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Introduction

These notes are based on a series of twelve lectures delivered at the Korea Ad-

vanced Institute of Science and Technology (KAIST), Taejeon, during their bian-

nual workshop in algebra that took place over the period of July 29–August 4, 1996.

As its main goal, I have chosen to sketch a proof of the estimate

q−1/5
v < |αv| < q1/5

v

for Hecke eigenvalues of a cusp form on GL2(AF ), where F is an arbitrary number

field, using the method initiated by Langlands and developed by myself. The first

half of the notes (Sections 1–8) is devoted to developing the problem and introducing

some important L–functions (symmetric power L–functions for GL(2) and Rankin–

Selberg product L–functions for GL(m) × GL(n)). The second half (Section 9) is

spent to explain the method in the split case and finally prove the estimate. The

notes are concluded by describing a number of local results in harmonic analysis

and representation theory of local groups that can be proved using this method

(Section 10).

It is a pleasure to thank Professor Ja Kyung Koo, chairman of the Department

of Mathematics at KAIST, for his wonderful and memorable hospitality, as well as

his mathematical interest.

Many of the initial efforts in arranging this visit was done by Dr. Hi–joon Chae

of KAIST to whom I would like to extend my thanks and appreciation. I should

also thank the Department of Mathematics, especially the algebra group, at KAIST

for their hospitality.

Last but not least, I should thank my audience. It was a pleasure to deliver these

talks to such a pleasant and enthusiastic audience, a number of whom traveled long

distances to participate in this workshop.
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§1. Notation

Throughout these lectures F will be either a local or global field of characteristic

zero. More precisely, F is a global field of characteristic zero if it is a number field,

i.e. a finite extension of Q. A local field of characteristic zero is either R, C, or a

finite extension of Qp, the field of p–adic numbers, i.e. the completion of Q with

respect to p–adic absolute value | |p, |rpm/s|p = p−m, p - rs. Then | |p extends

to an absolute value | | = | |v, on F where v is the place lying over p.

Suppose F is a p–adic local field (non–archimedean). Then

O = {x ∈ F ||x| ≤ 1}

is a ring, called ring of integers. The set

P = {x ∈ O||x| < 1}

is the maximal ideal of O and O∗ = O\P is the group of units. The field F = O/P

is called the residue field of F whose cardinality which is finite is denoted by q = pf .

If e is the ramification index of p in F , i.e. pO = P e, then [F : Qp] = ef . The ideal

P is principal and one usually fixes a uniformizing parameter $ ∈ P for P . Then

|$|v = q−1.

Now let F be a number field. For each place v of F , let Fv be its completion

with respect to v. A place is an equivalence class of absolute values for F . We

will say v < ∞ if v|p for some rational prime p. Otherwise Fv ∼= R or C and we

say v = ∞. In either case F ⊗Q Qp = ⊕v|pFv, F ⊗Q R = ⊕v|∞Fv. If v < ∞, let

Ov, Pv, F v = Ov/Pv, qv, $v, and O∗v be as before.

Let A = AF ⊂
∏
v
Fv be the subring of

∏
v
Fv defined by

A = {(xv)v|xv ∈ Ov, ∀′v},

i.e. the direct limit of
∏
v
Fv with respect to

∏
v<∞

Ov. With direct limit topology, A

becomes a locally compact ring, called the ring of adeles of F . The group of units

in A, A∗ = I will be

A
∗ = {(xv)v|xv ∈ F ∗v , xv ∈ O∗v , ∀′v}.
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Considered as the direct limit of
∏
v
F ∗v with respect to

∏
v<∞

O∗v and with direct limit

topology, A∗ is called the group of ideles of F . Then one can define

‖(xv)v‖ =
∏
v

|xv|v

whose kernel I1 = (A∗)1 contains F ∗ by diagonal imbedding. Then F ∗ is a lattice

in I1, i.e. F ∗ is discrete in I1 and I1/F ∗ is compact. So is F in A. The finiteness

of class number, the number of ideals (fractional) modulo the principal ones, is

equivalent to the compactness of I1/F ∗.

Fix an integer n > 0 and let GLn(R) be the group of invertible matrices with

R–entries, where R is a commutative ring with 1.

Let R = A. ThenGLn(A) is called the adelization ofGLn over F . If g ∈ GLn(A),

then g = (gv)v, gv ∈ GLn(Fv) with gv ∈ GLn(Ov), ∀′v <∞.

Let G be a Zariski–closed subgroup of a GLn(Fa), where Fa is an algebraic

closure of F . Assume G is defined over F . Then it is defined over every Fv. Let

Gv = G(Fv). Then g ∈ GLn(A) belongs to G(A), adelization of G/F , if and only

if each gv ∈ Gv. For almost all v <∞, G is defined over Ov and therefore G(Ov)

makes sense and Gv ∩GLn(Ov) = G(Ov). Consequently (gv)v ∈ G(A) implies that

gv ∈ G(Ov) for almost all v <∞.

§2. Modular forms as forms for GL2

In this section we shall briefly review how classical modular forms and automor-

phic forms on GL2(AQ) are related.

Let Γ be a congruence subgroup for SL2, i.e. a subgroup of SL2(Z), containing

a principal congruence subgroup

ΓN =
{
g =

(
a b
c d

)
∈ SL2(Z)|g ≡ I(mod N)

}
for some N . The group SL2(Z) and therefore every congruence subgroup Γ acts on

upper half plane h

h = {z ∈ C|Im(z) > 0}

by (
a b
c d

)
· z =

az + b

cz + d
.
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In fact Im(g · z) = Im(z)/|cz + d|2 as long as g ∈ SL2(R). Let h∗ be the com-

pactification of h by adding cusps of Γ to h. Roughly speaking, a modular form of

weight k > 0, k an integer, is a complex function on h∗ which is holomorphic there

and satisfies

(2.1) f(γ · z) = (cz + d)kf(z) (γ =
(
a b
c d

)
∈ Γ).

We may fix an integer N > 0 and consider the Hecke subgroup

Γ0(N) =
{(

a b
c d

) ∣∣∣∣c ≡ 0(N)
}
⊂ SL2(Z).

Given a character χ mod N of (Z/NZ)∗, extended to all of Z, we may consider

holomorphic forms f such that

f(γ · z) = χ(a)−1(cz + d)kf(z), γ =
(
a b
c d

)
∈ Γ0(N).

Then given any congruence subgroup Γ and a holomorphic form with respect to

Γ, one can find a Γ0(N) and a χ such that f becomes a χ–modular form with

respect to Γ0(N). Thus one may only consider forms with respect to Γ0(N) but

with respect to arbitrary characters of (Z/NZ)∗. A modular form f is a cusp form

if it vanishes on every cusp of Γ (or Γ0(N)). The best reference for this is [Shi1].

Let us show how modular cusp forms on h are in fact functions onGL2(Q)\GL2(AQ),

i.e. an automorphic form. We refer to [B,G] for details.

First observe that every g ∈ SL2(R) can be written as

g =
[
y1/2 xy−1/2

0 y−1/2

]
k(θ) (y > 0)

with

k(θ) =
(

cos θ − sin θ
sin θ cos θ

)
.

Thus

g 7→ (z = x+ iy ∈ h, θ)

and g · i = z since k(θ) · i = i. Given a modular cusp form f , define:

φf (g) = f(g · i)(ci+ d)−k

= f(g · i)y k2 e−iθk.
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If j(g, z) = cz + d for g =
(
a b
c d

)
∈ SL2(Z), then

j(g1g2, z) = j(g1, g2 · z)j(g2, z).

Thus

j(γg, i) = j(γ, g · i)j(g, i)

from which we get

φf (γg) = f(γg · i)j(γg, i)−k

= f(g · i)j(γ, g · i)kj(γg, i)−k

= φf (g)

It is then clear that φf is bounded as a function of Γ\G, G = SL2(R), and by the

finiteness of the volume of Γ\G, φf ∈ L2(Γ\G). Thus the space of modular cusp

forms with respect to Γ can be embedded into L2(Γ\G). It can be easily seen that∫∫
F

|f(z)|2yk dxdy
y2

=
∫

Γ\G
|φf (g)|2dg <∞

where F is a fundamental domain.

One likes to find a larger space so that it will cover for all Γ’s. It is here that we

use GL2(AQ). We may assume Γ = Γ0(N) for some N and assume f is attached

to a character χ.

It can be shown, using approximation, that given Γ0(N)

GL2(AQ) = GL2(Q)GL+
2 (R)

∏
p-N

GL2(Zp)
∏
p|N

Kp,N

Kp,N = GL2(Zp), for p -N , while Kp,N =
{(

a b
c d

)
∈ GL2(Zp)|c ≡ 0(N)

}
, p|N

and GL+
2 (R) is the subgroup of elements with positive determinant, i.e. the con-

nected component of GL2(R). Moreover

GL2(Q) ∩GL+
2 (R)

∏
p-N

GL2(Zp)
∏
p|N

Kp,N = Γ0(N).

For g ∈ GL+
2 (R), define

j(g, z) = (cz + d)(det g)−1/2.
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The character χ of (Z/NZ)∗ then defines a character of Q∗\A∗
Q

, write χ = ⊗pχp.

Each χp defines a character [
a b
c d

]
7→ χp(a)

of Kp,N and thus we get a character of

KN
0 =

∏
p-N

GL2(Zp)
∏
p|N

Kp,N .

Then we let

φ̃f (γg∞k0) = f(g∞ · i)j(g∞, i)−kχ(k0).

It can then easily be checked that this is a well defined function and

φ̃f ∈ L2
0(Z(AQ)GL2(Q)\GL2(AQ), χ),

the space of L2–functions ϕ on Z(AQ)GL2(Q)\GL2(AQ) which satisfy ϕ(zg) = χ(z)ϕ(g),

z ∈ Z(AQ) ∫
Q\AQ

ϕ

((
1 x
0 1

)
g

)
dx = 0, ∀′g.

The map f 7→ φ̃f can now be extended to all of modular cusp forms, holomorphic

or non–holomorphic.

Now let GL2(AQ) act by right regular action on the Hilbert space

L2(Z(AQ)GL2(Q)\GL2(AQ), ω),

ω a unitary character of Q∗\A∗
Q

. It decomposes to a continuous part and a discrete

part.

¿From now on assume all the modular forms f are eigenvalues of Hecke operators

for all p. Recall that if f is of weight k, then the p–th Hecke operator Tk(p) is defined

by

Tk(p)f(z) = pk−1
∑
a>0
ad=p

d−1∑
b=0

f

(
az + b

d

)
d−k.

For a modular cusp form f, φ̃f will belong to the discrete part. Moreover∫
Q\A

φ̃f

((
1 x
0 1

))
dx = 0 (∀g ∈ GL2(AQ))
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and in fact the space of cusp forms are exactly those L2–functions which satisfy the

above condition for ∀′g ∈ GL2(AQ).

In conclusion, the set of normalized cuspidal eigenfunctions of all weights and

for all Hecke operators, holomorphic or non, are in one–one correspondence with

irreducible constituents of

L2
0(Z(AQ)GL2(Q)\GL2(AQ), ω)

for all ω.

One can then translate problems from classical theory to representation theory

and try to solve them. One important one will be discussed next.

§3. Maass forms and Ramanujan–Petersson’s Conjecture

Holomorphic modular forms are defined to satisfy the property that the dif-

ferential f(z)(dz)
k
2 , k = even, remains invariant under the action of congruence

subgroup Γ, i.e.

f(γ · z)(d(γ · z)) k2 = f(z)(dz)
k
2 .

The only holomorphic modular functions (i.e. k = 0) are constants and therefore

no non–zero cuspidal holomorphic modular function exists. On the other hand if

we allow the Laplace–Beltrami operator

∆ = −y2

(
∂2

∂x2
+

∂2

∂y2

)
to have a non–zero eigenfunction (a real analytic function) say

∆f =
1
4

(1− s2)f,

we can then pick up non–holomorphic modular functions i.e. forms of weight zero,

which are cusp forms, the so called Maass forms. More precisely, one needs func-

tions f : h∗ −→ C for which

1. f(γ · z) = f(z) γ ∈ Γ,

2. ∆f = 1
4 (1− s2)f, s ∈ iR or −1 < s < 1,

3. f is bounded,
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4. f is cuspidal,

5. f is an eigenfunction for all Hecke operators.

Then it is an easy exercise to show that

f(x+ iy) =
∑
n 6=0

(|n|y)1/2anKs/2(2π|n|y)e2πinx,

where Kν satisfies

z2 d
2Kν

dz2
+ z

dKν

dz
− (z2 + ν2)Kν = 0

with

Kν(z) ∼
√

π

2z
e−z

as z −→ +∞. The numbers an are called the Fourier coefficients of f . Let us say f

is normalized if a1 = 1.

There is an analogue of classical Ramanujan–Petersson’s conjecture. More pre-

cisely:

Suppose f is a normalized Maass form which is an eigenfunction for every Hecke

operator. Then

|ap| ≤ 2p−1/2.

Define αp by

ap = p−1/2(αp + α−1
p ).

Then by R–P conjecture

(αp − α−1
p )2 ≤ 0,

since ap is real. This implies that αp − α−1
p is pure imaginary or

Re(αp)−
Re(αp)
|αp|2

= 0.

