Survey paper "Riemann's Zeta Function and Beyond" by S. Gelbart and S.D. Miller, Bulletin of the AMS, 41, (2004), 59-112. |
|
Group |
Representation of
L-group |
degree of
representation |
Integral
representation exists? |
Langlands-Shahidi
method applies? |
Complete L-function
entire? |
Partial L-function
entire (taken
over unramified nonarchimedean cases)? |
Partial L-function
entire
(including archimedean places)? |
Ramified
calculations done
for integral representation/invariant pairing? |
GL(n) |
standard |
n |
Yes:
Godement-Jacquet, and later
Jacquet-Piatetski-Shapiro-Shalika |
Yes |
Yes |
Yes |
Yes |
? |
GL(n) |
symmetric square |
n(n+1)/2 |
Yes: Shimura (n=2,
holomorphic
forms), Gelbart-Jacquet (general n=2), Piatetski-Shapiro-Patterson
(n=3), Bump-Ginzburg (general n); see also Kable |
Yes |
Unknown |
Yes |
Unknown |
Unknown |
GL(n) (n > 3) |
exterior square |
n(n-1)/2 |
Yes:
Jacquet-Shalika and
Bump-Friedberg Distributional pairing: Miller-Schmid |
Yes |
Yes, if n=4 or odd;
unknown
otherwise |
Yes |
Yes, over Q |
For archimedean
spherical
principal series (Stade), and invariant pairings for
noncuspidal
local representations over Q |
GL(n)xGL(m) |
tensor product |
n*m |
Jacquet-Shalika-Piatetski-Shapiro |
Yes |
Yes (Moeglin- Waldspurger) |
Yes |
Yes |
For integral
representations,
thought to be impossible at archimedean place except when m=n-1,n, or
n+1; for invariant pairings, Yes for noncuspidal local representations
over Q |
GL(2) | symmetric Cube | 4 | ||||||
GL(3) | symmetric fourth power | 5 | ||||||
GL(3) | adjoint | 8 | ||||||
SO(7) | 2nd fundamental representation of Sp(6) | 14 | ||||||
GSO(10) | spin | |||||||
GSO(12) | spin | |||||||
SO(n) x GL(k) | ||||||||
GSp(4) | spin | 4 | ||||||
GSp(5) | standard | 5 | ||||||
GSp(6) | spin | |||||||
GSp(6) x GL(2) | spin x standard | |||||||
GSp(8) | spin | |||||||
GSp(10) | spin | |||||||
Sp(2n) x GL(k) | ||||||||
E6 | standard | |||||||
E7 | standard | |||||||
E8 | ||||||||
F4 | 26 | |||||||
G2 |
This material is based upon work supported by the National Science Foundation under Grant No. 0601009.