compact support and is locally constant}.

Locally constant means that f(x) is constant on small open neighborhoods
of x.

Proposition 4.3. If f ∈ S(Qp), then f is a finite sum of the form∑
cj · χaj+bjZp ,

with cj ∈ C and aj ∈ Qp, bj ∈ Q∗p.

Proof: For each a ∈ Zp there is some N such that f(a) = f(x) whenever
|x−a| < p−N . The collection of such open sets covers the support of f , which
is assumed compact. Thus there is a finite collection of aj ∈ Qp such that f
is constant of the set aj + pN+1Zp, and zero otherwise. We may assume that
these sets are disjoint by the ultrametric property (2.2). �

One can define the global S(A), the adelic Schwartz space, by first creat-
ing “pure tensors,” functions f =

∏
p≤∞ fp on A, with each fp ∈ S(Qp) and

all but finitely many fp = χZp , the characteristic function of Zp. S(A) is the
span of these pure tensors.

Proposition 4.4. If f ∈ S(A), then∑
q∈Q

f(q) =
∑
q∈Q

f̂(q), (4.3)

where

f̂(a) =

∫
A
f(x)eA(−ax)dx. (4.4)

Remark 4.5. In (4.4) we could actually take any additive character ψ which
is trivial on Q instead of the standard character eA(x).

Proof of Proposition 4.4: We follow the usual argument. Let

F (x) =
∑
q∈Q

f(x+ q) =
∑
q∈Q

∫
A/Q

F (x)e(−qx)dx.
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By “unfolding”∫
A/Q

F (x)e(−qx)dx =

∫
A/Q

∑
r∈Q

f(x+ r)e(−qx)dx

=
∑
r∈Q

∫
r+A/Q

f(x)e(−qx)dx =

∫
A
f(x)e(−qx)dx = f̂(q).

(strictly speaking, we should replace be speaking of a translates of a funda-
mental domain rather than just r + A/Q). Now set x = 0 to obtain (4.3).
�

4.2 Classical Interpretations

Let use see what the adelic Poisson Summation Formula (4.3) means classi-
cally in the crucial case when f is a pure tensor. In this situation, the Fourier
transform factors as a product of local Fourier transforms

f̂(a) =
∏
p≤∞

∫
Qp

fp(x)ep(−apxp)dxp =
∏
p≤∞

f̂p(ap).

Exercise 4.6. Show that if fp = χZp, then f̂p = χZp also. Show that the
adelic Fourier transform of a function f ∈ S(A) remains in S(A). (Hint:
Use the fact that if ft(x) = f(tx), then f̂t(x) = 1

|t| f̂
(
x
t

)
.)

To simplify matters, let us first assume that all fp = χZp , p <∞. Then

f̂(a) = f̂∞(a∞)χẐ(af ) =

{
f̂∞(a∞) the usual F.T. , af ∈ Ẑ
0 , otherwise.

Thus because qf ∈ Ẑ ⇔ q ∈ Z, the adelic Poisson Summation Formula
recovers the classical one.

Exercise 4.7. Show that if fp =
∑p

j=1 aj χj+pZp, then

f̂p(a) =

{
0 , if a /∈ p−1Zp,
1
p

∑p
`=1 â` , if a ∈ `

p
+ Zp

where â` is the Discrete Fourier transform
∑p

j=1 aje(j`/p).

In the finite case, Poisson Summation reduces to the inversion formula
aj = 1

p

∑p
`=1 â`e(−j`/p).
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4.3 The Riemann ζ-Function

First, we give a little background about distributions. They will not be
important here per se, but will be later on in the course. All that is needed
here is the Poisson Summation Formula itself.

In terms of distributions (=linear functions on spaces of functions), the
classical Poisson Summation Formula shows that the delta function of the
integers

δZ(x) =
∑
n∈Z

δn(x)

is self-dual under the Fourier transform. Adelically, δQ = δ̂Q also. There
are many examples of self-dual functions, e.g. e−πx

2
, sech(πx), and Hermite

polynomials. The functional equations of dirichlet L-functions can be derived
from applying these distributional identities to multiplicative characters. We
will develop the multiplicative theory of the adeles in the next section. For
now we use the classical viewpoint to illustrate how the identity

δZ = δ̂Z (4.5)

implies the functional equation of the Riemann ζ-function. Indeed, it can be
shown that the two are equivalent.

We will ingore the polar terms coming from δ0 in these sums; they can be
dealt with by applying (4.5) to Schwartz functions e.g. e−πx

2
ala Riemann,

or by careful distributional arguments. We apply (4.5) to f(x) = |x|−s

< δZ, f >=< δ̂Z, f >=< δZ, f̂ > by Parseval’s Theorem. (4.6)

We compute that

f̂(ξ) =

∫
R
e(−ξx)|x|−sdx = |ξ|s−1

∫
R
e(x)|x|1−sd∗x.