Since Re(αp) 6= 0, |αp| = 1, and therefore

|ap| ≤ 2p−1/2 ⇔ |αp| = 1,

i.e. Ramanujan–Petersson’s conjecture demands |αp| = 1.
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§4. Automorphic cuspidal representations

We now assume F is an arbitrary number field and consider L2
0(Z(A)GL2(F )\GL2(A),

ω), where ω is a (unitary) character of Z(F )\Z(A) ∼= F ∗\A∗ and L2
0 is the space

of all the square integrable functions ϕ on the quotient space which satisfy:

ϕ(zg) = ω(z) ϕ(g) (z ∈ Z(A))1) ∫
F\A

ϕ

((
1 x
0 1

)
g

)
dx = 0 (∀′g ∈ GL2(A)).2)

Under the right regular action of GL2(A) this space decomposes to a direct sum of

irreducible subrepresentations each of which appear with multiplicity one [JL, Go].

Let π be an irreducible constituent as above. Then there is a non–unique decom-

position of π into an infinite restricted tensor product of irreducible representation

πv of each local group GL2(Fv) for every place v of F . Almost all of πv’s have a

vector fixed by the action of GL2(Ov) and it’s the choices made for these vectors

which leads to the decomposition π = ⊗vπv in a non–unique way. But the classes

of representations πv are all unique.

A representation πv which has a vector fixed by GL2(Ov) is called a class one,

spherical, or unramified representation. It can be realized on the space V (µ1,v, µ2,v)

of smooth functions

f : GL2(Fv) −→ C

which satisfy

f

((
a1 x
0 a2

)
g

)
= µ1,v(a1)µ2,v(a2)|a1/a2|1/2v f(g)

where µv,1 and µv,2 are a pair of unramified quasicharacters of F ∗v , i.e. µv,i|O∗v = 1,

a1, a2 ∈ F ∗v , and x ∈ Fv. Moreover µ1,v/µ2,v 6= | |±1
v as quasicharacters. If we

denote the right regular action of GL2(Fv) on V (µ1,v, µ2,v) by I(µ1,v, µ2,v), the rep-

resentation unitarily induced from µ1,v and µ2,v, then I(µ1,v, µ2,v) and I(µ2,v, µ1,v)

are equivalent and if I(µ1,v, µ2,v) ∼= I(µ′1,v, µ
′
2,v), then (µ1,v, µ2,v) = (µ′1,v, µ

′
2,v) or

(µ1,v, µ2,v) = (µ′2,v, µ
′
1,v).

Now assume π = ⊗pπp is generated by one of our φ̃f , where f is a classical

modular cusp form with respect to a Hecke subgroup Γ0(N). Then for each p -N, πp
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is of class one and if πp = I(µ1,p, µ2,p), then µ1,p(p) = αp and µ2,p(p) = α−1
p or vice–

versa. Thus R–P conjecture is equivalent to characters µ1,p and µ2,p being unitary

or said in the language of representation theory I(µ1,p, µ2,p) must be tempered. One

can then formulate a generalized R–P conjecture for an arbitrary number field.

If π = ⊗vπv is an irreducible cuspidal representation of GL2(A), then each πv

is tempered.

Not every tempered representation of GL2(Fv) is of the form of above induced

representation. The so called discrete series representations, i.e. those which appear

discretely in L2(GL2(Fv)) will provide the rest of them.

This is a very difficult conjecture and due to Deligne’s work we know its validity,

but only for holomorphic cusp forms, i.e. those for which every πv, v archimedean,

is in the discrete series.

If πv is of class one, then πv ∼= I(µ1,v, µ2,v) ∼= I(µ2,v, µ1,v) and the choices of

µ1,v and µ2,v are uniquely given by πv up to permutation of the two characters.

Moreover the two characters are determined uniquely by their evaluations at $v.

Let Av denote the conjugacy class of(
αv 0
0 βv

)
in GL2(C), where αv = µ1,v($v) and βv = µ2,v($v). Thus class of πv is uniquely

determined by Av. Moreover, π = ⊗vπv is uniquely determined by {Av|v /∈ S},

where S is a finite set of places of F such that πv is of class one, whenever v /∈ S.

By strong multiplicity one theorem, the choice of S is irrelevant.

The Ramanujan–Petersson’s conjecture is then equivalent to |αv| = |βv| = 1 for

∀ v /∈ S.

When [F : Q] = 1, the best estimate is due to Luo–Rudnick–Sarnak [LRSa] and

Bump–Duke–Hoffstein–Iwaniec [BDHI] and is

p−5/28 ≤ |αp| and |βp| ≤ p5/28.

For an arbitrary number field, the best estimate is

q−1/5
v < |αv| and |βv| < q1/5

v
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and is due to Shahidi [Sh1,Sh2]. We refer to [Ra] for a density result on the

conjecture.

Proof are all based on this theory of automorphic L–functions which we will

discuss next.

§5. L–functions for GL2

The group GL2(C) has already showed up in the study of automorphic forms for

GL2(A), where A = AF is the ring of adeles of a number field F . More precisely,

if π = ⊗vπv is a cuspidal automorphic representation of GL2(A), then almost all

components πv of π are determined, up to isomorphism, by semisimple conjugacy

classes Av in GL2(C). Fix a complex number s. If r is a complex analytic (finite

dimensional) representation of GL2(C), then det(I − r(Av)q−sv )−1 is the inverse of

the characteristic polynomial of r(Av) at λ = q−sv and is therefore independent of

all the choices except classes of πv and r. This is what one calls the local Langlands

L–function attached to πv and r and is denoted by

L(s, πv, r) = det(I − r(Av)q−sv )−1.

In fact, Langlands defined his local L–functions in the generality of any quasisplit

reductive group in [L1], using exactly the same kind of definition.

The derived group SL2(C) of GL2(C) has precisely one irreducible finite dimen-

sional representation of any degree. They can be naturally extended to GL2(C)

and they are called symmetric powers of the standard representation of GL2(C)

which we shall now explain.

Fix a pair of positive integers m and n. The group GLn(C) acts on Cn by natural

matrix multiplication which we call the standard representation ρn of GLn(C). It

also acts on (Cn)⊗
m

, the tensor product of m–copies of Cn by acting naturally on

each component of pure tensors of rank m. Let Sm be the symmetric group in m

letters. Then the symmetrization operator

Symm =
1
m!

∑
σ∈Sm

σ

acts on (Cn)⊗
m

. In fact, let {e1, . . . , en} be a basis for Cn and define the action

of Sm on the basis by σ(ei) = eσ(i). Moreover {ei1 ⊗ ei2 . . . ⊗ eim} makes a basis
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for (Cn)⊗
m

and Sm acts by acting at each component. Then the subspace of

symmetric tensors is by definition the image Symm(Cn) of (Cn)⊗
m

under Symm.

The natural action of GLn(C) on (Cn)⊗
m

commutes with Symm, making its image

invariant under GLn(C). The resulting representation of GLn(C) on Symm(C)n

denoted by Symm(ρn) is irreducible and is called the m–th symmetric power of ρn.

In this section, we are interested in the case n = 2. Then for eachm, dim Symm(ρn)) =

m + 1. If tv = diag(αv, βv) ∈ GL2(C) is a representative for Av, then fixing the

standard basis e1 = (1, 0) and e2 = (0, 1) for C2, so that

{Symm(e⊗
i

1 ⊗ e
⊗j
2 )|i+ j = m}

is a basis for Symm(C2), implies that

Symm(ρ2)(tv) = diag(αmv , α
m−1
v βv, . . . , αvβ

m−1
v , βmv ),

an element in GLm+1(C).

The restriction of each Symm(ρ2) to SL2(C) is irreducible and, up to isomor-

phism, this is the only irreducible representation of SL2(C) of dimension m + 1.

Moreover all the finite dimensional irreducible representations of SL2(C) are so

obtained.

For each unramified place v, let

L(s, πv,Symm(ρ2)) = det(I − Symm(ρ2)(Av)q−sv )−1

=
m∏
j=0

(1− αjvβm−jv q−sv )−1

and if S is a finite set of places of F (including the archimedean ones) such that πv

is unramified for every v /∈ S, let

LS(s, π,Symm(ρ2)) =
∏
v/∈S

L(s, πv,Symm(ρ2))

=
∏
v/∈S

m∏
j=0

(1− αjvβm−jv q−sv )−1.

Langlands [L1]: Suppose LS(s, π,Symm(ρ2)) is absolutely convergent for

Re(s) > 1 for every m. Then Ramanujan–Petersson’s conjecture is valid for π.
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In fact, |αmv | < qv and |βmv | < qv if the partial L–function converges for Re(s) > 1.

Then |αv| < q
1/m
v and |βv| < q

1/m
v . Letting m −→ +∞, then implies the conjecture

since |αv|−1 = |βv|.

The estimate

q−1/5
v < |αv| and |βv| < q1/5

v

is a consequence of the following result which is a special case of a general theorem

proved about automorphic L–functions.

For each v /∈ S, the local L–function L(s, πv,Sym5(ρ2)) is holomorphic for

Re(s) ≥ 1.

This is clearly a global result. In fact for an arbitrary unramified unitary rep-

resentation π whose attached semisimple conjugacy class in GL2(C) is represented

by t = diag(α, β), q−1/2 < |α| and |β| < q1/2 and there are unramified unitary

representations for which |α| = q1/2−ε for arbitrarily small ε > 0.

§6. Cuspidal representations for GLn

Using the language of adeles and the theory of group representations, it is now

quite easy to define cusp forms for GLn. We rather define the corresponding rep-

resentations.

Let ω be a unitary character of F ∗\A∗. Identifying the center Z(A) of GLn(A)

with A∗, ω is then a unitary character of Z(A). By a parabolic subgroup of GLn,

we shall mean any conjugate (under GLn) of a subgroup P of the form


g1 ∗

g2 ∗

0
. . .

gr


 ,

where gi ∈ GLni , 1 ≤ i ≤ r, n1 + n2 + . . .+ nr = n. Then

M =




g1

0
g2

0
. . .

gr
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is called a Levi subgroup of P and P = MN , where

N =


In1 ∗

. . .
0 Inr

 ,

a subgroup of unipotent upper triangular elements, is called the unipotent radical

of P .

An L2–function ϕ is called cuspidal if∫
N(F )\N(A)

ϕ(ng)dn = 0 (∀′g ∈ GLn(A))

for every possible unipotent radical. It can be shown that it is enough to consider

only those P which are maximal, i.e. r = 2.

Let L2
0(Z(A)GLn(F )\GLn(A), ω) be the Hilbert space of square integrable cus-

pidal functions satisfying ϕ(zg) = ω(z)ϕ(g), z ∈ Z(A), g ∈ GLn(A). Under right

regular translation by elements in GLn(A), L2
0 becomes a unitary representation

which is a direct sum of irreducible unitary representation of GLn(A). Let π be an

irreducible constituent of this space. Then again π = ⊗vπv with almost all πv of

class one, i.e. having a vector fixed by GLn(Ov). The vector will then be unique

up to scalar multiplication. Moreover, the class of a class one πv can be uniquely

determined by a unique conjugacy class Av in GLn(C).

Again by strong multiplicity one, π is determined by almost all Av’s, i.e. if

π = ⊗vπv and π′ = ⊗vπ′v, and Av = A′v or equivalently πv ∼= π′v for almost all v,

then π ∼= π′ and in fact π = π′ (due to Shalika [S]).

It is important to produce interesting cuspidal representations. When n = 2 the

theory is equivalent to that of modular forms, holomorphic or non–holomorphic, as

explained. Here is an important example for n = 3.

Gelbart–Jacquet lift. Let π = ⊗vπv be a cuspidal representation of GL2(A).

Choose a finite set S of places of F such that if v /∈ S, then πv is unramified.

Let Av be the corresponding conjugacy class for πv for each v /∈ S. The group

PGL2(C) acts on the 3–dimensional Lie algebra sl2(C) of SL2(C) (and itself) by

adjoint representation Ad, giving a 3–dimensional irreducible and faithful repre-

sentation of PGL2(C). Let Ad2 be the corresponding 3–dimensional representa-
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tion of GL2(C), i.e. the one obtained by combining Ad with the natural projec-

tion of GL2(C) onto PGL2(C). It is this representation which is called the ad-

joint square representation of GL2(C). If tv = diag(αv, βv) represents Av, then

Ad2(tv) = diag(αvβ−1
v , 1, α−1

v βv). Set t′v = Ad2(tv) and let A′v be its conjugacy

class in GL3(C). Each A′v, v /∈ S, determines a unique (up to isomorphism) un-

ramified representation πv of GL3(Fv). The question is whether there exists an

irreducible automorphic representation
∏

= ⊗v
∏
v of GL3(A) such that

∏
v = π′v

for v /∈ S and the answer is yes and is due to Gelbart and Jacquet ([GJ], [Shi2]).

Before, we explain how this is proved, let us formulate the problem in the language

of functoriality.

The map

Ad2 : GL2(C) −→ GL3(C)

is a homomorphism from GL2(C), the L–group of GL2, into the L–group GL3(C) of

GL3. In fact for every reductive group over a local or global field, Langlands [L1] de-

fined a complex group by transposing the Cartan matrix of the original group, called

its “L–group”. When the group is GLn, the L–group LGLn = GLn(C). Lang-

lands functoriality conjecture then requires that every homomorphism between two

L–groups must give rise to a “map” between automorphic forms of the original

groups. Thus there must exist a map Ad2
∗ which sends automorphic representa-

tions of GL2(A) to those of GL3(A) in such a way that if Ad2
∗(π) =

∏
= ⊗v

∏
v,

then Ad2(tv) represents the conjugacy class in GL3(C) attached to
∏
v for all un-

ramified places v.

