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Abstract

The first nontrivial zeroes of the Riemann ζ function are ≈ 1
2 ±

14.13472i. We investigate the question of whether or not any other L-
function has a higher lowest zero. To do so we try to quantify the notion
that the L-function of a “small” automorphic representation (i.e. one
with small level and archimedean type) does not have small zeroes, and
vice-versa. We prove that many types of automorphic L-functions have
a lower first zero than ζ’s (see Theorems 1.1 and 1.2). This is done using
Weil’s explicit formula with carefully-chosen test functions. When this
method does not immediately show L-functions of a certain type have
low zeroes, we then attempt to turn the tables and show no L-functions
of that type exist. Thus the argument is a combination of proving low
zeroes exist and that certain cusp forms do not. Consequently we are
able to prove vanishing theorems and improve upon existing bounds on
the Laplace spectrum on L2(SLn(Z)\SLn(R)/SOn(R)). These in turn
can be used to show that SL68(Z)\SL68(R)/SO68(R) has a discrete,
non-constant, non-cuspidal eigenvalue outside the range of the contin-
uous spectrum on L2(SL68(R)/SO68(R)), but that this never happens
for SLn(Z)\SLn(R)/SOn(R) in lower rank. Another application is to
cuspidal cohomology: we show there are no cuspidal harmonic forms
on SLn(Z)\SLn(R)/SOn(R) for n < 27.

1 Introduction

The Riemann ζ function’s first critical zeroes are surprisingly large: about
1
2 ± 14.13472i. Our main interest in this paper is the following question:

Does any other automorphic L-function have a larger first
zero?

∗The author was supported by an NSF Postdoctoral Fellowship during this work.
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This question was raised by Odlyzko ([O]), who proved that the Dedekind
zeta function of any number field has a zero whose imaginary part is less than
14. Odlyzko also proved related conditional results for Artin L-functions.

Every automorphic L-function conjecturally factors into products of stan-
dard L-functions of cusp forms on GLn over the rationals, and we shall be
content to discuss these.1 In fact, by twisting a cuspidal automorphic repre-
sentation of GLn/Q by a power of the determinant, it is possible to shift the
zeroes any amount vertically, so we restrict ourselves to studying cuspidal
automorphic representations π=⊗p≤∞ πp of GLn/Q whose central character
is normalized to be trivial. In most examples coming from number theory
the archimedean type π∞ is real, i.e. the gamma factors multiplying L(s, π)
have real shifts. Our first result answers the question for such cusp forms:

Theorem 1.1. Let π be a cuspidal automorphic representation of GLn over
Q with a real archimedean type and a trivial central character. Then L(s, π)
has a low zero which either (i) is on the critical axis between 1

2 ± 14.13472i
or (ii) violates the generalized Riemann hypothesis (GRH) in an effective
range.

When we speak of a zero violating GRH “in an effective range,” we mean
that should conclusion (i) fail, then one could theoretically find an effective
constant T > 0 such that the box (1

2 , 1) × [−T, T ]i contains a zero. For
brevity we will use the following terminology:

Definition: An L-function has a low zero if it either vanishes on the
critical axis between 1

2±14.13472i, or violates GRH in an effectively-bounded
range (see Section 2.3).

We will use this definition to state unconditional results, but not much is
actually gained philosophically or numerically in this problem by assuming
GRH.

The L-functions in Theorem 1.1 include those of Dirichlet characters,
rational elliptic curves, and conjecturally all rational abelian varieties. Of
course they are also expected to include all Artin L-functions, for example
L-functions of Galois representations. We have been unable to squeeze our
technique to answer Odlyzko’s question in full generality, but can prove
many cases. For example:

1Nevertheless our arguments work under various wider assumptions, as they are mostly
sensitive to the analytic properties of the L-function.
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Theorem 1.2. Let π be a cuspidal automorphic representation of GL2 over
Q with a trivial central character. Then L(s, π) has a low zero (which is on
the critical axis between 1

2 ± 14.13472i or else violates GRH in an effective
range).

This includes modular form and Maass form L-functions.
Other results can be proven about low zeroes. For example, every L-

function which is related to itself by an odd functional equation automati-
cally vanishes at s = 1/2. For a fixed degree n, most cuspidal automorphic
representations of GLn over Q with a trivial central character have low
zeroes. In fact, the possible exceptions all lie in a bounded subset of the
unitary dual and have bounded level. This subset tends to be devoid of cusp
forms, which is why our method is successful. Thus Odlyzko’s question is
related to vanishing theorems about automorphic forms.

Our technique uses Weil’s explicit formula relating the coefficients and
zeroes of automorphic L-functions. It is a variation on the Stark-Odlyzko
positivity technique, as formulated by Serre, Poitou, Mestre, and others –
see [O] for a survey. In particular, one can compute an exact formula for
sum of certain test functions over the critical zeroes. If we use a test function
which is positive only in a certain range, then finding this sum is positive
ensures a zero in that range. On the other hand, if this sum is negative,
then we can often construct another test function which is positive in the
critical strip, yet whose sum over the zeroes is negative. This contradiction
shows that the L-function actually could not have existed to begin with.
Our main difficulty is that it is often very difficult to construct this second
test function given the failure of the first.

The latter contradiction, of positive terms yielding a negative sum, can
be used to prove vanishing theorems about automorphic forms, since they
cannot exist when their L-functions do not. Independent of our interest
in low zeroes, this leads to applications in group cohomology and spectral
theory.

Other applications

One of the consequences of the Ramanujan-Selberg temperedness conjecture
is that the discrete cuspidal spectrum of the laplacian ∆ on
L2(SLn(Z)\SLn(R)/SOn(R)) is contained in the continuous spectrum of
∆ on L2(SLn(R)/SOn(R)). (We always normalize ∆ so that this continu-
ous spectrum is the interval [n

3−n
24 ,∞).) This consequence should be true

more generally for congruence covers of SLn(Z)\SLn(R)/SOn(R), but in
this particular case slightly more was proven in [M]:
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Theorem 1.3. ([M]): There exists a constant c > 0 such that the Laplace
eigenvalue of every cusp form φ on SLn(Z)\SLn(R)/SOn(R) satisfies

λ(φ) > λ1(SLn(R)/SOn(R)) + cn.