This last integral is very important in distributional derivations of the func-
tional equations of L-functions.

Exercise 4.8. 1. Show that for 0 < Re s < 1,∫
R
e(x)|x|sd∗x = ΓC(s) cos

(πs
2

)
,

where
ΓC(s) = 2(2π)−sΓ(s).
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2. Use the duplication formula

ΓC(s) = ΓR(s)ΓR(s+ 1),

ΓR(s) = π−s/2Γ(s/2)

and the functional equation

Γ(s)Γ(1− s) = π csc(πs)

to prove ∫
R
e(x)|x|sd∗x = ΓC(s) cos(πs/2) =

ΓR(s)

ΓR(1− s)
.

Thus the Fourier transform of f(x) = |x|−s is f̂(ξ) = ΓR(1−s)
ΓR(s)

|ξ|1−s, and
Poisson Summation gives ∑

f(n) =
∑

f̂(n)

2ζ(s) =
ΓR(1− s)

ΓR(s)
2ζ(1− s),

the functional equation ξ(s) = ΓR(s)ζ(s) = ξ(1− s).

5 Ideles

In this section we describe the multiplicative nature of the adeles and its
invertible elements, the ideles

A = {a ∈ A | ap ∈ Q∗p, for all p ≤ ∞}.

Actually, the ideles predate the adeles; their name is derived from “ideals,”
and the additive “adeles” are a backformation. We have already described
the Haar measures for p <∞; for p = ∞ it is the customary d∗x∞ = dx

|x| .

Exercise 5.1. Prove that the ideles have measure zero under the additive
Haar measure. (Hint: use the fact that ζ(1) = ∞.)

The topology on the ideles A∗ comes from the restricted direct product.
There is an absolute value on the adeles, |x|A =

∏
p≤∞ |xp|p. The change

of coordinates x 7→ ax changes dx 7→ |a|dx. For example, multiplying by
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rationals does not change the additive Haar measure! There is a version of
the Strong Approximation Theorem for the ideles, involving

Ẑ∗ =
∏
p<∞

Z∗p = lim
←N

(Z/N)∗.

Theorem 5.2. (Strong Approximation for Ideles)

Q∗ × Ẑ× R∗ = A∗,

and a fundamental domain for

Q∗\A∗

is given by (0,∞)× Ẑ∗.

Proof: Given any idele a, all ap ∈ Z∗p except for those p in a finite set S.
We may factor

a = a∞ ·

[∏
p∈S

ap

]
· ar,

where a∞ ∈ R, ar =
∏

p/∈S ap ∈
∏

p/∈S Z∗p. For each p ∈ S, multiply a by the
rational number |ap|p. Since p1 ∈ Z∗p2 for p1 6= p2, this process will yield a

rational multiple of a which lies in Ẑ∗. The description of the fundamental
domain follows from the fact that Q∗ ∩ (R∗Ẑ∗) = {±1}. �

5.1 Character Theory

All continuous multiplicative characters of R are of the form

|x|ssgn(x)ε, s ∈ C, ε = 0 or 1.

Combining the multiplicative characters at the non-archimedean places (i.e.
the ones from §2.3 related to dirichlet characters), we have a complete de-
scription of the multiplicative characters of A∗. We need to know, in analogy
with Proposition 4.1, the continuous characters of A∗ which are trivial on
Q∗. In view of the Strong Approximation Theorem, these characters are on
(0,∞) × Ẑ∗, and hence are products of |x|s times continuous characters of
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finite order. As with the additive characters (Proposition 4.1), the continuity
assumption ensures triviality on a subgroup of the form[∏

p∈S

(1 + pkpZp)

]∏
p/∈S

Z∗p

for some finite set of primes S.

Exercise 5.3. Prove that

Ẑ∗/

(∏
p∈S

(1 + pkpZp)

)
' (Z/N)∗, N =

∏
pkp .

(Hint: see Exercise 2.10.)

In view of this exercise, finite order continuous characters are equivalent to
characters of (Z/N)∗, and hence to dirichlet characters. Let us now be more
explicit in describing the correspondance between dirichlet characaters and
finite order, continuous characters of Q∗\A∗. Because the Chinese Remainder
Theorem allows us to factor

(Z/N)∗ =
∏

(Z/pkp)∗,

any character χ of (Z/N)∗ factors into a product of characters of (Z/pkp)∗,
so we will focus on the case that N = pk is a prime power.