The proof is based on the theory of L–functions. Gelbart and Jacquet showed

that the partial L–function LS(s, π,Ad2) can be completed to an L–function which

is entire (as a function of s) unless π = π ⊗ χ for some non–trivial character χ

of F ∗\A∗, is bounded in vertical strips, and satisfies a functional equation. More

generally, given any character ρ = ⊗ρv of F ∗\A∗, one can define a local L–function

L(s, πv, ρv,Ad2) = det(I −Ad2(tv)ρv($v)q−sv )−1

whenever πv and ρv are unramified with tv ∈ GL2(C) representing πv. Similar

statements are then proven in [Sh3] for the completed form of

LS(s, π, ρ,Ad2) =
∏
v/∈S

L(s, πv, ρv,Ad2).
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Converse theorem for GL3(A) due to Jacquet, Piatetski–Shapiro, and Shalika now

applies, generalizing that of Hecke, Weil, and Jacquet–Langlands, proving the ex-

istence of an automorphic representation Π of GL3(A) such that

L(s, π, ρ,Ad2) = L(s,Π⊗ ρ, ρ3),

for every ρ, where ρ3 is the standard representation of GL3(C) and (Π ⊗ ρ)(g) =

Π(g)ρ(det g). Moreover Π is cuspidal if and only if π is cuspidal and π = π ⊗ χ

implies χ ≡ 1.

Experts familiar with classical theory must realize that the introduction of L–

functions for each ρ ∈ F ∗\A∗ is equivalent to twisting the original Dirichlet series

with primitive characters as needed by the converse theorem. It is very special

of GL3 that only twisting with characters of GL1(A) is enough for applying the

converse theorem.

Let ω be the central character of π. Then setting Sym2
∗(π) = Ad2

∗(π)⊗ω we see

that Sym2
∗ is the dual “map” to

Sym2(ρ2) = Sym2 : GL2(C) −→ GL3(C)

as defined before, i.e. Sym2(diag(αv, βv)) = diag(α2
v, αvβv, β

2
v).

It is natural to ask whether Symm
∗ is defined for any other m > 2. At present,

our best chance is m = 3. In fact, lots of information is available about

LS(s, π,Sym3(ρ2)).

Local L–functions are canonically defined for all v and therefore the L–function is

completed [Sh3]. The completed L–function satisfies a functional equation sending

s to 1− s. The fact that it is entire unless π is monomial, i.e. π = π ⊗ χ for some

non–trivial χ ∈ F ∗
∧
\A∗, is still incomplete and combining the work in [BGiH] and

[Sh3], one only knows that poles are real and only between −3/4 and 3/4.

To apply the converse theorem one needs to twist with ρ ∈ F ∗
∧
\A∗ as well as

cusp forms on GL2(A). With respect to the first one, one needs another irreducible

four dimensional representation of GL2(C) which we have called in [Sh3], adjoint

cube, denoted by Ad3. It is defined by

Ad3

((
αv 0
0 βv

))
= diag(α2

vβ
−1
v , αv, βv, α

−1
v β2

v).
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If Ad3
∗ exists, then Sym3

∗ = Ad3
∗ ⊗ ω, where ω is the central character of π, also

exists. To twist Ad3
∗(π) with a ρ ∈ F ∗

∧
\A∗, it is enough to consider

LS(s, π ⊗ ω, Ad3).

It is proved in [Sh3], that LS(s, π ⊗ ω,Ad3) can be completed, the completed one

satisfies a functional equation, and has only real poles, which using [BGiH], must

lie between −3/4 and 3/4.

Twisting with a cusp form π′ on GL2(A) is much harder. We know that [Sh4]

LS(s,Ad3
∗(π)× π′)

is meromorphic and satisfies a functional equation. But not much more. When full

properties of these L–functions are established, we will have the existence of Ad3
∗

and therefore Sym3
∗. Methods of analytic number theory will then apply, implying

p−3/22 ≤ |αp| ≤ p3/22,

an estimate even better than p1/7. But until the necessary properties of L–functions

are proved, these estimates remain out of our reach.

We conclude by pointing out that establishing Langlands functoriality is one

of the most important goals of modern theory of automorphic forms. Besides the

converse theorem which may be called the method of L–functions, the trace formula

as developed by Arthur in remarkable generality [A1,A2], can be used to establish

certain cases of functoriality. The most notable is that of endoscopy, a major work in

progress, which when established, proves one case of functoriality, but in generality

of every reductive group.

§7. Rankin–Selberg L–functions for GLn

Fix two positive integers m and n. Let π = ⊗vπv and π′ = ⊗vπ′v be irreducible

cuspidal automorphic representations of GLm(A) and GLn(A), respectively. Fix

a finite set of places S of F such that for v /∈ S, both πv and π′v are unramified.

Given v /∈ S, let Av and A′v denote the corresponding semisimple conjugacy classes
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of GLm(C) and GLn(C), attached to πv and π′v, respectively. Let

L(s, πv × π′v) = L(s, πv ⊗ π′v, ρm ⊗ ρn)

= det(I −Av ⊗A′vq−sv )−1

=
∏

1≤i≤m
1≤j≤n

(1− αv,iα′v,jq−sv )−1,

when tv = diag(αv,1, . . . , αv,m) ∈ Av and t′v = diag(α′v,1, . . . , α
′
v,n) ∈ A′v. Finally,

let

LS(s, π × π′) =
∏
v/∈S

L(s, πv × π′v).

This is what is usually called the (partial) Rankin–Selberg product L–function for π

and π′. Each L(s, πv×π′v) is called the corresponding local Rankin–Selberg product

L–function. We have

Theorem 7.1 (Jacquet–Shalika [JS1]). The partial L–function LS(s, π × π′) con-

verges absolutely for Re (s) > 1.

The fact that any partial Langlands L–function converges absolutely for Re(s)

sufficiently large is a general fact due to Langlands [L1]. But a bound as little as 1

is usually hard to get and proof of 7.1 is fairly hard. Let us sketch it very roughly

here.

Sketch of the proof of 7.1. One first represents the L–function by means of an

integral representation which is holomorphic for Re (s) > 1, showing that it is

holomorphic as a function of s for Re (s) > 1. This is quite involved and requires

lots of work. Now, techniques of Dirichlet series with positive coefficients apply,

showing that the L–function must be absolutely convergent to the right of its first

pole which will happen at s = 1, if m = n and π′ = π for which A′v = Av for

almost all v. Observe that in this case LS(s, π × π) gives a Dirichlet series with

non–negative coefficients. The general case follows from this and Schwarz Lemma.

Theorem 7.2 (Langlands [L2]). The partial L–function LS(s, π × π′) extends to

a meromorphic function of s on all of C.

Sketch. One realizes GLm×GLn as a Levi subgroup of GLm+n and considers π̃⊗π′

as a cuspidal representation of GLm(A) × GLn(A). For definition and detail see
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proof of Theorem 7.6 here. The ratio of partial L–functions

LS(s, π × π′)/LS(1 + s, π × π′)

appears in the constant term of the corresponding Eisenstein series which is mero-

morphic on all of C. Starting with s with Re (s) large and using induction, one

concludes the meromorphy of LS(s, π × π′) for all s.

Remark. This work of Langlands [L2] is the origin of what is now called the

Langlands–Shahidi method.

The theory of L–functions as predicted by Langlands [L1] requires local factors

to be defined at all places and not only at unramified ones. There is one type

of L–functions which are defined at all places. They are the so called Artin L–

functions and Langlands philosophy is that Artin L–functions are automorphic and

that is how Langlands proved their holomorphy, the Artin’s conjecture on Artin L–

functions, for a large number of two dimensional representations of Galois groups.

As usual, Artin L–functions are defined by a product of local L–functions. Let F

be a local field. The Weil group WE/F of F is an extension of Gal (E/F ) by E∗ by

means of a non–trivial 2–cocycle. Here E/F is a finite Galois extension. The Weil

group of F , denoted by WF , as WF/F , is defined as a projective limit for all WE/F .

There is a further thickening of these groups by a unipotent group, the Deligne–

Weil group W ′E/F or W ′F , which will be necessary when F is non–archimedean.

What follows is expected in the generality of every reductive algebraic group. But

let us restrict ourselves to the case of GLn.

First, one should mention that given any continuous representation ρ of W ′F on

a complex vector space V , the Artin L–function L(s, ρ) is defined by

L(s, ρ) = det(I − ρ(φ)q−s|V I)−1,

where φ denotes an inverse Frobenius and V I is the subspace of all vectors fixed

in V by the inertia subgroup I. We refer to [T] for definitions of φ and I. Also

given a non–trivial additive character ψ of F , one can attach an Artin root number

ε(s, ρ, ψ) which is a monomial in q−s, and we again refer to [L3] for its definition.
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To make matters more precise and clear, let us consider the easier case of

archimedean fields. Thus let F = C or R. Then WC = C
∗ and WR consist of

pairs (z, τ) ∈ C∗× Gal(C/R) with multiplication rule

(z1, τ1)(z2, τ2) = (z1τ1(z2)aτ1,τ2 , τ1τ2),

with aτ1,τ2 = 1 unless τ1 = τ2 = 1 in which case aτ1,τ2 = −1 (cf. [L4]).

Irreducible representations of WC are 1–dimensional and if ρ is one such, then

ρ(z) = |z|t
C
(z/z)n/2, |z|C = zz, for some t ∈ C and integer n. The corresponding

Artin L–function is

L(s, ρ) = 2(2π)−(s+t+|n|/2)Γ(s+ t+ |n|/2)

with

Γ(s) =
∫ ∞

0

e−ttsdt/t,

the ordinary Γ–function.

Now assume F = R and let ρ be an irreducible representation of WR. If dim ρ =

2, then ρ = IndWR
C∗ θ, where θ is a character of C∗. Then

L(s, ρ) = L(s, θ)

with L(s, θ) defined before.

On the other hand, if dim ρ = 1, then using WR/[WR,WR] = R
∗, ρ becomes a

character of R∗. Here [WR,WR] is the commutator group of WR. Then

ρ(x) = (x/|x|)ε|x|t

with t ∈ C and ε = 0 or 1. The corresponding Artin L–function is

L(s, ρ) = π−1/2(ε+t+s)Γ(1/2(ε+ t+ s)).

Let F be a local field. The parametrization problem for GLn(F ) requires that

every irreducible admissible representation π of GLn(F ) be parametrized by a

continuous representation ϕ of W ′F , i.e. a continuous homomorphism of W ′F into



23

GLn(C) =LGLn. If r is a representation of GLn(C), then the corresponding Lang-

lands L–function L(s, π, r) will be defined to equal the Artin L–function L(s, r ·ϕ).

Similarly

ε(s, π, r, ψ) = ε(s, r · ϕ,ψ)

with the one on the right, the Artin root number.

The parametrization problem is quite general and for any reductive group and

in the generality of all reductive groups it is only solved when F is archimedean,

i.e. F = R or C. This is due to Langlands [L4]. For non–archimedean F , the results

are quite fragmented and we will make no effort to explain them.

In practice L(s, π, r) and ε(s, π, r, ψ) are defined by other means and one task is

to show

L(s, π, r) = L(s, r · ϕ)

and

ε(s, π, r, ψ) = ε(s, r, ϕ · ψ).

In the case in hand, i.e. for G = GLm ×GLn and r = ρm ⊗ ρn, both

L(s, πv × π′v) = L(s, πv ⊗ π′v, ρm ⊗ ρn)

and

ε(s, πv × π′v, ψv) = ε(s, πv ⊗ π′v, ρm ⊗ ρn, ψv)

are defined using the two different methods, Rankin–Selberg in [JPSS] and Langlands–

Shahidi in [Sh5] and were proved to be equal to each other in [Sh6], when Fv is

non–archimedean. When Fv = R,C, the factors defined from Langlands–Shahidi

methods and in the full generality of the method are proved to be those of Artin

in [Sh7], in particular so are L(s, πv × π′v) and ε(s, πv × π′v, ψv). The method of

Rankin–Selberg for archimedean fields is addressed in [JS3]. Here ψv is a non–trivial

additive character of Fv.

Now, let π = ⊗vπv and π′ = ⊗vπ′v be cuspidal representations of GLm(A) and

GLn(A) as in the beginning of the section. Fix a non–trivial additive character

ψ = ⊗vψv of F\A. Let

L(s, π × π′) =
∏
v

L(s, πv × π′v)
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and

ε(s, π × π′) =
∏
v

ε(s, πv × πv, ψv),

where the factors are as in the previous paragraph. Let π̃ and π̃′ be contragredients

of π and π′, i.e. their
∏
v
GLm(Ov)–finite (respectively

∏
v
GLn(Ov)–finite) duals.

Theorem 7.3 [Sh5]. The functional equation

L(s, π × π′) = ε(s, π × π′)L(1− s, π̃ × π̃′)

is valid.

The fact that a non–trivial additive character is necessary to define local root

numbers which will have no appearance in the global root number is one of the

mysteries of the subject.