Our new result is superior for small n:

Theorem 1.4. Let φ be a cuspidal eigenfunction of the non-euclidean lapla-
cian ∆ on SLn(Z)\SLn(R)/SOn(R). Then φ’s Laplace eigenvalue satisfies

λ(φ) >
n3 − 4n

24
+ 25.92

(
1 +

1
n− 1

)
. (1)

It can be applied to answer a question of Alexander Lubotzky: when
does the eigenvalue of a noncuspidal, square-integrable eigenfunction of the
laplacian on SLn(Z)\SLn(R)/SOn(R) lie outside [n

3−n
24 ,∞)?

Theorem 1.5. If n ≤ 67, any non-constant eigenfunction of ∆ in
L2(SLn(Z)\SLn(R)/SOn(R)) has Laplace eigenvalue greater than n3−n

24 , but
the first Laplace eigenvalue of SL68(Z)\SL68(R)/SO68(R) is in fact approx-
imately

12906.6 <
683 − 68

24
= 13098.5.

Finally, we can apply our technique to cuspidal cohomology and extend
a result in [M], where it was shown that SLn(Z)\SLn(R)/SOn(R) has no
harmonic cuspidal automorphic forms for n < 23:

Theorem 1.6. The constant-coefficients cuspidal cohomology of SLn(Z)

H ·
cusp(SLn(Z);C) = 0

vanishes for 1 < n < 27.

The technique used to prove this theorem is related to the one in [M].
Fermigier [F] had a similar, but weaker, result using positivity with a dif-
ferent L-function. Here we combine both methods to go further.

Acknowledgements: We wish to thank Don Blasius, William Duke,
Benedict Gross, Alexander Lubotzky, Andrew Odlyzko, Ilya Piatetski-Shapiro,
Vladimir Rokhlin, Peter Sarnak, Jean-Pierre Serre, Gunther Steil, Andrew
Wiles, and Gregg Zuckerman for their discussions. Our point of view on
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L-functions was influenced by the discussion in [RS]. Support was provided
by National Science Foundation Graduate and Postdoctoral Fellowships and
a Yale Hellmann fellowship during stays at Princeton University, Yale Uni-
versity, and the University of California at San Diego. All numerical com-
putations were made with Mathematica v.3 on an Intel Pentium II 300 MHz
system running Windows NT 4.0 and Slackware Linux 2.0.30.

2 L-functions and positivity

By conjectures of Langlands the most general automorphic L-function is
a product of standard L-functions of cuspidal automorphic representations
π = ⊗p≤∞πp on GLm over the rational adeles AQ. These “primitive” L-
functions are degree m Euler products

L(s, π) =
∏

p prime

m∏

j=1

(1− αp,jp
−s)−1 , αp,j ∈ C

and have completions

Λ(s, π) =
m∏

j=1

π(−s+ηj)/2Γ
(

s + ηj

2

)
L(s, π) , ηj ∈ C

which are entire unless m = 1 and L(s) = ζ(s). We have used the duplication
property of the gamma function in writing the gamma factors in this way.
The conductor is D, and for πp unramified, the αp,j are Hecke eigenvalue
parameters and the ηj are related to the archimedean parameters of π∞.
With this normalization Λ(s, π) has the functional equation

Λ(s, π) = τπD−sΛ(1− s, π̃) , τπ ∈ C , |τπ| =
√

D , D > 0,

where π̃ is the contragredient representation to π. The Jacquet-Shalika
([JS]) bounds imply that

Re ηj > −1
2
. (2)

2.1 Weil’s formula

The explicit formula of André Weil equates a sum over the zeroes of an
L-function with a sum over its coefficients and gamma factors:

∑

Λ( 1
2
+iγ,π)=0

h(γ) = 2Re





m∑

j=1

l(ηj)−
∞∑

n=1

cn√
n

g(log n)



 + g(0) log D, (3)
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where g is an even, differentiable real function,

ĝ(r) = h(r) =
∫

R
g(x)eirxdx,

ΓR(s) = π−s/2Γ(s/2),

and

l(η) =
1
2π

∫

R
h(r)

Γ′R
ΓR

(
1
2

+ η + ir

)
dr

=
1
2π

∫

R
h(r)

(− log π

2

)
dr +

1
2π

∫

R
h(r)

Γ′

2Γ

(
1
4

+
η

2
+

ir

2

)
dr

= − log π

2
g(0)− 1

2

∫ ∞

0

(
g(x/2)e−(1/4+η/2)x

1− e−x
− g(0)

exx

)
dx.

Here we have made use of the fact that L(s, π) is entire; for ζ(s) and Rankin-
Selberg L-functions there is a polar term that will be introduced when needed
later on. See [RS] for a proof of (3).

If g is supported in the interval [− log 2, log 2] then the formula can be
viewed as giving the value of the sum over the zeroes from the gamma
factors: ∑

h(γ) = 2Re
m∑

j=1

l(ηj) + g(0) log D. (4)

The basis of the positivity technique is the observation that if h(γ) ≥ 0 for
each zero, then the sum on the right-hand side of (4) must also be positive.
This immediately gives a lower bound on the conductor D, which is the
original application of the positivity technique. Fortunately the sum on the
right-hand side of (4) is explicitly computable in terms of the ηj ’s and D;
if it is negative then the L-function L(s, π) cannot exist and hence neither
can the original cusp form π.

Upon assuming GRH, let

· · · ≤ γ−2 ≤ γ−1 ≤ 0 ≤ γ1 ≤ γ2 ≤ · · ·
be the imaginary parts of the zeroes of L(s, π). Let g and h = ĝ be chosen
so that h ≥ 0 on R and let c > 0 be a cutoff parameter. Then the function
hm(r) = h(r)(c2 − r2) is positive exactly when |r| < c and is the Fourier
transform of gm = c2g+g′′. The support of gm is of course also contained in
[− log 2, log 2] provided g is suitably regular. If the sum 2Re

∑m
j=1 lm(ηj) +

gm(0) log D in (4) is positive, then γ1 < c or γ−1 > −c, i.e. L(s, π) has a
small zero. To summarize:
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2.2 Criteria

Our strategy will then be, for given archimedean parameters ηj and con-
ductor D, to find a function g of support contained in [− log 2, log 2] and for
which either

2Re
m∑

j=1

l(ηj) + g(0) log D < 0

(which shows the L-function does not exist) or

2Re
m∑

j=1

lm(ηj) + gm(0) log D > 0

(which shows that it must have a low zero or violate GRH in an effective
range, as discussed below).

2.3 What low zeroes mean without GRH

Even if we do not assume GRH, we may still conclude from

2Re
m∑

j=1

lm(ηj) + gm(0) log D > 0

that the sum ∑
hm(γ) > 0.