We will now describe the corresponding adelic character ω =
∏

p≤∞ ωp.
First,

ω∞(x) =

{
1 , χ(−1) = 1,

sgn(x) , χ(−1) = −1,

i.e. ω∞ is even or odd depending on whether not χ is.
For prime ` 6= p, ω` will be trivial on Z∗` and ω`(`) = χ(`).1 Thus ω`(`

ku) =
χ(`)k for all u ∈ Z∗` , k ∈ Z. This is analogous to extending χ to the subset
of the rationals

{r
s
∈ Q | (p, rs) = 1}

1We could also define ω` instead using the inverse; this is only a matter of convention.
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by setting

χ(
r

s
) = χ(r)χ(s)−1.

We now define ωp in order to make ω globally invariant under Q∗. In
contrast to the other primes, we will have that ωp is trivial on powers of p
and on 1 + pkZp. If u ∈ Zp, we define

ωp(u) = χ−1(j),

where
j = u (mod pk).

Exercise 5.4. Show that ω as defined here is indeed trivial on primes, and
therefore invariant under multiplication by Q∗.

Recall a dirichlet character χ1 (mod q1) induces a character χ2 (mod q2)
if q1 | q2 and

χ2(n) =

{
χ1(n) , (n, q2) = 1

0 , otherwise,

and is called imprimitive if it is not induced from any other character.

Exercise 5.5. Show that if χ1 and χ2 are dirichlet characters induced from
the same primitive character, then they both correspond to the same adelic
character ω, and moreover this is the only ambiguity.

This latter aspect (which also naturally removes the distinction of new-
forms in the setting of adelic modular forms) is very useful.

Exercise 5.6. Prove that if χ1 and χ2 are primitive dirichlet characters
modulo q1 and q2, respectively, and (q1, q2) = 1, then

τχ1χ2 = χ1(q2)χ2(q1)τχ1τχ2 .

6 Tate’s Thesis via Distributions

To obtain L-functions of primitive dirichlet characters χ, or equivalently finite
order, continuous characters ωχ of Q∗\A∗, we integrate the identity

δQ = δ̂Q,
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∫
Q∗\A∗

δQ(a)ω(a)|a|s−1da =

∫
Q∗\A∗

δ̂Q(a)ω(a)|a|s−1da. (6.1)

We are essentially taking spectral expansion of the self-dual δQ over Q∗\A∗,
and will find L-functions as coefficients. As usual, our argument is very
formal; we will assume for simplicity that the conductor q of χ is prime, but
this is easily removed using Exercise 5.6.

The left-hand side of (6.1) is just 1, since a fundamental domain for
Q∗\A∗ is (0,∞)× Ẑ∗ (Theorem 5.2). Note that we need to use the additive
Haar measure da instead of the seemingly more-natural multiplicative Haar
measure d∗a to use the delta functions here. The computation of the right-
hand side of (6.1) is more involved. Using the definitions of the Fourier
transform and δQ =

∑
q∈Q δq, we find it is

∫
Q∗\A∗

∑
q∈Q

[∫
A
δq(x)e(−ax)

]
|a|s−1ω(a)da =

∑
q∈Q

∫
Q∗\A∗

e(−qa)|a|s−1ω(a)da

=

∫
Q∗\A∗

|a|s−1ω(a)da+

∫
A∗
e(−a)|a|s−1ω(a)da

We essentially ignored this first term before, when ω was trivial. However,
using the fundamental domain in Theorem 5.2 for Q∗\A∗, it is∫ ∞

0

∫
Ẑ∗
ωf (xf )dxf , ω = ω∞ · ωf .

However, the inner integral is 1
N

∑N
j=1 χ

−1(j) = 0 if χ is a nontrivial character
of order N . So, (6.1) reads

1 =

∫
A∗
e(−a)|a|s−1ω(a)da =

∏
p≤∞

∫
Q∗p
ep(a)|a|s−1

p ω(ap)dap.

Exercise 6.1. Use Exercise 4.8 to show that∫
R
e(x)|x|ssgn(x)d∗x = iΓC(s+ 1) sin(πs/2) = i

ΓR(s+ 1)

ΓR(2− s)
.

The nonarchimdean factors of the integral are the ones we considered
in Proposition 2.18. Combining these together with the identities |τχ|2 = q,

τχ̄ = χ(−1)τχ we get the correct functional equation of L(s, χ) =
∏

p<∞

(
1− χ(p)

ps

)−1

.
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Theorem 6.2. Let Λ(s, χ) = ΓR(s+ ε)L(s, χ), where χ(−1) = (−1)ε. Then

Λ(s, χ) =
τχ
iε
q−sΛ(1− s, χ−1). (6.2)
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