Sketch of the proof. In the setting of the proof of Theorem 7.2, one considers a

non–constant Fourier coefficient of the Eisenstein series built on π̃ ⊗ π′. Up to a

finite number of factors, in fact attached to those in S, the Fourier coefficient is

equal to LS(1 + s, π×π′)−1. One then applies the functional equation satisfied by

the Eisenstein series and combines with lots of local work. We refer to [Sh1,Sh8,CS]

for details.

The method of the proof is quite general and applies to a large number of L–

functions. We will discuss this later.

Just as it is the case with classical Dirichlet series, one can also prove a non–

vanishing for these L–functions on the line Re(s) = 1 and, as its celebrated classical

application to the infiniteness of number of primes in an arithmetic progression has

shown, many applications are expected. Some has already been established and are

truly significant such as classification of automorphic forms for GLn(A) proved in

[JS2]. Many more will be proved in future, especially since the results are true in

a much more general setting than LS(s, π × π′).

Theorem 7.4. L(s, π × π′) 6= 0 for Re(s) = 1.

Sketch of the proof. The Fourier expansion discussed in the proof of Theorem 7.3 is

equal (up to a finite number of local Whittaker functions) to LS(1 + it, π× π′)−1.
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It must also be holomorphic for all t ∈ R, i.e. on the unitary axis by the general

theory of Eisenstein series [L5,MW1]. One must then apply some deep local theory

at archimedean places, due to Casselman–Wallach, to show that local Whittaker

functions are not identically zero. (This was a serious problem about the time when

the theory was being developed). Details are given in [Sh8]. The theorem follows.

Next, one must address the question of poles. The first result is due to Jacquet–

Shalika [JS2].

Theorem 7.5 (Jacquet–Shalika [JS2]). The only poles for LS(s, π × π′) on the

half plane Re(s) ≥ 1 are on the line Re(s) = 1. They happen if and only if m = n

and π′ ∼= π̃⊗ |det( )|t, t ∈ C, i.e. when π′ is an unramified twist of π̃. The partial

L–function LS(s, π × π̃) has a simple pole at s = 1.

Sketch of the proof. This is accomplished using an integral representation which

itself involves an Eisenstein series if m = n. Again good amount of local result for

Re(s) > 1 is necessary. For more details see [JS1,JS2].

The continuation to the whole complex plane is due to Moeglin and Wald-

spurger [MW2]. It is an ingenious application of results of Jacquet–Piatetski–

Shapiro–Shalika and Shahidi.

Theorem 7.6 (Moeglin–Waldspurger [MW2]). The complete L–function L(s, π×

π′) is entire unless m = n and π′ ∼= π̃ ⊗ |det( )|t, t ∈ C. The only poles of

L(s, π × π̃) are at s = 0 and 1 and are both simple.

Sketch of the proof. Using Theorems 7.1–7.5, it is enough to prove L(s, π̃× π′) has

no poles for 0 < Re(s) ≤ 1/2. Assume s with 0 < Re(s) ≤ 1/2 is a pole of

L(·, π̃ × π′) of order r.

Let us first say a few words about Eisenstein series in this case which is the main

tool in this whole program. Let Q and Q′ denote standard parabolic subgroups of

G = GLm+n whose Levi subgroups are M = GLm ×GLn and M ′ = GLn ×GLm,

respectively. Let U and U ′ be their unipotent radicals. Set π = π ⊗ π′ and

s = (s, s′), s, s′ ∈ C and denote by I(π) and I(π, s), representations induced from
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π and π[s] = (π ⊗ |det( )|s)⊗ (π′ ⊗ |det( )|s′). If ϕ ∈ I(π), define ϕ(s) ∈ I(π, s)

by

ϕ(s)(mug) = |detm|sϕ(mg).

Let

GQ = {f : Q(F )U(A)\G(A) −→ C}

and define i : I(π, s) −→ GQ by

(if)(g) = f(g)(1, 1).

The Eisenstein series attached to ϕ and s is defined by

E(ϕ, s, g) =
∑

γ∈Q(F )\G(F )

[iϕ(s)](γg).

Consider

E(ϕ, g) = lim
s′−→s

(s′ − s)rE(ϕ, s′, g)

with s′ = (s′/2, −s′/2), where E(ϕ, s′, g) is the Eisenstein series built on repre-

sentation (π ⊗ |det( )|s′/2) ⊗ (π′ ⊗ |det( )|−s′/2) of the Levi subgroup M(A) =

GLm(A)×GLn(A) of GLm+n(A) discussed above. Since the poles of E(ϕ, s′, g) in

this interval are those of L(s′, π̃ × π′), E(ϕ, g) is not identically zero. Let U be

the unipotent radical of the parabolic subgroup Q = MU of GLm+n on which the

Eisenstein series is built. Next they show that if EU (ϕ, g) is the limit

EU (ϕ, g) = lim
s′−→s

(s′ − s)rEU (ϕ, s′, g),

where EU (ϕ, s′, g) is the constant term of E(ϕ, s′, g) along Q, then

(7.6.1) E(ϕ, g) =
∑

γ∈(P∩Q)(F )\P (F )

EU (ϕ, γg),

where P is the standard parabolic subgroup of GLm+n whose Levi is isomorphic

to GLm+n−1 ×GL1.

Using density of GLm+n(F )B(A) in GLm+n(A), where B is the Borel subgroup

of upper triangular elements in GLm+n, one concludes that if EU (ϕ, ) 6= 0, then

there exist γ ∈ P (F ) and b ∈ B(A) such that EU (ϕ, γb) 6= 0.
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Now, up to a constant, EU (ϕ, g) is given by a normalized intertwining operator

N(s)ϕ(s)(g). Moreover

{N(s)ϕ(s)|ϕ ∈ I(π)} = ⊗vJv,

where each Jv is a space of functions on GLm+n(Fv) with values in the space of

π′v ⊗ πv. More precisely, Jv is a subspace of the space of representation induced

from a twist of π′v ⊗ πv. They then show that if v 6∈ S, then there exists a function

jv ∈ Jv, jv 6= 0, such that jv|Q(Fv)P (Fv) ≡ 0.

Choose ϕ such that N(s)ϕ(s) is not identically zero and its v–th component is

jv for some v /∈ S. Then EU (ϕ, g) 6= 0 and consequently E(ϕ, ) is not identically

zero. But then by (7.6.1) and the density argument below it EU (ϕ, γb) 6= 0 for some

γ ∈ P (F ) and b ∈ B(A). On the other hand N(s)ϕ(s)(γb) = 0 since N(s)ϕ(s) has

a jv–component. This contradicts EU (ϕ, γb) 6= 0.

The proof is quite remarkable and mixes the results of the two different methods

to prove the full holomorphy which is usually hardest step. It has the potential of

being applied to other cases which have remained unresolved.

§8. Applications of properties of L(s, π × π′)

8.1 Classification of automorphic forms for GLn. Let G = GLr(A). Fix a

cusp form σ = σ1 ⊗ . . . ⊗ σu of M = GLr1(A) × . . . × GLru(A), not necessarily

unitary, r1+. . .+ru = r. Here M is considered as the standard Levi subgroup of the

standard parabolic subgroup P = MN of G. Let ξ = ⊗vξv be the representation

induced from σ ⊗ 1 of MN = P . Similarly let Q be another standard parabolic

subgroup of G with a cuspidal representation τ of the standard Levi subgroup of

Q. Denote by η the representation of G induced from τ ⊗ 1. Write η = ⊗vηv. The

following theorem is proved in [JS2].

Theorem 8.1 (Jacquet–Shalika [JS2]). Let S be a finite set of places of F such

that for v /∈ S, σv and τv are both unramified. Then ξv and ηv have the same

unramified components if and only if (σ, P ) and (τ,Q) are conjugate, i.e. up to a

permutation they are equivalent.

When M = G, this is the strong Multiplicity one Theorem alluded to before.
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The connection with classification is explained in [JS2]. Its significance and con-

nection with global parametrization problem which requires introduction of certain

Tanakian categories is well explained in an important article of Langlands [L6].

Proof of 8.1 is a clever application of Theorems 7.1, 7.4, and 7.5.

8.2 Base change for GLn. Let E/F be a cyclic extension of F . Set r = [E : F ]

and let Gal(E/F ) = 〈τ〉. There is a group denoted by ResE/FGLn. It is defined

by

ResE/FGLn =

r︷ ︸︸ ︷
GLn(E)× . . .×GLn(E)oGal(E/F )

in which τ(g1, . . . , gr) = (τ(gr), τ(g1), τ(g2), . . . , τ(gr−1)). Thus τ(g1, . . . , gr) =

(g1, . . . , gr) implies g1 = τ(gr), g2 = τ(g1), g3 = τ(g2), . . . , gr = τ(gr−1), and

therefore (g1, . . . , gr) = (g1, τ(g1), τ2(g1), . . . , τ r−2(g1), τ r−1(g1)). Consequently

(ResE/FGLn)(F ) = GLn(E). Its L–group is (GLn(C)× . . .×GLn(C))oGal(E/F )

in which

τ(g) =


1

1

 tg−1


1

1


for every g ∈ GLn(C).

Let

θ : GLn(C)×Gal(E/F ) −→
r︷ ︸︸ ︷

GLn(C)× . . .×GLn(C)oGal(E/F )

be defined by

θ(g, τ) = (g, . . . , g)o τ.

Then it is a major work of Arthur and Clozel [ACl] that θ∗ from the space of auto-

morphic representations of GLn(AF ) into those of GLn(AE) exists, generalizing the

fundamental work of Langlands [L7] from n = 2, in which he proves Artin’s conjec-

ture for a large number of irreducible two dimensional continuous representations

of Gal(F/F ). In fact for all those whose image in PGL2(C) are solvable.

Proof makes a fundamental use of trace formula and its twisted version. Again

L–functions L(s, π× π′) play a role both through the normalizing factors for inter-

twining operators, as well as by means of their analytic properties and their defining

role in the theory of local base change.
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8.3 Residual spectrum for GLn. Langlands theory of Eisenstein series [L5]

gives a recipe to how to determine non–cuspidal discrete spectrum of reductive

groups. One must determine residues of Eisenstein series coming from different

conjugacy classes of parabolic subgroups. This is a hard and difficult process.

One must determine residues of constant terms which are given, up to a finite

number of factors, as ratios of partial L–functions. For GLr(A) and the parabolic

subgroup Q = MU in which M ∼= GLm×GLn, r = m+n, with inducing cuspidal

representations π ⊗ π′ on M(A), the ratio is

LS(s, π̃ × π′)/LS(1 + s, π̃ × π′),

and clearly analytic properties of LS(s, π̃ × π′) play an important role in deter-

mination of these residues. This whole project has been masterfully executed by

Moeglin and Waldspurger in [MW2], completely classifying the residual spectrum

for GLn(A).

8.4 Ramanujan–Petersson’s and Selberg’s Conjectures. Let Γ be a con-

gruence subgroup of SL2(Z). The Laplace operator

∆ = −y2

(
∂2

∂x2
+

∂2

∂y2

)
acts on L2(Γ\h). Let λ1(Γ) be the smallest non–zero eigenvalue of ∆. The corre-

sponding eigenfunctions are called Maass forms.

Selberg’s Conjecture [Se]. λ1(Γ) ≥ 1/4 = 0.25.

Recall that

λ1(Γ) =
1
4

(1− s2)

in which s must be either pure imaginary or −1 ≤ s ≤ 1. If the Maass form

π = ⊗pπp has π∞ as its archimedean component, then π∞ = I(µ1,∞, µ2,∞), where

µ1,∞ = | |s/2 and µ2,∞ = | |−s/2 with | | = | |R. Thus

1
4

(1− s2) =
1
4

implies s = 0 and consequently π∞ is tempered and therefore Selberg’s conjecture

may be considered as the archimedean version of Ramanujan–Petersson’s conjec-

ture.
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Selberg himself proved λ1(Γ) ≥ 3/16 or −1/4 ≤ s/2 ≤ 1/4 which was sharpened

to −1/4 < s/2 < 1/4 by Gelbart and Jacquet [GJ]. We again refer to [I], Section

11.3, for further discussion of this subject and its history.

WhileR−P conjecture was making progress at all the finite places, its archimedean

version, the Selberg’s conjecture remained resilient to any progress. Except for some

partial results by Iwaniec, no real progress took place until the recent paper of Luo,

Rudnick, and Sarnak [LRSa] in which they proved

Theorem 8.2 (Luo–Rudnick–Sarnak) [LRSa]. λ1(Γ) ≥ 21/100 or equivalently

−1/5 ≤ s/2 ≤ 1/5.

The proof relies in a fundamental way on the theory of Rankin–Selberg L–

functions for GLm ×GLn when m = n = 3. Their proof also gives the estimate

p−1/5 ≤ |αp| & |βp| ≤ p1/5

discussed earlier. Using GL2–theory alone Iwaniec has also obtained the slightly

weaker bound λ1(Γ) ≥ 10/49.

Sketch of the proof. Let Π = ⊗p
∏
p be the Gelbart–Jacquet lift (§6) of π = ⊗pπp.

Fix a place p = p0, finite or infinite. We need the following theorem whose proof is

in [LRSa] and becomes unavailable as we replace Q by a number field.