Thus, there are zeroes ρ = 1
2 + iγ in the region where hm(γ) > 0. We can

explicitly compute the functions hm for our choices of g and examine where
they are positive and negative within the critical strip. Since the density
of zeroes increases only logarithmically with their height (with an effective
constant), and our functions hm(z) decay polynomially as z → ∞ in the
critical strip, the zero must be contained in an effectively bounded region of
the critical strip.

As an example, Figure 1 is a contour plot of the function h1m defined
at the end of Section 3. The white regions are where Re h1m > 0, the black
where Re h1m < 0.

Figures 2 and 3 contain plots for the other functions we use.
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Figure 1: A contour plot of the function Re h1m(x + iy). We have colored
the positive set white and the negative one black.

3 A library of functions

The main functions we use in this paper are

g1,p(x) =




(
π

(
1− |x|

p

)
cos(πx

p )
)

+ sin(π|x|
p )

π


 / cosh(x/2),

g2,p(x) =


4π

(
1− |x|

p

)
+ 2π

(
1− |x|

p

)
cos(2πx

p ) + 3 sin(2π|x|
p )

6π


 / cosh(x/2),

and

g3,p(x) =

(
54π

�
1− |x|

p

�
cos(πx

p
)+6π

�
1− |x|

p

�
cos( 3πx

p
)+27 sin(

π|x|
p

)+11 sin(
3π|x|

p
)

60π

)

cosh(x/2)
.

We have normalized gj,p(0) = 1 and will often write gj(x) = gj,log(2)(x).
Ignoring the cosh(x/2)’s temporarily, the functions gj,p are rescalings of the
convolutions of (cos(πx

2 ))j with itself. Without the cosh(x/2) term they
would thus have a positive Fourier transform on the real line, and the
cosh(x/2) term spreads the positivity into the critical strip. Were we to
assume GRH we would not need it.

Lemma 3.1. If an even function g(x)’s Fourier transform is positive on
the real line, then the Fourier transform of g(x)/ cosh(x/2) is positive in the
strip −1

2 < Im r < 1
2 .

Proof: The Fourier transform of sech(x) is
∫ ∞

−∞

2
ex + e−x

eirxdx = πsech(πr/2).
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This has positive real part for −1
2 < Im r < 1

2 and the Fourier transform
converts multiplication into convolution, so the smeared ĝ · sech remains
positive in this strip. ¤

We defined modified functions

gm =
c2g(x) + g′′(x)
c2g(0) + g′′(0)

,

which also have gm(0) = 1. (Of course we multiplicatively normalize g(0) =
gm(0) = 1 to compare the explicit formulas from various test functions.)
These are used for showing the presence of low zeroes, and since we do not as-
sume GRH for this, we will actually use g = g1,p(x) cosh(x/2), g2,p(x) cosh(x/2),
or g3,p(x) cosh(x/2). Thus

g1m,p,c(x) =

π2
�
−1+

|x|
p

�
cos(πx

p
)

p2 +
π sin(

π|x|
p

)

p2 − c2
�
−
�
π
�
1− |x|

p

�
cos(πx

p
)
�
−sin(

π|x|
p

)
�

π

c2 − π2

p2

g2m,p,c(x) =
c2
�
4π
�
1− |x|

p

�
+2π

�
1−x

p

�
cos( 2πx

p
)+3 sin(

2π|x|
p

)
�

6π −
8π3(1−x

p ) cos( 2πx
p )

p2 +
4π2 sin(

2π|x|
p )

p2

6π

c2 − 4π2

3p2

and

g3m,p,c(x) =

c2
(
54π

(
1− |x|

p

)
cos(πx

p ) + 6π
(
1− |x|

p

)
cos(3πx

p ) + 27 sin(π|x|
p ) + 11 sin(3π|x|

p )
)

60π
(
c2 − 9π2

5p2

) +

54π3
(
−1 + |x|

p

)
cos(πx

p ) + 54π3
(
−1 + |x|

p

)
cos(3πx

p ) + 81π2 sin(π|x|
p )− 63π2 sin(3π|x|

p )

60πp2
(
c2 − 9π2

5p2

) .

Since we are interested in finding zeroes in the range from 1
2 ±14.13472i, we

will now take c = 14.13472 and write

g1m(x) = g1m,log(2),14.13472(x),

g2m(x) = g2m,log(2),14.13472(x),
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Figure 2: A contour plot of the function Re h2m(x + iy). We have colored
the positive set white and the negative one black.
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Figure 3: A contour plot of the function Re h3m(x + iy). We have colored
the positive set white and the negative set black.

and
g3m(x) = g3m,log(2),14.13472(x).

The Fourier transforms of these functions are

h1m(r) =
−8p3π2

(
c2 − x2

)
cos(px

2 )2

(−c2p2 + π2) (π − px)2(π + px)2
,

h2m(r) =
128pπ4

(
c2 − x2

)
sin(px

2 )2

(3c2p2 − 4π2) (−4π2x + p2x3)2
,

and

h3m(r) =
2304p3π6

(
c2 − x2

)
cos(px

2 )2

(5c2p2 − 9π2) (9π4 − 10p2π2x2 + p4x4)2
.

We show the contour plots of the functions h2m and h3m in Figures 2
and 3, the plot of h1m having been presented above in Figure 1.
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4 The highest lowest zero for π∞ real

We restate

Theorem 4.1 (=1.1). Let π = ⊗p≤∞πp be a cuspidal automorphic repre-
sentation of GLn over Q with a trivial central character and whose archimedean
type π∞ is real. Then L(s, π) has a low zero.

First we will note that for a fixed degree m, L-functions with large ηj ’s or
large conductor D must have low zeroes. This is because Stirling’s formula
implies that

l(η) =
1
2π

∫

R
h(r)

Γ′R
ΓR

(
1
2

+ η + ir

)
dr

has a positive real part for η large. Thus, the lowest zero is only an issue for
“small” archimedean parameters ηj and small conductor – partly because
l(η) is bounded from below in Re η > −1

2 (which we may assume by (2)).
We will present two different proofs of Theorem 1.1.

Picture Proof of Theorem 1.1: Figures 4, 5, and 6 indicate that
l1(η) < l3m(η) for η ≥ −1

2 , so the theorem follows from Criteria 2.2.
¤

Less-Pictorial Proof of Theorem 1.1: This proof also relies on nu-
merical computation, but demonstrates how a proof can be made even if
the function l is not strictly less than the modified lm. It uses l2m instead
of l3m.