Theorem 8.3 [LRSa]. Given s with Re(s) > 4/5, there exists a character χ =

⊗pχp of Q∗\A∗
Q

with χp0 = 1, such that

L{p0}(s, (Π⊗ χ)×Π) =
∏
p6=p0

L(s, (Πp ⊗ χp)×Πp)

is non–zero.

Proof. See [LRSa].

Fix a s = s0 with 4/5 < Re(s0) < 1 and choose χ as in Theorem 8.3. By

Theorem 7.6

L(s0, (Π⊗ χ)×Π)
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is holomorphic. But

L(s, (Π⊗ χ)×Π) = L(s, Πp0 ×Πp0)L{p0}(s, (Π⊗ χ)×Π).

Since L{p0}(s, (Π ⊗ χ) × Π) is non–zero at s = s0, L(s, Πp0 × Πp0) must be

holomorphic at s = s0. Let us first assume p0 < ∞ and πp0 (and thus Πp0) is

unramified. Recall that if

tp0 =
(
αp0 0
0 βp0

)
is attached to πp0 , then

Ad2(tp0) =

αp0β
−1
p0

0
1

0 α−1
ρ0
βp0


represents the conjugacy class of GL3(C) attached to Πp0 (cf. §6). For a Maass

form β−1
p0

= αp0 and

(1− p−sα4
p0

)

divides L(s, Πp0 ×Πp0)−1. Consequently (1− p−sα4
p0

) must have no zeros for any

s with 4/5 < Re(s) < 1. Thus

p−(4/5)+ε|αp0 |4 < 1

for every ε > 0. Taking the limit as ε −→ 0 one gets

|αp0 | ≤ p
1/5
0 .

Now suppose p0 =∞ and π∞ = I(| |s′/2, | |−s′/2), s′ ∈ R. In fact this is always

the case for a Maass form. If

ϕ : WR −→ GL2(C)

parametrizes π∞, then

ϕ(x) =
(
|x|s′/2 0

0 |x|−s′/2

)
for ∀ x ∈ R∗ ⊂ WR. Moreover Π∞ = I(| |s′ , 1, | |−s′) and L(s,Π∞ × Π∞) will

have Γ(s− 2s′) as a factor. By the same argument Γ(s− 2s′) must be holomorphic

for Re(s) > 4/5, or

4/5 + ε− 2s′ > 0
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for every ε > 0. Then s′ ≤ 2/5 and s′/2 ≤ 1/5.

The estimate 5/28 which for a classical Maass form π = ⊗pπp is the best presently

proved, uses a different L–function. Again one takes Π = Ad2
∗(π) which is cuspidal

unless π is monomial in which case R − P is valid anyway, π being parametrized

by a representation of the global Weil group. One then uses the following theorem

of Bump and Ginzburg.

Theorem 8.4 (Bump–Ginzburg [BGi]). Let Π = ⊗vΠv be a cuspidal automorphic

representation of GL3(A) and choose a finite set S of places of F such that Πv is

unramified for every v /∈ S. Then

LS(s,Π,Sym2(ρ3)) =
∏
v/∈S

L(s,Πv,Sym2(ρ3))

is entire with possibly only a pole at s = 1.

The 5/28 estimate of Bump–Duke–Hoffstein–Iwaniec [BDHI]

p−5/28 ≤ |αp| ≤ p5/28

follows from Theorem 8.4, the functional equation satisfied by this L–function, and

an ingenious idea of Duke and Iwaniec [DI].

Although it may be possible to extend the 5/28 estimate to quadratic extensions

of Q (private communications with Sarnak), still the best estimate for an arbitrary

number field is (cf. [Sh1, Sh2])

q−1/5
v < |αv| & |βv| < q1/5

v .

This follows from the theory developed in [L2, Sh1, Sh8] which is now being called

the Langlands–Shahidi method which we will discuss next.

§9. The Method

In 1967 Langlands gave a series of lectures at Yale which were published in a

book titled “Euler Products” by Yale University Press [L2]. The book is the origin

for his notion of an L-group. This was later pursued by the author and is now
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being called the Langlands–Shahidi method and is one of the two methods (the

Rankin–Selberg being the other one) to study L–functions directly. Efforts are now

being made to generalize the method to non–generic representations [FGol]. For

the purpose of these lectures, let us consider only the case of split groups.

9.1 L–groups. Let F be a number field and denote by G a Zariski–closed sub-

group of GLn(Fa), for some n, where Fa denotes an algebraic closure of F . This

means that G is given as common zeros of a finite number of polynomials (in sev-

eral variables). If the polynomials are with coefficients in F , then G will be said

to be defined over F . We refer to §1 for adelization of G. Radical of G is the

largest connected solvable normal subgroup of G. G will be called reductive, if its

radical consists of only semisimple (diagonalizable) elements. The radical is then

equal to the connected component of the center of G. A maximal torus of G is one

which is maximal among its closed connected abelian subgroups whose elements are

semisimple. Let T be one. Denote by X∗(T) the group of rational characters of T

into GL1. Let X∗(T) be the group of all rational homomorphism of GL1 into T.

Let X∗(T)F be the group of F–rational character of T into GL1, i.e. those defined

over F which means that they send T(F ) into GL1(F ). We will say T is split if

X∗(T) = X∗(T)F .

We shall say G is split over F if it has maximal tori which are split over F .

For simplicity from now on we shall assume G is split. Let T be a maximal

torus and fix a Borel subgroup B, i.e. a maximal connected solvable subgroup,

containing T. Let U be the unipotent radical of B, i.e. the subgroup of all its

unipotent elements. Then B = T ·U. The torus T acts by adjoint action on U,

defining root characters of T in U. Let Σ∗ ⊂ X∗(T) be their subset. One can

identify the coroots Σ∗ of T with a subset of X∗(T). Observe that the choice of B,

already determines a set of positive roots.

Theorem 9.1. The root datum (X∗(T),Σ∗, X∗(T),Σ∗) determines the class of G

uniquely.

Definition 9.2. The complex group whose root datum is dual of that of G, i.e. is

(X∗(T),Σ∗, X∗(T),Σ∗) is called the L–group of G and is denoted by LG.
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Remark. All of these are valid if F is local.

Examples. One can quickly notice that the roots of G are coroots of LG. If α

and β are roots of G and α∨ and β∨, their corresponding coroots, i.e. so that

〈α, α∨〉 = 〈β, β∨〉 = 2. Then

〈α, β〉 = 〈β∨, α∨〉.

The Cartan matrix of G is

C = (〈αi, αj〉),

where αi and αj denote simple roots of T in U. Let LC be the Cartan matrix of
LG, then

LC = (〈α∨i , α∨j 〉)

= (〈αj , αi〉)

= tC,

from which one concludes that G and LG have transposed Cartan matrices.

Suppose G is semisimple, i.e. it is reductive and its center is finite, thus its

radical is trivial, then G is called simply connected, if

X∗(T) = Z–span of Σ∗

and adjoint, if

X∗(T) = Z–span of Σ∗.

Thus G is simply connected if and only if LG is adjoint and conversely.

A simple way of characterizing an adjoint group is that it has no center. Exam-

ples are PGLn, PSp2n, PSO2n, SO2n+1, exceptional groups of type G2, F4, and

E8. On the other hand SLn, Sp2n, Spinn, G2, F4, and E8 are all simply connected.

The groups SO2n are neither simply connected nor adjoint. The following table for
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Chevalley groups is then clear:

G LG
SLn PGLn(C)

Sp2n SO2n+1(C)

SO2n+1 Sp2n(C)

SO2n SO2n(C)

Spin2n PSO2n(C)

Spin2n+1 PSp2n(C)

G2 G2(C)

F4 F4(C)

simply connected E6 & E7 adjoint E6(C) and E7(C), resp.

E8 E8(C)

Examples of non–semisimple reductive groups are GLn and similitude groups,

such as GSp2n. Their L–groups require a little more work to figure out. We refer

to [L1] and [Bo] for details. The result is LGLn = GLn(C), as mentioned before,

and LGSp4 = GSp4(C). The L–group of GSp2n, n > 2, is again a reductive group

whose derived group is Sp2n(C). But one needs to build in the extra dimension in

the maximal torus of GSp2n as opposed to Sp2n (cf. [Bo]).

9.2 Parabolic subgroups. Fix a maximal split torus T for G which lies in our

fixed Borel subgroup B = TU. Let ∆ be the subset of simple roots for roots of T

in U, spanning Σ+ ⊂ Σ∗ the set of (positive) roots in U. Given a set θ ⊂ ∆, let

A = Aθ = (
⋂
α∈θ

kerα)0, the connected component of
⋂
α∈θ

kerα. Let M = Mθ be the

centralizer of A in G. Clearly T ⊂M. Let N = Nθ be the subgroup of U spanned

by roots in Σ+\〈θ〉, where 〈θ〉 is the subset of Σ+ spanned by the roots in θ. Then

P = Pθ = MN is called the standard parabolic subgroup of G attached to θ with a

Levi subgroup M and unipotent radical N. Being standard means that N ⊂ U for

a fixed B. The decomposition P = MN is called a Levi decomposition. A parabolic

subgroup of G is then a conjugate of a Pθ for some θ. Every parabolic subgroup is

its own normalizer. P is called maximal if A/Z(G) is one–dimensional.
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If F is a local non–archimedean field, then

G = G(F ) = P(F )G(O),

where O is the ring of integers of F . The subgroup K = G(O) is a maximal

compact subgroup of G and G = PK is called an Iwasawa decomposition of G.

Let P = MN be a parabolic subgroup of G standard with respect to a Borel

subgroup B = TU of G. Let LG be the L–group of G, and denote by LM the Levi

subgroup of LG defined by θ∨ the coroots of T defined by roots in θ. It should now

be clear that LG has a maximal torus LT such that

X∗(LT ) = X∗(T)

and

X∗(LT ) = X∗(T).

The subset of roots of LT is Σ∗, the coroots of T. Fix a Borel subgroup LB of LG

such that LT ⊂ LB. Let LU be its unipotent radical. Then the set of coroots of

T defined by positive roots of T can be identified with the roots of LT in LU . Let
LN be the subgroup of LU spanned by positive roots in LU which are not spanned

by θ∨. Then the subgroup LP = LMLN of LG is called the L–group of P. It is

standard with respect to LB.

Example. The group Sp4 has two maximal parabolic subgroups. To explain, let α

and β be the short and the long simple roots of Sp4. Then M1 = M〈α〉 ∼= GL2 and

M2 = M〈β〉 ∼= SL2 ×GL1. Moreover LSp4 = SO5(C). Since

〈α, β〉 = 〈β∨, α∨〉,

then α∨ and β∨ are the long and the short simple roots of SO5(C), respectively. It

can be easily checked that M〈α∨〉 ⊆ SO5(C) is in fact GL2(C) which is LM1, the

L–group of the reductive group M1. On the other hand

LM2 = PGL2(C)×GL1(C)

∼= SO3(C)×GL1(C)

for the reductive group M2. But this is exactly M〈β∨〉 ⊂ SO5(C).
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Now assume F is either local or global. Let G be as before a split reductive group

over F . Fix B,T,U, . . . as before. Let P = MN be a standard parabolic subgroup

of G,N ⊆ U, and let A be its split component, i.e. the connected component of

the center of M. Let X(M)F and X(A)F be the groups of F–rational character of

M and A, respectively. Set

a = Hom(X(M)F ,R)

= Hom(X(A)F ,R),

since X(M)F is of finite index in X(A)F . The R–vector space a is called the real

Lie algebra of A. Then its R–dual is

a∗ = X(M)F ⊗Z R

= X(A)F ⊗Z R.

In fact, if χ⊗ r ∈ a∗ and λ ∈ a, then

〈λ, χ⊗ r〉 = λ(χ)r.

Let a∗
C

= a∗ ⊗R C.

If F is global, then for every place v of F , X(M)F ↪→ X(M)Fv will then induce

an embedding av = Hom(X(M)Fv ,R) ↪→ a = Hom(X(M)F ,R).

Suppose first that F is local. Define the homomorphism

HM : M = M(F ) −→ a

by

exp〈χ,HM (m)〉 = |χ(m)|

where χ ∈ X(M)F and | | is that of F . Extend HM to HP on all of G = MNK

by extending it trivially on NK.

Next suppose F is global. Let v be a place of F with Fv the completion of F

at v. The embedding X(M)F ↪→ X(M)Fv induces a map av → a, where av =

Hom(X(M)Fv ,R). We again define a homomorphism

HM : M = M(A) −→ a
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by

exp〈χ,HM (m)〉 =
∏
v

|χ(mv)|v,

where χ ∈ X(M)F and m = (mv) ∈ M(A). We extend HM to HP on all of

G = G(A) in the same manner. Observe that

exp〈χ,HM (m)〉 =
∏
v

exp〈χ,HMv
(mv)〉.

Since mv ∈M(Ov) for almost all v <∞, the product is a finite product.

When F is non–archimedean, it is natural and is usual to use q rather than exp

to define HM locally, i.e.

q〈χ,HM (m)〉 = |χ(m)| (∀χ ∈ X(M)F ).

Now assume F is global and define

HM : M = M(A) −→ a

as before by

exp〈χ,HM (m)〉 =
∏
v

|χ(mv)|v (∀χ ∈ X(M)F )

and therefore

exp〈χ,HM (mv)〉 = |χ(mv)|v.

If H ′Mv
is the one defined by

q
〈χ,H′Mv (m)〉
v = |χ(m)|v (m ∈Mv),

then

HM (mv) = (log qv)H ′Mv
(mv),

where qv = exp if F is archimedean. Therefore if we define

H ′M : M −→ a

by

H ′M |Mv = (log qv)−1HM |Mv,

then

exp〈χ,Hm(m)〉 =
∏
v=∞

exp〈χ,H ′M (mv)〉 ·
∏
v<∞

q
〈χ,H′M (mv)〉
v .



39

Suppose χ = 2ρP, sum of positive roots in N, and t ∈ C. Then

exp〈tρP,HM (m)〉 = exp
t

2
〈2ρP,HM (m)〉

=
∏
v

|(2ρP)(mv)|t/2v

=
∏
v

δPv (mv)t,

where δPv is the modular character of Pv. In fact 2ρP is the determinant of the

adjoint action of M on the Lie algebra of N, a rational character of M. The

modulus character δPv , the ratio of the right and the left invariant measures on Nv,

when evaluated at mv ∈Mv is just |(2ρP)(mv)|1/2v .

9.3. Cusp forms and Eisenstein series. We will be interested in cusp forms

on M = M(A). Let us fix a character χ of A = A(A), where A is the split

component of M. Let L2
0(AM(F )\M,χ) be the Hilbert space of all L2–functions

ϕ on AM(F )\M which transform under A according to χ and moreover∫
NM(F )\NM(A)

ϕ(nm)dn = 0 (∀′m ∈M),

where NM is the unipotent radical of a parabolic subgroup PM of M for all such

parabolic subgroups. The space L2
0(AM(F )\M,χ) is called the space of χ–cusp

forms on M and M acts on it by right translations. It decomposes discretely to a

direct sum of irreducible subspaces each called a cuspidal representation of M . Let

π be one such representation. Then again π = ⊗vπv with almost all πv, v < ∞,

having a vector fixed by Mv(Ov), where Mv denotes M considered as a group over

Fv. The representation πv is then uniquely determined by a unique semisimple

conjugacy class in LMv where LMv = LM since M is split over F .

Choose a function ϕ ∈ L2
0(AM(F )\M,χ), belonging to π such that

Vϕ = 〈π(k)ϕ|k ∈ KM =
∏
v

KMv
〉

is finite dimensional. Such functions exist by density arguments and are dense.

There are natural ways of extending ϕ to a function Φ on G = G(A), for example

via a finite dimensional representation of K, a maximal compact subgroup of G with

KM = K ∩M(A), which contains the representation of KM on Vϕ upon restriction

[L5, MW1, HC1].
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Given ν ∈ a∗
C
, let

Φν(g) = Φ(g) exp〈ν + ρP,HP (g)〉

where ρP is half the sum of roots in N, an element in a∗. Let

E(ν, ϕ, g) =
∑

γ∈P(F )\G(F )

Φν(γg),

where g ∈ G = G(A), the Eisenstein series attached to ν and φ. It converges for ν

in a cone inside the positive cone, i.e. the one defined by

〈ν,Hα〉 > 0

for every simple root α in N. Here

Hα = 2α/(α, α)

is the corresponding coroot. It extends to a meromorphic function of ν on all of a∗
C

(cf. [L5]).

Now assume P is maximal. Let s be a complex number. Denote by α the unique

simple root in N. Set

α̃ = 〈ρP, α〉−1ρP ∈ a∗.

Then sα̃ ∈ a∗
C
.

9.4 Constant term and intertwining operators. Recall that A ⊂ T, a max-

imal split torus of G. Let W be the Weyl group of T in G, i.e. the quotient of its

normalizer by its centralizer. Assume M = Mθ, θ ⊂ ∆ and θ ∪ {α} = ∆. There

exists a unique element w̃0 ∈ W such that w̃0(θ) ⊂ ∆ while w̃0(α) ∈ Σ− = −Σ+.

Fix a representative w0 ∈ K ∩G(F ) for w̃0.

For every place v of F , let

I(sα̃, πv) = Ind
MvNv↑Gv

πv ⊗ q
〈sα̃,HPv ( )〉
v ⊗ 1.

More precisely, the space V (sα̃, πv) of I(sα̃, πv) is the vector space of all smooth

functions fv from Gv = G(Fv) into the space H(πv) of πv satisfying

fv(mng) = πv(m)q〈sα̃+ρP,HPv (m)〉
v fv(g),
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for all m ∈ Mv, n ∈ Nv, and g ∈ Gv. We use exp instead of qv if v = ∞. Finally

given fv ∈ V (sα̃, πv), define the corresponding intertwining operator by

A(sα̃, πv, w0)fv(g) =
∫
N ′v

fv(w−1
0 ng)dn,

for all g ∈ Gv. Here N′ is the unipotent radical of the standard parabolic subgroup

P′ of G which has M′ = M
w̃0(θ)

as its Levi subgroup.

Let

M(sα̃, π) = ⊗vA(s, πv, w0).

It acts on

I(sα̃, π) = ⊗vI(sα̃, πv),

which itself is a restricted tensor product, to be explained below, as follows. Given a

function f ∈ V (sα̃, π), there exists a finite set of places, including the archimedean

ones, such that

f ∈ ⊗v∈SV (sα̃, πv)⊗⊗v 6∈S{f0
v },

where each f0
v , v 6∈ S, satisfies, f0

v (kv) = 1, ∀kv ∈ G(Ov). Clearly for such

v 6∈ S, πv would have to be unramified. The operator M(sα̃, π) then acts by

linearity on each component of f . It is therefore important to explain how the

resulting infinite product behaves. The operator M(sα̃, π) is called, by abuse of

notation in the maximal case, the constant term of E(sα̃,−,−), attached to π. The

poles of M(sα̃, π) are exactly those of E(sα̃,−,−).

9.5 L–functions in the constant term. The L–group LM of M acts on the Lie

algebra Ln of the complex Lie group LN by adjoint action r (conjugation). Given a

positive integer i, let Vi be the subspace of Ln generated by those dual roots β∨ for

which 〈α̃, β〉 = i. There is a positive integer m, such that Vi = φ for every i > m,

while Vi 6= φ for every 1 ≤ i ≤ m. Moreover each Vi is invariant under LM . Let

ri = r|Vi.

Examples.

1) Let G = GLm+n,M = GLm×GLn, and N = Mm×n. Then LM = GLm(C)×

GLn(C) acts on Mm×n(C) by

r(g1, g2)X = g1Xg
−1
2 ,
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g1 ∈ GLm(C), g2 ∈ GLn(C), and X ∈ Mm×n(C). The representation r is irre-

ducible and m = 1. This is the case of Rankin–Selberg L–functions discussed in

Section 7.

2) Let G be the exceptional group of type G2. It is a rank 2 split group. Let α

and β be its simple roots. We assume α is short and β is long. That simply means

‖α‖2 = 1 and ‖β‖2 = 3. Moreover (α, β) = (β, α) = −3
2

. Here ‖α‖2 = (α, α),

where ( , ) is the standard inner product on R2. The Cartan matrix is(
2 −1
−3 2

)
.

Assume θ = {β}. Then Mθ
∼= GL2. (So is Mθ if θ = {α}.) The Lie algebra

Ln is five dimensional. The L–group LM = LMθ
∼= GL2(C) is the Levi subgroup

generated by β∨ which is the short root of G2(C). The integer m = 2,dimV1 = 4,

and dim V2 = 1. Moreover r1 = Ad3, the adjoint cube discussed in Section 6, and

r2 = det. Recall that

Ad3(
(
a 0
0 b

)
) = diag(a2b−1, a, b, a−1b2),

a, b ∈ C∗. This example was called by Langlands in [L2] “extremely striking.”

One can quickly determine the subspaces V1 and V2. We will use α and β to also

denote the short and the long simple roots of G2(C). Then Ln is generated by root

vectors of β, α + β, 2α + β, 3α + β, and 3α + 2β, since LM is generated by the

short simple root α. The simple root in LN is β and the numbers i are coefficients

of β in the above roots. Then V1 is spanned by β, α+ β, 2α+ β, 3α+ β, while V2

is spanned by 3α+ 2β. Their dimensions are obviously 4 and 1.

On the other hand if θ = {α}, then m = 3, dim V2 = 1, while dim V1 = dimV3 =

2.

A good part of progress on the symmetric cube L–functions for GL2(A) has come

from this example (cf. [Sh3, Sh4, Sh9]).

Choose a finite set S of places of F such that πv is unramified. Then πv is

uniquely determined by a semisimple conjugacy class Av in LMv = LM , M being

split. For each complex analytic (finite dimensional) representation r of LM , there
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exists a Langlands L–function L(s, πv, r) defined by

L(s, πv, r) = det(I − r(Av)q−sv )−1.

The following theorem is due to Langlands [L2].

Theorem 9.1. Fix v 6∈ S. Then there exists a choice of w such that:

A(sα̃, πv, w)f0
v =

m∏
i=1

L(is, πv, r̃i)/L(1 + is, πv, r̃i)f̃0
v

where f̃0
v ∈ V (w(sα̃), w(πv)) satisfies f̃0

v (k) = 1, ∀k ∈ G(Ov).

We should remark that the functions f0
v and f̃0

v are realized by complex valued

functions that one obtains by identifying πv on a constituent of an unramified

principal series, i.e. one induced from an unramified character of T ⊂M and trivial

on U ∩M to M .

Corollary (Langlands). There exists a s0 ∈ R such that M(sα̃, π) is defined by an

absolutely convergent product for Re(s) > s0.

We refer to [GPSR] for another important application of Theorem 9.1.

Finally let us point out that intertwining operators can be defined for any par-

abolic subgroup Pθ = MθNθ of G, where G is any (split) group over a local field

F . Again let w̃ ∈W be such that w̃(θ) ⊂ ∆. Let N− = N−θ and

N
w̃

= U ∩ wN−w−1.

Given ν ∈ a∗
C
, where a is the real Lie algebra of Aθ, a representative w of w̃, and

an irreducible admissible representation σ of M = Mθ(F ), let

A(ν, σ, w)f(g) =
∫
N
w̃

f(w−1ng)dn (g ∈ G),

for every f ∈ V (ν, σ), the space of the representation I(ν, σ) induced from

σ ⊗ q〈ν,HM ( )〉 ⊗ 1.

It converges absolutely for ν in a cone inside the positive Weyl chamber.

There is a product formula giving A(ν, σ, w) as a product of operators for max-

imal parabolics as we defined using elements w̃0 before ([L5, Sh8]) and therefore

one needs to study those defined earlier more closely as they are building blocks of

the general ones.
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9.6 Generic representations.

We will first assume F is a local field whose ring of integer is O. Let G be a

split reductive group over F and fix B,T, and U as before. Let ∆ be the set of

simple roots in U. Then

U/[U,U ] ∼=
∏
α∈∆

Uα(F ),

where each Uα = Uα(F ) is the one dimensional subgroup generated by

exp(tXα) =
∞∑
n=0

tnXn
α

n!
, (t ∈ F )

where Xα is the corresponding root vector. Let ψ be a character of U . Then

ψ =
∏
α

ψα

with each ψα a character of Uα. The character ψ is called generic or non–degenerate

if each ψα is non–trivial. Having fixed Xα, α ∈ ∆, then each ψα is a character of

F which we still denote by ψα. A character of F is called unramified if O is the

largest ideal on which the character is trivial. The character ψ is called unramified

if and only if each ψα is unramified.

An irreducible admissible representation (σ,H(σ)) of G = G(F ) is called ψ–

generic, where ψ is a non–degenerate character of U , if there exists a functional

λ ∈ H(σ)′, the full dual of H(σ), such that

λ(σ(u)v) = ψ(u)λ(v)

for all u ∈ U and v ∈ H(σ). When F is archimedean one would require λ to

be continuous with respect to semi–norm topology defined by elements of univer-

sal enveloping algebra of the Lie algebra of G, or more simply by right invariant

differential operators on g. A non–zero such λ is called a Whittaker functional.

Theorem 9.2 (Shalika [S], Gelfand–Kazhdan). The dimension of the space of

Whittaker functionals for σ is at most 1.

Now suppose F is global. A character χ = ⊗vχv of U(F )\U(A) is generic if and

only if each χv is generic. Let ϕ be a cusp form. Set:

Wϕ(g) =
∫

U(F )\U(A)

ϕ(ug)χ(u)du,
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g ∈ G = G(A). ϕ is called globally χ–generic if there exists a g ∈ G such that

Wϕ(g) 6= 0. The function Wϕ is called the Whittaker function attached to ϕ.

Finally if ϕ belongs to the space of a cuspidal representation π = ⊗vπv, then the

vector space of all Wϕ is called a Whittaker model for π.

Let F be local and assume σ is an irreducible admissible ψ–generic representation

of G. Fix a Whittaker functional λ and define a function Wν for each v ∈ H(σ) by

Wv(g) = λ(σ(g)v).

The space of all Wv’s is called a Whittaker model for σ.

9.7. Local coefficients. Let F be local and σ be an irreducible admissible ψM

generic representation of M = M(F ), F–points of a Levi subgroup for the parabolic

subgroup P = MN with N ⊂ U. As usual B = TU is a Borel subgroup of G. The

character ψM is defined by means of restriction from a character ψ of U = U(F )

which is assumed to be generic. For the sake of simplicity from now on we shall

assume all the ψα’s appearing in ψ, α ∈ ∆, are equal.