We noted before in Criteria 2.2 that if

2
m∑

j=1

l2m(ηj) + log D ≥ 0

then there is a indeed a low zero, while if

2
m∑

j=1

l1(ηj) + log D ≤ 0,

the L-function actually cannot exist to begin with. Thus we are reduced to
dismissing the situation where

m∑

j=1

l2m(ηj) < 0
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Figure 4: The functions l(η) and l3m(η).
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Figure 5: The difference between l(η) and l3m(η)
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Figure 6: The difference between l(η) and l3m(η), magnified.

and
m∑

j=1

[l1(ηj)− l2m(ηj)] > 0

hold simultaneously. Partition the ηj ∈ (−1
2 ,∞) into 3 sets:

N = {ηj | l2m(ηj) ≤ 0, l1(ηj)− l2m(ηj) ≤ 0} = (−1
2

, 5.4471 · · · ],

S = {ηj | l2m(ηj) > 0, l1(ηj)− l2m(ηj) ≤ 0} = (5.4472 · · · , 8.6553 · · · ],

and

P = {ηj | l2m(ηj) > 0, l1(ηj)− l2m(ηj) > 0} = (8.6553 · · · , ∞).

Of course if
m∑

j=1

l2m(ηj) < 0,

then also ∑

ηj∈N∪P

l2m(ηj) < 0,
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Figure 7: The difference between l(η) and l2m(η).

and if
m∑

j=1

[l1(ηj)− l2m(ηj)] > 0,

then ∑

ηj∈N∪P

[l1(ηj)− l2m(ηj)] > 0

as well. Thus we need only consider the case where S is empty.
From computer investigations (see Figure 8) on the functions l1(η) and

l2m(η) we can determine the following very precise information:

ηj ∈ N =⇒ −.628291 ≤ l1(ηj) ≤ 0 , l1(ηj)− l2m(ηj) ≤ −.001201

and

ηj ∈ P =⇒ l1(ηj) ≥ .187484 , 0 ≤ l1(ηj)− l2m(ηj) ≤ .0005801.

Thus

0 >
m∑

j=1

l2m(ηj) =
∑

ηj∈N

l2m(ηj) +
∑

ηj∈P

l2m(ηj)
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Figure 8: The graphs of l(η) and l2m(η).

≥ |N |(−.628291) + |P |(.187484),

which implies
|N |
|P | <

.187484

.628291
= .298403.

On the other hand

0 <

m∑

j=1

[l1(ηj)− l2m(ηj)] =
∑

ηj∈N

[l1(ηj)− l2m(ηj)] +
∑

ηj∈P

[l1(ηj)− l2m(ηj)]

≤ |N |(−.001201) + |P |(.005801)

forces |N |
|P | >

.0005801
.001201

= .483104,

a contradiction. ¤

5 Low zeroes for modular form L-functions

In this section we prove that L-functions of cusp forms on GL2 over Q have
low zeroes:
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Theorem 5.1 (=1.2). Let π be a cuspidal automorphic representation of
GL2 over Q with a trivial central character. Then L(s, π) has a low zero.

Before giving the proof we shall give some background on the hardest
case – Maass form L-functions. In particular we will precisely describe their
completions, analytic continuations, and functional equations in some im-
portant cases.

5.1 Background on Maass forms on Γ0(p)\H
It is known that if D = p is a prime and π is a cuspidal automorphic
representation not corresponding to a holomorphic modular form, then π
instead corresponds to a Maass form φ on Γ0(p)\H. The Laplace operator
∆, the Hecke operators Tn, n ≥ 0, as well as the involutions

(T−1f)(x + iy) = f(−x + iy)

(Wpf)(x + iy) = f

( −1
p(x + iy)

)

all commute. Thus, after diagonalizing, we may take a basis of Maass cusp
forms on Γ0(p)\H which are joint eigenfunctions of ∆, Tn, T−1, and Wp.
Writing

∆φ = λφ , λ =
1
4
− ν2,

φ has the Fourier expansion

φ(x + iy) =
∑

n∈Z
cn
√

yKν(2π|n|y)e2πinx,

where
Kν = K−ν =

1
2

∫ ∞

0
e−y(t+t−1)/2tν

dt

t

is the K-Bessel function of order ν. The cuspidality condition forces c0 = 0;
the involution T−1 interchanges cn and c−n.

There are four symmetry classes of Maass forms under the action of the
involutions T−1 and Wp. The standard argument of Hecke and Maass to
prove that the L-functions of cusp forms are entire also describes the func-
tional equations of L-functions of Maass forms having various symmetries.

Proposition 5.2. Suppose φ is a Maass form on Γ0(p)\H with

T−1φ = (−1)τφ
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and
Wpφ = (−1)ωφ , τ, ω = 0 or 1.

Multiplicatively normalize the coefficients of φ so that a1 = 1 and

φ(x + iy) =
{ ∑∞

n=1 an
√

yKν(2πny) cos(2πnx), τ = 0∑∞
n=1 an

√
yKν(2πny) sin(2πnx), τ = 1.

Then

Λ(s, φ) = ΓR(s + τ + ν)ΓR(s + τ − ν)
∞∑

n=1

an

ns

satisfies the functional equation

Λ(s, φ) = (−1)τ+ωp1/2−sΛ(1− s, φ). (5)

Proof: First consider the case τ = 0. Then
∫ ∞

0
φ(iy)ys−1/2 dy

y
=

∞∑

n=1

an

∫ ∞

0
Kν(2πny)ys dy

y

=
∞∑

n=1

an(2πn)−s

[∫ ∞

0
Kν(y)ys dy

y

]

=
∞∑

n=1

an(2πn)−s

[
2s−2Γ(

s + ν

2
)Γ(

s− ν

2
)
]

=
1
4
Λ(s, φ).

The transformation property

φ(iy) = (−1)ωφ(
i

py
)

gives

Λ(s, φ) = 4
∫ ∞

0
φ(iy)ys−1/2 dy

y
= 4(−1)ω

∫ ∞

0
φ(

i

py
)ys−1/2 dy

y

= 4(−1)ω

∫ ∞

0
φ(

iy

p
)y1/2−s dy

y

= 4p1/2−s(−1)ω

∫ ∞

0
φ(iy)y1/2−s dy

y
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= (−1)ωp1/2−sΛ(1− s, φ).

If instead τ = 1 then actually φ(iy) = 0 and we instead consider the
derivative

φ′(x + iy) :=
d

dx
φ(x + iy)

=
∞∑

n=1

(2πn)an
√

yKν(2πny) cos(2πnx).

The action under Wp now reads

φ′(iy) = (−1)ωφ′(
i

py2
)(
−1
py2

).

We also have that
∫ ∞

0
φ′(iy)ys+1/2 dy

y
=

∞∑

n=1

(2πn)an

∫ ∞

0
Kν(2πny)ys+1 dy

y

=
∞∑

n=1

an(2πn)−s

[
2s−1Γ(

s + 1 + ν

2
)Γ(

s + 1− ν

2
)
]

,

and the functional equation for Λ(s, φ) follows as before. ¤

5.2 Low zeroes for Maass form L-functions

We will first prove Theorem 5.1 for Maass forms through a series of propo-
sitions.

Proposition 5.3. Every Maass form L-function whose conductor satisfies

D ≥ 3 , if T−1φ = φ

or
D ≥ 2 , if T−1φ = −φ

has a low zero.

Proof: In these two symmetry classes the gamma factors of Λ(s, φ) are
either

ΓR(s + ν)ΓR(s− ν)

or
ΓR(s + 1 + ν)ΓR(s + 1− ν),
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1 2 3 4 5
Η

-0.5

-0.4

-0.3

-0.2

-0.1

The functions l3 mHΗL-l1HΗL and l1HΗL
ReHl1HiΗLL
ReHl3 mHiΗL-l1HiΗLL

Figure 9: A plot showing that Re l1(ir) + log 3
4 < 0 and

Re (l3m(ir)− l1(ir)) > 0 for −5.1 < r < 5.1.

depending on whether φ is even or odd under T−1. In each case we may
assume the parameter ν is not real and hence purely imaginary, because
Theorem 1.1 already covers the case of real archimedean type.

In the first case we have that

Re (l3m(ir)− l1(ir)) > 0 if − 5.1 < r < 5.1,

a range in which Re l1(ir) < − log 3
4 ≈ −0.274653 (see Figure 9).

In the second case

Re (l3m(1 + ir)− l1(1 + ir)) > 0 if − 5.5 < r < 5.5,

where Re l1(1 + ir) and Re l3m(1 + ir) are both less than − log 2
4 (see

Figure 10). Criteria 2.2 thus shows there are low zeroes in either case. ¤

This next proposition handles the case of Maass forms at full level (i.e.
unramified for all primes p < ∞):

Proposition 5.4. If φ is a Maass form on SL2(Z)\H then L(s, φ) has a
low zero.
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Figure 10: A plot showing that Re l1(1 + ir) + log 2
4 < 0 and

Re (l3m(1 + ir)− l1(1 + ir)) > 0 for −5.5 < r < 5.5.

Proof: We again break the proof up into two cases, according to whether
φ is even or odd under T−1. By Theorem 1.1 we need only consider the case
Re ν = 0.

If φ is even then the gamma factors of L(s, φ) are

ΓR(s + ν)ΓR(s− ν).

Figure 11 shows Re l3(ν) is negative when Re l1m(ν) is, which by Criteria
2.2 proves the proposition in this case.

If instead φ is odd the gamma factors are instead

ΓR(s + 1 + ν)ΓR(s + 1− ν),

and similarly Re l3(1+ ν) is negative when Re l1m(1+ ν) is – see Figure 12.
The proposition follows by invoking Criteria 2.2. ¤

To handle the remaining case, of even Maass forms on Γ0(2)\H, we will
use a result about the smallest even eigenvalue of the laplacian there. Per-
haps Proposition 5.6 below can be proven without such explicit information.

Proposition 5.5. If φ is a Maass form on Γ0(2)\H which is even under
both T−1 and W2, then its Laplace eigenvalue exceeds 1

4 + 6.142.
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Figure 11: A plot showing that Re l3(ν) is negative when Re l1m(ν) is.
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0.1

The functions l3HΗL and l1 mHΗL
ReHl1 mH1+iΗLLReHl3H1+iΗLL

Figure 12: A plot showing that Re l3(1 + ν) is negative when Re l1m(1 + ν)
is.
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Hejhal [H] has numerically computed that the first such eigenvalue is
≈ 1

4+8.9222. We present the following argument to demonstrate a technique.
Proof: First, Figure 13 shows that

Re l1(ir) +
log 2

4
< 0

for −6.07 ≤ r ≤ 6.07, so we need only consider the range 6.07 ≤ r ≤ 6.14.
Using the symmetries, set

f(t) = φ

(
i√
2
et

)
=

∞∑

n=1

an√
n

Wir

(
n√
2
et

)
= f(−t),

Wir(y) =
√

yKir(2πy).

Thus f is an even function in t, and so

f ′(0) =
∞∑

n=1

an√
n

W ′
ir

(
n√
2

)
n√
2

= 0 (6)

and

f ′′′(0) =
∞∑

n=1

an√
n

[
W ′′′

ir

(
n√
2

)
n3

2
√

2
+ W ′′

ir

(
n√
2

)
3n2

2
+ W ′

ir

(
n√
2

)
n√
2

]

=:
∞∑

n=1

an√
n

Vir(n) = 0. (7)

The terms in the Fourier expansion decay rapidly with n, and so we will use
the first three terms as an approximation. Recall that we are focusing on
the range 6.07 ≤ r ≤ 6.14. We may assume that φ is a Hecke eigenform with
a1 = 1, and [BDHI] have proven that their coefficients satisfy the bound

|an| ≤ τ(n)n5/28,

where τ(n) is the number of divisors of n. Using the crude bound τ(n) ≤
2
√

n we can bound the tails
∣∣∣∣∣
∞∑

n=4

an√
n

W ′
ir

(
n√
2

)
n√
2

∣∣∣∣∣ ≤ 1.14 · 10−7 (8)

and ∣∣∣∣∣
∞∑

n=4

an√
n

Vir(n)

∣∣∣∣∣ ≤ 2.7 · 10−5. (9)
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Thus, (6) and (8) show
∣∣∣∣W ′

ir

(
1√
2

)
1√
2

+
a2√
2
W ′

ir

(
2√
2

)
2√
2

+
a3√
2
W ′

ir

(
3√
2

)
3√
2

∣∣∣∣ ≤ 1.14 · 10−7

while (7) and (9) show
∣∣∣∣Vir(

1√
2
) +

a2√
2
Vir(

2√
2
) +

a3√
2
Vir(

3√
2
)
∣∣∣∣ ≤ 2.7 · 10−5.