Fix ν ∈ a∗
C

and consider the representation I(ν, σ) of G induced from

σ ⊗ q〈ν,HM ( )〉 ⊗ 1.

Let w̃0 ∈ W be such that w̃0(θ) ⊂ ∆, P = Pθ, while w̃0(α) is negative for every

α in N. Let M′ = M
w̃0(θ)

and P′ = M′N′, P′ = P
w̃0(θ)

, N′ = N
w̃0(θ)

⊂ U. Let

λM be a ψM–Whittaker functional for the space H(σ) of σ. For each f ∈ V (ν, σ),

define

λψ(ν, σ)(f) =
∫
N ′=N′(F )

ψ(n′)λM (f(w−1
0 n′))dn′,

where w0 is a representative for w̃0. Clearly

λ(I(u)f) = ψ(u)λ(f),

where λ = λψ(ν, σ) and I = I(ν, σ), i.e. λ is a ψ–generic Whittaker functional for

I(ν, σ). It is easy to see λ 6= 0. Moreover, as a function of ν, λψ(ν, σ) is holomorphic

for all ν (cf. [CS]).

Now fix a w̃ ∈ W and choose a representative w for w̃. Let A(ν, σ, w) be the

intertwining operator from I(ν, σ) into I(w(ν), w(σ)). Denote by λψ(w(ν), w(σ))
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the Whittaker functional defined as above for I(w(ν), w(σ)). Then

λψ(w(ν), w(σ))A(ν, σ, w)

is another non–zero (generically) Whittaker functional for I(ν, σ). There is a theo-

rem of Rodier [Ro] which states that such functionals for the induced representation

I(ν, σ) are unique up to scalars. Thus there exists a scalar Cψ(ν, σ, w), called the

local coefficient [Sh8] attached to ν, σ, and w such that

λψ(ν, σ) = Cψ(ν, σ, w)λψ(w(ν), w(σ))A(ν, σ, w).

We shall now explain the most important property of local coefficients.

Assume F is global with A as its ring of adeles. Let G = G(A),

M = M(A), N, P , B, T, U be as before. We will assume P is maximal. Let ψM be

a generic character of UM(F )\UM(A), where UM = U ∩M. Let ϕ be a globally

ψM–generic cusp form on M = M(A), belonging to the space of the irreducible

cuspidal representation π = ⊗vπv of M . Write ψM = ⊗vψM,v. Let s ∈ C and

if α is the unique simple root in N, let α̃ = 〈ρ, α〉−1ρ be as in 9.3. Finally let

ri, 1 ≤ i ≤ m, be representations of LM as defined in 9.5.

Theorem 9.3 (Crude functional equation [Sh8]). Let S be a finite set of places

such that πv and ψv are both unramified for every v 6∈ S. Then

m∏
i=1

LS(is, π, ri) =
∏
v∈S

Cψv
(sα̃, π̃v, w0)

m∏
i=1

LS(1− is, π, r̃i).

Here ψ = ⊗vψv is any generic character of U(F )\U which restricts to ψM and LS

is as usual the product of corresponding local L–functions at all v 6∈ S.

Sketch of the proof. Let E(sα̃,Φ, g) be the Eisenstein series defined by extension Φ

of ϕ as in 9.3. Consider the non–constant Fourier coefficient

Eψ(sα̃,Φ, g) =
∫

U(F )\U
E(sα̃,Φ, ug)ψ(u)du

of E(sα̃,Φ,−). Then it can be shown [Sh1, Sh8] that

Eψ(sα̃,Φ, e) =
∏
v∈S

Wv(ev)
m∏
i=1

LS(1 + is, π, r̃i)−1,
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where for v ∈ S

Wv(ev) = λψv (sα̃, πv)(fv)

with fv ∈ V (sα̃, πv). Here we assume that the extension Φ of ϕ to G = G(A)

corresponds to f = ⊗vfv ∈ I(sα̃, π). The first important ingredient in the proof is

the formula

λψv (sα̃, πv)(f0
v ) =

m∏
i=1

L(1 + is, πv, r̃i)−1

for every v 6∈ S due to Casselman and Shalika [CS]. Here f0
v ∈ I(sα̃, πv) is as in

Theorem 9.1, i.e. f0
v (k) = 1 for all k ∈ G(Ov).

Next one needs to apply (cf. [Sh7, Sh8]) some deep technical results at the

archimedean places due to Casselman [C1] and Wallach [Wa] to show that Wv’s

can be chosen so that Wv(ev) 6= 0 if v =∞. The crude functional equation is now

a consequence of that of Eisenstein series E(sα̃,Φ, g), namely

E(sα̃,Φ, g) = E(−sα̃,M(s)Φ, g),

and the definition of local coefficients, using

M(sα̃, π) = ⊗vA(sα̃, πv, w0).

In the next paragraph we shall state the main global results of the method.

9.8. Main global results. F is now a global field and G,P,M,N,U,T,B, ψM , ψ,

w̃0, w0, . . . are as before, and P is assumed maximal. We fix a ψ–generic cuspidal

representation π = ⊗vπv of M = M(A) and we choose representations ri as be-

fore. The set S is always a finite set of places of F such that πv and ψv are both

unramified for v 6∈ S.

Theorem 9.4 [Sh8]. Fix t ∈ R. Then

m∏
i=1

LS(1 + it
√
−1, π, ri) 6= 0.

Sketch of the Proof. We have

(9.4.1) Eψ(sα̃,Φ, e) =
∏
v∈S

Wv(ev)
m∏
i=1

LS(1 + is, π, r̃i)−1.
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By the general theory of Eisenstein series, E(sα̃,−,−) is holomorphic if s is pure

imaginary, i.e. s =
√
−1t, t ∈ R. But Eψ is obtained by integrating E over the

compact set U(F )\U which remains holomorphic on the imaginary axis. Using the

archimedean results [C1, Wa, Sh7, Sh8] discussed in the proof of Theorem 9.3, each

Wv(ev) can be made non–zero for a given s ∈ C, v =∞. Their non–vanishing for

v <∞ is easily verified. The theorem now follows from (9.4.1).

We refer to Theorem 7.4 and [Sh4, Sh8] for important special cases of Theorem

9.4 and the application of Theorem 7.4 to the important classification theorem of

Jacquet and Shalika [JS2] (Theorem 8.1 here).

Theorem 9.5 a) (cf. [L2, Sh1]). Each LS(s, π, ri) extends to a meromorphic func-

tion of s on C.

b) [Sh1] Assume m = 1 or m = 2 and dim r2 = 1. Then LS(s, π, r1) extends to

a meromorphic function of s on C with only a finite number of poles, if S is large

enough to include all the conjugates of places over which πv and ψv ramify.

We refer to [Sh1] for the proofs and the induction involved, as well as a list of

examples where b) is valid.

Theorem 9.6. At each place v 6∈ S and for each i, the local L–function

L(s, πv, ri) = det(I − ri(Av)q−sv )−1

is holomorphic for Re(s) ≥ 1. Here Av ∈ LM is a semisimple element in the

conjugacy class of LM attached to πv.

This is proved in [Sh1] using an induction on m whose full version was later

proved in [Sh5], together with;

Lemma 9.7. For Re(s) ≥ 1, LS(s, π, r̃i) and the quotient

LS(s, π, r̃i)/LS(1 + s, π, r̃i)

both have only a finite number of poles and zeros, 1 ≤ i ≤ m.

Sketch of the proof. Assume that for Re(s) ≥ 1 and each i, 2 ≤ i ≤ m, the

corresponding quotient has a finite number of poles and zeros. Then by finiteness
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of poles of M(sα̃, π) for Re(s) ≥ 0, the relation

M(sα̃, π) = ⊗vA(sα̃, πv, w0),

and Theorem 9.1, the quotient for i = 1 has a finite number of poles for Re(s) ≥ 1.

Now using this line of absolute convergence for each LS(s, π, r̃i), one concludes that

each LS(s, π, r̃i), 1 ≤ i ≤ m, has a finite number of poles for Re(s) ≥ 1.

On the other hand by (9.4.1)

m∏
i=1

LS(1 + is, π, r̃i)

has a finite number of zeros for Re(s) ≥ 0. Applying the finiteness of poles for each

LS(s, π, r̃i) for Re(s) ≥ 1 and 2 ≤ i ≤ m, we conclude that LS(s, π, r̃1) has also

a finite number of zeros for Re(s) ≥ 1. Consequently the quotient for i = 1 has a

finite number of poles and zeros for Re(s) ≥ 1, completing the induction.

Sketch of the proof of Theorem 9.6. We enlarge S to include v and use

M(sα̃, π)(⊗ufu) = ⊗u∈SA(sα̃, πu, w0)fu ⊗
m∏
i=1

LS(is, π, r̃i)/LS(1 + is, π, r̃i)f̃0
S

for f = ⊗ufu for which fu = f0
u for u 6∈ S and

f̃0
S = ⊗u 6∈S f̃0

u

with f0
u and f̃0

u as in Theorem 9.1.

Now suppose A(s, πv, w0) has a pole for some s with Re(s) ≥ 1. For each

u ∈ S, u 6= v, choose fu such that

A(sα̃, πu, w0)fu(w0) 6= 0.

The operator A(s, πv, w0) having values which are rational functions of q−sv will

then have infinitely many poles parallel to the imaginary axis. By Lemma 9.7 so

must be M(sα̃, π), a contradiction. Consequently A(s, πv, w0) is holomorphic for

Re(s) ≥ 1. This then implies

m∏
i=1

L(is, πv, r̃i)/L(1 + is, πv, r̃i)
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is holomorphic for Re(s) ≥ 1.

Assume each local quotient is holomorphic for Re(s) ≥ 1 when 2 ≤ i ≤ m.

Then using Re(s) large enough so that local L–functions are holomorphic there,

one concludes that each L(s, πv, r̃i), 2 ≤ i ≤ m, is holomorphic for Re(s) ≥ 1.

Consequently each local quotient for 2 ≤ i ≤ m is also non–zero for Re(s) ≥ 1,

implying the holomorphy of the quotient for i = 1. We again use induction and

the holomorphy of L(s, πv, r̃1) for Re(s) large, to conclude it for Re(s) ≥ 1. The

induction is now complete and the Theorem 9.6 follows.

One important corollary to this which gives the best estimate presently proved

for Hecke eigenvalues of cusp forms over an arbitrary number field can be formulated

as:

Corollary 1 [Sh1, Sh2]. Let π = ⊗vπv be an irreducible cuspidal representation of

GL2(A), where A is the ring of adeles of a number field F . For each v where πv is

unramified, let the corresponding conjugacy class in GL2(C) be given by

tv =
(
αv 0
0 βv

)
.

Then

q−1/5
v < |αv| and |βv| < q1/5

v .

Proof in the adjoint case. Let us give a proof when π has trivial central character.

The general case requires a little more knowledge of exceptional groups. We refer

to [Sh2] for detail of the general case. The basic idea is the same.

Let G be a split group of type F4. Its Dynkin diagram is

◦
α1

——◦
α2

——◦
α3

——◦
α4

with α1 and α2 long and α3 and α4 short. Let Π be the Gelbart–Jacquet lift of

π. Since Ramanujan–Petersson is valid for monomial cusp forms, we may assume

Π is a cuspidal representation of PGL3(A). Let M = Mθ, where θ = {α1, α2, α4}.

There is an exact sequence

0 −→ A −→M −→ PGL3 × PGL2 −→ 0,
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leading to a surjection

M −→ PGL3(A)× PGL2(A) −→ 0

by the lemma in page 36 of [L2]. The cuspidal representation Π× π of PGL3(A)×

PGL2(A) then defines a cuspidal representation ρ of M . Let

tv =
(
αv 0
0 α−1

v

)
∈ SL2(C) = LPGL2

represent the conjugacy class attached to πv. Then among the factors dividing

L(s, ρ, r1)−1 is

(1− α5
vq
−s
v )(1− α−5

v q−sv ).

By Theorem 9.6 this must be non–zero for Re(s) ≥ 1. This implies

|α5
v|q−1

v < 1

as well as

|α−5
v |q−1

v < 1,

proving the Corollary.

The corollary can also be proved by letting G be a group of type E6

◦ α2∣∣∣∣
◦
α1

———◦
α3

———◦
α4

———◦
α5

———◦
α6

and M = Mθ with θ = {α1, α3, α2, α5, α6}, and the cuspidal representation Π ×

π ×Π of PGL3(A)× PGL2(A)× PGL3(A).

Corollary 2 [Sh1]. Every L–function LS(s, π, ri) is absolutely convergent for Re(s) > 2.

The fact that π is globally generic is crucial. In fact one expects that such forms

satisfy Ramanujan–Petersson’s conjecture to the effect that each local component

πv of π is tempered, i.e. their matrix coefficients are in L2+ε(Mv) for each ε > 0.

Local factors and functional equations. Let F be local and G a split group

over F . We fix B,T,U,P,M,N, ..., as before. We always assume N ⊂ U and

T ⊂ M. Moreover assume P is maximal and let α be the unique simple root in
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N. Define α̃ = 〈ρ, α〉−1ρ as before. Let ψ be a generic character of U = U(F )

extending ψM , one of UM = (U ∩M)(F ). We assume ψ is defined by a character

of F , denoted the same way. Let r1, , . . . , rm be representations of LM on Ln as

before. Let s ∈ C.