Now, |W ′
ir(

3√
2
)| ≤ 2.5 · 10−6 in the range 6.07 ≤ r ≤ 6.14. Yet Wir( 1√

2
)

and Wir( 2√
2
) 2√

2
are much larger, never smaller than 5.7 ·10−5 in magnitude.

The ratio of
W ′

ir(
1√
2
) 1√

2

W ′
ir(

2√
2
) 2√

2

is smallest at r = 6.07, where it is ≈ 1.475 > 1. Thus, we must have that
a2√

2
> 1 for (6) to be valid.
At the same time, such a value of a2√

2
is too large to achieve equality in

(7). This is because it makes the second term much larger than the first and
third terms could possibly be with the constraint that a3 ≤ 2 · 35/28:

|Vir(
1√
2
)|+ 2 · 35/28

√
3

|Vir(
3√
2
)| < |Vir(

2√
2
)| , 6.07 ≤ r ≤ 6.14.

So (6) and (7) cannot hold simultaneously. This contradiction shows
every Maass form on Γ0(2)\H which is even under both T−1 and W2 has
Laplace eigenvalue greater than 1

4 + 6.142. ¤

Proposition 5.6. Maass form L-functions with conductor D = 2 (which
correspond to Maass forms on Γ0(2)\H) have low zeroes.

Proof: By Proposition 5.3 we need only consider the even Maass forms,
where the gamma factors are

ΓR(s + ν)ΓR(s− ν).

In fact, by Proposition 5.2 we can assume that φ is even under both W2 and
T−1; otherwise (5) dictates

Λ(
1
2
, φ) = −Λ(

1
2
, φ) = 0.

The function Re l1m(ir) > − log 2
4 for r > 6.135 (Figure 13), and Proposi-
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Figure 13: A plot showing that Re l1m(ir) > − log 2
4 for r > 6.135 , while

Re l1(ir) < − log 2
4 for r < 6.07

tion 5.5 shows all even eigenvalues are in that range. ¤

Proof of Theorem 5.1: Every cuspidal automorphic representation
on GL2 over Q comes from either a Maass form or a holomorphic modular
form. Both holomorphic modular forms and non-tempered Maass forms (i.e.
λ < 1

4) have real archimedean type and are thus covered under Theorem 1.1.
The rest of the Maass forms (the tempered ones) are covered by Propositions
5.3, 5.4, and 5.6. ¤

6 Cuspidal eigenvalue bounds

Now we move our focus completely towards automorphic representations
rather than on their L-functions. In this section and in the next we will ex-
amine the discrete spectrum of the laplacian ∆ on L2(SLn(Z)\SLn(R)/SOn(R)).2

We normalize our laplacian so that its continuous spectrum on L2(SLn(R)/SOn(R))
spans the interval from

λ1(SLn(R)/SOn(R)) =
n3 − n

24

to ∞.
Because the ring of invariant differential operatorsR on SLn(R)/SOn(R)

is commutative, we may take a basis of Laplace eigenfunctions which are
2Of course our methods carry over to some congruence covers but we will restrict our

attention to full-level here.
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also common eigenfunctions of the operators in R. Thus, to each discrete
eigenfunction φ ∈ L2(SLn(Z)\SLn(R)/SOn(R)) we can attach Langlands
parameters µ1, . . . , µn. These describe φ’s eigenvalues under the different
operators in R; in particular, the Laplace eigenvalue satisfies

∆φ = λφ , λ =
n3 − n

24
− µ2

1 + · · ·+ µ2
n

2
.

By the Jacquet-Shalika “trivial” bound [JS]

|Re µj | < 1
2

, j = 1, . . . , n.

Thus,

λ >
1
2

n∑

j=1

(Im µj)2 +
n3 − 4n

24
. (10)

We will use (10) to bound λ from below.

Positivity Functions

Recall the function

g1,p =
(

(1− |x|
p

) cos
(

πx

p

)
+

1
π

sin
(

π|x|
p

))
/ cosh(x/2) , 0 < p ≤ log 2.

Define
s(r) = max Re l1, 1

2
(ir + σ),

where the maximum is taken over σ ∈ [−1
2 , 3

2 ].

6.1 Criteria

If
∑n

j=1 s(rj) < 0 then there is no cuspidal eigenfunction in L2(SLn(Z)\SLn(R)/SOn(R))
whose Langlands parameters µ1, . . . , µn have Im µj = rj .

If φ is a cusp form, then the archimedean Ramanujan-Selberg conjec-
tures assert that π∞ is tempered, i.e. Re µj = 0. A consequence is that
λcusp ≥ n3−n

24 . This was proven in [M] unconditionally using a similar pos-
itivity argument. Here we can derive some stronger results and different
applications.
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Figure 14: The graph of s(r).

Proposition 6.1. (A trivial bound) If φ is a cusp form in L2(SLn(Z)\SLn(R)/SOn(R)),
then with the above notation

n∑

j=1

r2
j > 51.84

(
1 +

1
n− 1

)
.

Proof: The plot shows s(r) < 0 for |r| < 7.2. Thus
∑n

j=1 s(rj) ≥ 0 only
if at least one |rj | ≥ 7.2. Since the rj are constrained to have r1+· · ·+rn = 0,
this means

n∑

j=1

r2
j ≥ 7.22 + (n− 1)

(
7.2

n− 1

)2

.

¤
Theorem 1.4 follows immediately from Proposition 6.1 and (10).

6.2 Extreme values

Given d and the constraints
∑

r2
j = d,

∑
rj = 0, if the largest value obtained

by
∑

s(rj) is negative, then Criteria 6.1 implies λ > d
2 + n3−4n

24 .
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Figure 15: The graph of s′(r).

Principle 6.2. 3 If (r1, . . . , rn) is an extremal point of
n∑

j=1

s(rj)

subject to the constraints
n∑

j=1

rj = 0 ,
n∑

j=1

r2
j = d,

then the rj assume at most three distinct values.

Proof: By Lagrange multipliers, there are real constants c1, c2 ∈ R such
that

(s′(r1), . . . , s′(rn)) = c1(r1, . . . , rn) + c2(1, . . . , 1),

i.e. the points (rj , s
′(rj)) all lie on the intersection of some line and the

graph of y = s′(x).
But no line crosses this graph in more than three places. Even though

Figure 15 only shows the range |x| ≤ 100 it is legal to use this principle in
this paper. For another crossing would give a value of rj so large that it
would not enter into our subsequent bounds. ¤

3Some may not consider the justification to be a proof, but as we indicate, it can be
verified in the applications we use it for.
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Theorem 6.3. We have the following bounds on the Laplace eigenvalue of
a cuspidal eigenfunction of ∆ in L2(SLn(Z)\SLn(R)/SOn(R)):

n 3 4 5 6 7 8
λ ≥ 87.625 108. 140.875 167. 201.125 232.

Proof: By the last proposition, we need only consider the case where
there are Ar1’s, Br2’s, and Cr3’s, with r1, r2, r3 ∈ R,

Ar1 + Br2 + Cr3 = 0 , Ar2
1 + Br2

2 + Cr2
3 = d,

and then try to find a large value of d such that

As(r1) + Bs(r2) + Cs(r3)

is always negative. Since A,B, and C are all positive integers which sum to
n, this is a finite calculation. We will take A,B, C > 0 by allowing some of
the values of r1, r2, and r3 to coincide. Then in terms of the parameter r3,
either

r1 = −
ACr3 +

√
AB

(−C2r2
3 + A(D − C) + B(Dr2

3 − Cr2
3)

)

A (A + B)

and

r2 =
− (BCr3) +

√
AB

(−C2r2
3 + A(D − Cr2

3) + B(D − Cr2
3)

)

B (A + B)

or instead

r1 =
−ACr3 +

√
AB

(−C2r2
3 + A(D − C) + B(Dr2

3 − Cr2
3)

)

A (A + B)

and

r2 = −
(BCr3) +

√
AB

(−C2r2
3 + A(D − Cr2

3) + B(D − Cr2
3)

)

B (A + B)
.

Actually, the second set of solutions and the first are interchanged upon
r3 ↔ −r3, so they take the same values. For a given n, we need only
enumerate the integer triples of A,B, C with A ≥ B ≥ C > 0 and plot

As


−

ACr3 +
√

AB
(−C2r2

3 + A(D − C) + B(Dr2
3 − Cr2

3)
)

A (A + B)


+
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Bs


− (BCr3) +

√
AB

(−C2r2
3 + A(D − Cr2

3) + B(D − Cr2
3)

)

B (A + B)


 + Cs(r3)

over the range

−
√

A + B
√

D√
C
√

A + B + C
≤ r3 ≤

√
A + B

√
D√

C
√

A + B + C
.

One finds the following values of d work:
n 3 4 5 6 7 8
d 174 212 273 318 376 424

¤
Remark 6.4. Theorem 1.3 shows there exists a positive constant c > 0 such
that

λcusp − n3 − n

24
> cn , n = 1, 2, . . . .

The argument above gives a much better constant.

6.3 Some open problems about λcusp
1 (SLn(Z)\SLn(R)/SOn(R))

Conjecture 6.5. Fix k = 1, 2, . . . and denote the k-th cuspidal eigenvalue
of ∆ on L2(SLn(Z)\SLn(R)/SOn(R)) as λcusp

k (SLn(Z)\SLn(R)/SOn(R)).
Then the sequence

{
λcusp

k (SLn(Z)\SLn(R)/SOn(R))− n3−n
24

n
| n = 1, 2, . . .

}
(11)

has a limiting distribution.

Questions 6.6. Is the sequence in (11) also bounded from above as well as
from below?

7 Bounds on non-cuspidal eigenvalues

Lubotzky asked if the bound

λ ≥ n3 − n

24

could also hold for the entire non-zero discrete spectrum of ∆ on L2(SLn(Z)\SLn(R)/SOn(R)),
i.e. not just for cusp forms alone. Although from the point of view of au-
tomorphic forms the cusp forms are most essential, the entire discrete spec-
trum enters into considerations in differential geometry. In fact, there are
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non-constant, non-cuspidal, square-integrable residues of Eisenstein series
on L2(SLn(Z)\SLn(R)/SOn(R)) which are discrete Laplace eigenfunctions,
and they are never tempered (that is, they violate Re µj = 0). The first
example of one on SLn(Z)\SLn(R)/SOn(R) violating λ ≥ n3−n

24 occurs for
n = 68:

Theorem 7.1. There exists a discrete Laplace eigenfunction

φ ∈ L2(SL68(Z)\SL68(R)/SO68(R))

such that

∆φ = λφφ , λφ ≈ 12916.6 <
683 − 68

24
= 13098.5.

Yet for n ≤ 67 the bound

λ ≥ n3 − n

24
is valid for every non-zero discrete eigenvalue of ∆ on L2(SLn(Z)\SLn(R)/SOn(R)).

Of course the failure of λ ≥ n3−n
24 at n = 68 is the typical case for large

n.
The key idea here is the classification of the discrete spectrum in terms

of cusp forms. It was first conjectured by Jacquet [J] and later proven by
Mœglin-Waldspurger [MW]. Let us now describe how discrete eigenfunc-
tions can be constructed. Factor n = ra and let φ be a cusp form on
SLa(Z)\SLa(R)/SOa(R). The group SLn(R) has a rank r − 1 parabolic
subgroup P of type (a, a, . . . , a) whose Levi component is

L = GLa(R)r ∩ SLn(R).

The cusp form φ extends as a product to the r copies of SLa(R) in L in the
obvious way. Given h = (h1, . . . , hr) ∈ Cr such that h1+ · · ·+hr = 0, we can
form a character of the split Levi component A of P , and the Eisenstein series
E(P, g, φ, h). If φ has Langlands parameters µ1, . . . , µa, then E(P, g, φ, h)
has Langlands parameters

(

a︷ ︸︸ ︷
µ1 + h1, µ2 + h1, . . . , µa + h1, µ1 + h2, . . . . . . . . . ,

a︷ ︸︸ ︷
µ1 + hr, . . . , µa + hr︸ ︷︷ ︸

ra=n

).

Furthermore, E(P, g, φ, h) has a pole of order r−1 at h = ( r−1
2 , r−3

2 , . . . ,− r−1
2 )

and its r − 1st iterated residue there is a discrete, L2 eigenfunction of ∆.
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Moreover, all of them arise this way. For example, if r = 1 these are just
cusp forms, and if a = 1, constant functions.

We compute that the residue’s Laplace eigenvalue is

2λ− n3 − n

12
= −

a∑

j=1

r∑

k=1

(
µj +

r − 1
2

− k

)2

= −r
a∑

j=1

µ2
j − a

r3 − r

12
.

Incidentally, Maass forms with Laplace eigenvalue 1
4 are known to exist

on congruence quotients of SL2(R)/SO2(R). Using this procedure one may
already construct a discrete residue on a congruence quotient of SL4(R)/SO4(R)
which violates the λ ≥ 43−4

24 bound.