Theorem 9.8. Let σ be an irreducible admissible ψM–generic representation of

M . Then for each i, 1 ≤ i ≤ m, there exists a root number ε(s, σ, ri, ψ) which is

a monomial in q−s if F is non–archimedean, and an L–function L(s, σ, ri), whose

inverse is a polynomial in q−s with value 1 at zero, again if F is non–archimedean,

with the following properties.

1) If F is archimedean or σ has an Iwahori fixed vector (any component of

an unramified principal series), let ϕ′ : W ′F −→ LM be the homomorphism of the

Deligne–Weil group W ′F parametrizing σ. Then

ε(s, σ, ri, ψ) = ε(s, ri · ϕ′, ψ)

and

L(s, σ, ri) = L(s, ri · ϕ′),

where the factors on the right are the corresponding Artin root numbers and L–

functions.

2) For each i, 1 ≤ i ≤ m,

Cψ(sα̃, σ, w0) =
m∏
i=1

ε(is, σ, r̃i, ψ)L(1− is, σ, ri)/L(is, σ, r̃i).

3) Inductive property (cf. part 3, Theorem 3.5 and equations (7.10) and (7.11)

of [Sh5]).

4) Functional equations. Let K be a number field and G̃ a split group over K.

Let P̃ = M̃Ñ, Ñ ⊂ Ũ, be a maximal parabolic subgroup of G̃. Fix a generic

character ψ̃ = ⊗vψv of Ũ = Ũ(AK), trivial on Ũ(K), defined by one of K\AK ,

still denoted the same way. Let ψ̃
M̃

= ψ̃|M̃ ∩ Ũ . Let π = ⊗vπv be a ψ̃
M̃

–generic

cuspidal representation of M̃ = M̃(AK). Finally let r1, . . . , rm be representations

of LM̃ or Lñ as before. For each i, 1 ≤ i ≤ m, set

L(s, π, ri) =
∏
v

L(s, πv, ri)
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and

ε(s, π, ri) =
∏
v

ε(s, πv, ri, ψv),

where the first product is a finite product and the second one converges absolutely

for Re(s) large (say bigger than 2). Then:

L(s, π, ri) = ε(s, π, ri)L(1− s, π, r̃i)

for each i, 1 ≤ i ≤ m.

Moreover, let

(9.8.1) γ(s, σ, ri, ψ) = ε(s, σ, ri, ϕ)L(1− s, σ, r̃i)/L(s, σ, ri).

Then properties 1, 3, and 4, determine complex functions γ(s, σ, ri, ψ), 1 ≤ i ≤ m,

uniquely.

Several comments are in order:

1. When F is archimedean one may take WF instead of W ′F since WF suffices to

parametrize all the irreducible admissible representations of real groups [L4]. We

refer to [T] and pages 286–288 of [Sh5] for W ′F .

2. The γ–functions γ(s, σ, ri, ψ) are defined first using local coefficients induc-

tively. When σ is tempered and F is non–archimedean, the L–function L(s, σ, ri) is

defined as the inverse of the normalized numerator of γ(s, σ, ri, ψ), a polynomial in

q−s whose constant term is 1. The root number is then defined by means of (9.8.1).

To define root numbers and L–functions for any irreducible admissible generic σ,

one uses analytic continuation of the ones defined by tempered σ into the positive

Weyl chamber and Langlands classification, exactly as in the archimedean one. It is

then clear that uniqueness of γ(s, σ, ri, ϕ) leads to the same thing for root number

and L–functions.

3. Finally, there is one important property of these L–functions that can be

formulated as following conjecture, since it is not yet proved in general.

Conjecture 9.9. Assume σ is tempered. Then each L(s, σ, ri) is holomorphic for

Re(s) > 0.
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This is conjecture 7.1 of [Sh5] which is true if F = R or C. Its validity is proved

in following cases when F is p–adic:

1) m = 1, σ is generic tempered;

2) m = 2 and dim r2 = 1, σ is generic tempered;

3) σ is generic supercuspidal, i.e. its matrix coefficients are compact modulo the

center of the group, and finally

4) G is of classical type, but σ is any generic tempered representation of M .

This includes all the classical groups.

Cases 1), 2), and 3) are proved in [Sh5], while 4) which is more involved was

just recently settled [CSh]. In the next section we will study certain applications

of Conjecture 9.9.

§10. Some local applications

Throughout this section F is local (of characteristic zero), i.e. either F = R or

C or a finite extension of Qp for some prime p. G will be a split reductive group

over F and B,T,U,P,M,N, ψ, ψM , ... are all as before.

10.1 Normalization of intertwining operators. Let P = Pθ, θ ⊂ ∆, w̃ ∈W .

For simplicity of formulation assume w̃(θ) = θ. Let N
w̃

= U ∩ w̃N−w̃−1, where

N− = N−θ. Let Ln
w̃

be the Lie algebra of LN
w̃

. The L–group LM of M acts on
Ln

w̃
by adjoint action. Let r

w̃
be the representation of LM on Ln

w̃
. Use r̃

w̃
to

denote its contragredient.

Let σ be an irreducible unitary ψ–generic representation of M . Fix ν ∈ a∗
C

and

define A(ν, σ, w), the intertwining operator attached to ν, σ, and w as in §9.5, where

w is a representative for w̃. We recall for completeness that

A(ν, σ, w)f(g) =
∫
N
w̃

f(w−1ng)dn (f ∈ I(ν, σ)).

We set

A(σ,w) = A(0, σ, w)

if the right hand side is well defined.
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Using inductive property 3) of Theorem 9.8, one can define a root number

ε(s, σ, r
w̃
, ψ) and an L–function L(s, σ, r

w̃
) for r

w̃
as in Page 312 of [Sh5]. The

following normalization of intertwining operators was first conjectured by Lang-

lands in [L5]. Let

A(σ,w) = ε(0, σ, r̃
w̃
, ψ)L(1, σ, r̃

w̃
)L(0, σ, r̃

w̃
)−1A(σ,w),

where the right hand side is determined as a limit.

The normalized operator A(σ,w) is supposed to satisfy a list of properties set

forth in Theorem 2.1 of [A3], a larger list than what was originally demanded by

Langlands in [L5]. When F = R on C, they are all verified by Arthur in [A3]. Theo-

rem 7.9 of [Sh5] verifies them when F is p–adic and σ is generic, except for condition

R7 of Theorem 2.1 of [A3]. Condition R7, which was not originally demanded in

[L5], follows immediately from Conjecture 9.9. For the sake of completeness, let us

state Theorem 7.9 of [Sh5] here as:

Theorem 10.1 (Langlands’ Conjecture). The normalized operator A(σ,w) satis-

fies:

a) A(σ,w1w2) = A(w2(σ), w1)A(σ,w2) and

b) A(σ,w)∗ = A(w(σ), w−1), where A(σ,w)∗ is the adjoint of A(σ,w), i.e. A(σ,w)

is unitary.

In general, i.e. when w̃(θ) is not necessarily equal to θ, the representation r
w̃

is

the adjoint action of LM on the Lie algebra of the L–group of N
−
w̃ = (w−1N

w̃
w)−,

the unipotent group opposed to w−1N
w̃
w. Observe that if w̃(θ) = θ, then N

−
w̃ =

N
w̃

.

We refer to Section 9 of [Sh5] for how one expects to extend the normalization

to representations which are not necessarily generic.

10.2. Irreducibility of standard modules for generic representations. Let

a be the real Lie algebra of the split component of M. Take ν ∈ a∗
C
. For each

simple root α in N, realized as a root of T, let Hα ∈ t be the corresponding coroot.

Consider ν as as element of t∗
C
. We will say ν is in positive Weyl chamber of A if

Re〈ν,Hα〉 > 0
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for every simple root α in N.

Let σ be a tempered representation of M and consider I(ν, σ). If ν is in the

positive Weyl chamber, then I(ν, σ) is called a standard module. It has a unique

quotient J(ν, σ), called the Langlands quotient of I(ν, σ) (cf. [L4, BoWa, Si2]).

Every irreducible admissible representation of G is of the form J(ν, σ) for some ν

and σ. The choice of ν and σ are unique up to conjugation.

When F = R or C, it was proved by Vogan [V], that if J(ν, σ) is generic, then

I(ν, σ) = J(ν, σ), i.e. the standard module of a generic representation is irreducible.

In this section we will exploit this to deduce results on reducibility of induced

representations as well as study the non–archimedean case. The following is the

subject matter of a joint work with Casselman [CSh].

Proposition 10.2. Let I(ν0, σ) be the standard module for a ψ–generic represen-

tation. Assume

lim
ν−→ν0

Cψ(w0(ν), w0(σ))A(w0(ν), w0(σ), w−1
0 )

is well defined on I(w0(ν0), w0(σ)). Then I(ν0, σ) is irreducible.

Proof. Choose f ∈ I(w(ν0), w0(σ)) such that

λψ(w0(ν0), w0(σ))(f) 6= 0.

Since

Cψ(w0(ν), w0(σ))A(w0(ν), w0(σ), w−1
0 )

is well defined at ν = ν0, the image of f , and consequently the image of I(w0(ν0)w0(σ)),

under it will be generic. By Rodier’s theorem, it must equal J(ν0, σ). Thus

I(ν0, σ) = J(ν0, σ). Converse is clear.

Corollary 1. Suppose F is p–adic. Assume σ is supercuspidal. Then Vogan’s

theorem is valid, i.e. J(ν, σ) is generic if and only if I(ν, σ) = J(ν, σ).

Proof. This follows immediately from the validity of Conjecture 9.9 for σ supercus-

pidal which implies the holomorphy of Cψ(w0(ν), w0(σ)) for all ν in the positive
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Weyl chamber, as well as the fact that A(w0(ν), w0(σ), w−1
0 ) has no poles as long

as ν is regular.

More can be proved.

Theorem 10.2. Let F be any local field (of characteristic zero). Fix ν in the

positive Weyl chamber and take σ to be tempered. Assume

Cψ(w0(ν), w0(σ))A(w0(ν), w0(σ), w−1
0 )

is well defined on all of I(w0(ν), w0(σ)). Then

a) Suppose J(ν, σ) is ψ–generic. Then I(ν, σ) = J(ν, σ), i.e. I(ν, σ) is irre-

ducible.

b) Assume F is non–archimedean. Suppose J(ν, σ) is not ψ–generic. Let W be

the direct sum of the irreducible subspaces of I(ν, σ), counted with their multiplici-

ties. Let

σν = σ ⊗ q〈ν,HM ( )〉.

Denote by δ = δP the modulus character of P = MN . Assume σνδ
1/2 does not

appear as a subquotient anywhere in the Jacquet module (V/W )N = VN/WN of

V/W , where V = V (ν, σ). Then the ψ–generic subquotient of V (ν, σ) is a subrep-

resentation.

We should only remind the reader of what Jacquet modules are. Let G be

a (split) reductive group over an archimedean local field F . Choose a parabolic

subgroup P = MN of G. Let (π, V ) be a smooth representation of G, i.e. a

representation for which every v ∈ V is fixed by an open compact subgroup of G.

Let

V (N) = {π(n)v − v|n ∈ N, v ∈ V }.

Since M normalizes N , it acts on V (N) as well as on V/V (N) = VN , giving a

representation πN of M on VN . One can then prove [C2]:

1. Let U −→ V −→W be an exact sequence of smooth representations of G. Then

UN −→ VN −→WN is exact.
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2. (Frobenius reciprocity) Let (π, V ) be a smooth representation of G and let σ

be a smooth representation of M on a space U . Then the P–morphism

Λ : (I(σ), V (σ)) −→ (σδ1/2
P , U)

defined by

f 7→ f(e)

induces an isomorphism:

HomG(V, V (σ)) ∼= HomM (VN , U),

where U is given the M–structure σδ1/2
P .

Then by 1) and 2) it is clear that σδ1/2
P appears as a quotient of (V0)N exactly as

many times as the number of subrepresentations of V0 with multiplicities. Beside

those, (V0)N might also have σδ1/2
P as subquotients which are not quotients. The

condition in Theorem 10.3.b then means that there will be no more appearance of

σδ
1/2
P in VN , except possibly in (kerλψ(ν, σ))N .

The following result can also be proved.

Proposition 10.4. Let P = MN be a maximal parabolic subgroup of G, a split

reductive group over a local field F (of characteristic zero). Fix s ∈ C with Re(s) >

0. Let σ be an irreducible generic tempered representation of M . Assume that

whenever J(sα̃, σ) is generic, I(sα̃, σ) = J(sα̃, σ). Then I(sα̃, σ) is irreducible if

and only if
m∏
i=1

L(1− is, σ, ri)−1 6= 0,

if conjecture 9.9 is valid, when F is non–archimedean.

Corollary. Suppose F = R or C. Let

ϕ : WF −→ LM

be the parametrization of σ. For each i, 1 ≤ i ≤ m, let L(s, ri · ϕ) be the corre-

sponding Artin L–function. Then I(sα̃, σ) is irreducible if and only if

m∏
i=1

L(1− is, ri · ϕ)−1 6= 0.
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