Proof of Theorem 7.1: Firstly, Hejhal (see [H]) has computed that
λcusp

1 (SL2(Z)\SL2(R)/SO2(R)) = 91.1413 · · · , corresponding to µ1 = −µ2 ≈
9.534i. Thus the Laplace eigenvalue of a residue formed from Hejhal’s Maass
form has

2λ− n3 − n

12
≈ r(181.8)− 2

r3 − r

12
,

and this difference is positive for

r <
√

6 · 181.8 + 1 ≈ 33.04.

For r = 34 we have

λ ≈ 12916.6 <
683 − 68

24
= 13098.5.

If in fact there was an example of a residue for n = ra < 68, with

−r
a∑

j=1

µ2
j − a

r3 − r

12
< 0,

we would necessarily have

r >

√√√√−12
a

a∑

j=1

µ2
j + 1. (12)

We already know that r > 1 since cusp forms obey the λ ≥ n3−n
24 bound.

Thus we can restrict to the cases r ≥ 2, a = 1, . . . , 34. Using our pre-existing
bounds for

∑
µ2

j we conclude ra ≥ 68 – see Table 1 for details.
¤
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a r ≤ [68
a ] Lower bound for −∑a

j=1 µ2
j Upper bound for −∑a

j=1 µ2
j

3 22 171.25 120.75
4 17 211 96.00
5 13 271.75 70.
6 11 316.5 60.
7 9 374.25 46.66
8 8 422 42.00
9 7 56.07 36.

10 6 55.10 29.16
11 6 54.27 32.08
12 5 53.55 24.
13 5 52.91 26.
14 4 52.32 17.5
15 4 51.79 18.75
16 4 51.29 20.
17 4 50.83 21.25
18 3 50.38 12.
19 3 49.96 12.66
20 3 49.56 13.33
21 3 49.18 14.
22 3 48.80 14.66
23 2 48.44 5.75
24 2 48.09 6.
25 2 47.75 6.25
26 2 47.41 6.5
27 2 47.08 6.75
28 2 46.76 7.
29 2 46.44 7.25
30 2 46.12 7.5
31 2 45.81 7.75
32 2 45.51 8.
33 2 45.20 8.25
34 2 44.91 8.5

Table 1: This table completes the proof of Theorem 7.1. Suppose a residue
of a cusp form on GLa occurred on some GLn, n = ra < 68 with Laplace
eigenvalue ≤ n3−n

24 . The second column gives the upper bound r ≤ [68
a ]. The

third column gives a lower bound for −∑a
j=1 µ2

j (from Proposition 6.1), but
the fourth gives an upper bound on −∑a

j=1 µ2
j that would be satisfied by

such a residue with low eigenvalue (as derived in (12) in the proof of Theo-
rem 7.1). The inconsistency of these two inequalities is a contradiction which
shows that the discrete Laplace spectrum on SLn(Z)\SLn(R)/SOn(R) is
contained in {0} ∪ [n3−n

24 ,∞) for n < 68.
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8 Cuspidal cohomology

The positivity inequality can be applied to products of L-functions which
have poles, for example Rankin-Selberg L-functions L(s, π ⊗ π̃) of cuspi-
dal automorphic forms π on GLn. If {µjk}m

j=1,k=1 are the archimedean ΓR
parameters, the inequality reads

∫

R
g(x)

(
ex/2 + e−x/2

)
dx + 2Re

m∑

j=1

m∑

k=1

l(µjk) + g(0) log D ≥ 0. (13)

The new term in (13) as compared to (4) comes from the poles of L(s, π⊗π̃).
Also, here we have simply dropped the coefficients entirely because L′

L (s, φ)
has a Dirichlet series with non-positive coefficients (see [RS] for a verification
of this) and so there is no restriction on the support of g.

If π = ⊗p≤∞πp comes from a constant-coefficients cohomological cusp
form on GLn(AQ) then π∞ is of either the form

π∞ = IndGLn
P(2,2,...,2)

(D2, D4, . . . , Dn), n even,

or

π∞ = IndGLn
P(1,2,2,...,2)

(sgn(·)ε, D3, D5, . . . , Dn), n odd.

(sgn is the sign character, ε = 0 or 1, and Dk denotes the k-th discrete
series on GL2, corresponding to weight k holomorphic forms.) Thus, if n is
written as 2m + t, t = 0 or 1, the archimedean µjk can be computed via the
recipe summarized in [RS] and are the following multisets:

{µj,k} = {t + j + k, t− 1 + j + k, |k − j|, 1 + |k − j| | 1 ≤ j, k ≤ m}
∪ {0, j, j, j + 1, j + 1 | 1 ≤ j ≤ m}︸ ︷︷ ︸

omit if t = 0

.

(14)

Theorem 8.1.
H ·

cusp(SLn(Z);R) = 0, 1 < n < 27.

Proof: Let

gp(x) =
(

(1− |x|
p

) cos(
πx

p
) +

1
π

sin(
π|x|
p

)
)

/ cosh(x/2).

Then h1,p(r) = ĝ1,p(r) is positive in the critical strip |Im r| < 1
2 . For our

cohomological forms D = 1 at full level and with the µjk’s as above we arrive
at a contradiction to the positivity inequality (see Table 2). ¤
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n t LHS(13) n t LHS(13) n t LHS(13) n t LHS(13)
2 3. -2.821 15 6. -111.4 9 6. -71.43 22 6. -77.30
3 6. -8.113 16 6. -112.1 10 6. -80.27 23 6. -64.06
4 6. -17.02 17 6. -112.4 11 6. -89.68 24 6. -46.70
5 6. -28.30 18 6. -109.2 12 6. -96.45 25 6. -28.18
6 6. -38.51 19 6. -105.4 13 6. -103.4 26 6. -5.388
7 6. -50.30 20 6. -97.87 14 6. -107.5

Table 2: The (numerical) proof of the cohomology theorem. The left-hand
side of (13),

∫
R g(x)

(
ex/2 + e−x/2

)
dx + 2Re

∑m
j=1

∑m
k=1 l(µjk) + g(0) log D

must be positive if the cusp form exists, and this table shows it is negative
for n < 27.

Remarks

We proved this for n < 23 in [M] with the Rankin-Selberg L-functions but
without Weil’s formula (instead using the Mittag-Leffler expansion). Fer-
migier [F] proved a weaker result using Weil’s formula but with the standard
L-function. The above theorem surpasses both.

Nothing is known about these cuspidal Betti numbers for n ≥ 27, let
alone if they ever non-zero.
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