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Torus

Let V be a real vector space.

A lattice L is the additive subgroup of V generated by a basis of V .

The associated torus is the quotient group T := V /L.
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Hyperplanes and hypertori
Fix an inner product 〈 , 〉 on V .

For each nonzero vector α ∈ V and k ∈ R, let

Hα :={x ∈ V | 〈α, x〉 = 0} (linear hyperplane);

Hα,k :={x ∈ V | 〈α, x〉 = k} (affine hyperplane);

Hα,k := the image of Hα,k in the torus T (hypertorus).
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Integrality

A vector α ∈ V is L-integral if 〈α, λ〉 ∈ Z for all λ ∈ L.

If α is L-integral, then {Hα,k | k ∈ Z} is a finite set.
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Arrangements
Let Φ be a finite set of nonzero L-integral vectors in V .
To Φ and L we associate three arrangements:

A(Φ) := {Hα | α ∈ Φ} (linear);

Ã(Φ) := {Hα,k | α ∈ Φ, k ∈ Z} (affine);

A(Φ, L) := {Hα,k | α ∈ Φ, k ∈ Z} (toric).
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Root systems
Let Φ be a crystallographic root system in V .

The coroot lattice ZΦ∨ is

ZΦ∨ := Z {2β/〈β, β〉 | β ∈ Φ}.

The coweight lattice is

ẐΦ := {α ∈ V | 〈α, λ〉 ∈ Z for all λ ∈ Φ}.

Then Φ is integral with respect to either lattice.
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One graph, two toric arrangements
Let An−1 denote the root system of type A,

An−1 := {ei − ej | 1 ≤ i 6= j ≤ n}.

Let G be a simple connected graph with vertex set [n].
View G as this finite subset of An−1:

{ei − ej | {i , j} is an edge of G}.

There are two kinds of toric graphic arrangements:

A(G , ẐAn−1), the coweight graphic arrangement.

A(G ,ZA∨n−1), the coroot graphic arrangement.
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The coweight and coroot arrangement for the graph K3

Coweight arrangement Coroot arrangement

Note that:

V ={(x1, x2, x3) ∈ R3 | x1 + x2 + x3 = 0};

L =

{〈
(1,−1, 0), (0, 1,−1), ( 1

3
, 1

3
,− 2

3
)
〉
Z (coweight lattice);

〈(1,−1, 0), (0, 1,−1)〉Z (coroot lattice).



Characteristic polynomial

A flat of a toric arrangement A is a connected component of an
intersection of hypertori in A.

The intersection poset Π(A) is the (po)set of flats of A, ordered
by inclusion.

The characteristic polynomial of A is

χ(A; t) :=
∑

X∈Π(A)

µ(X ,T )︸ ︷︷ ︸
Möbius function

tdimX .

2 + 2 + 2− t − t − t + t2

= t2 − 3t + 6

A Π χ(A; t)



Examples of coroot characteristic polynomials

For the path graph Pn,

χ(Pn,ZA∨n−1; t) = (−1)n−1
∑
d |n

ϕ(d)(1− t)
n
d
−1,

where ϕ is Euler’s totient function.

For the star graph K1,n−1,

χ(K1,n−1,ZA∨n−1; t) = (t − 1)n−1 + (−1)n−1(n − 1).

For the complete graph Kn,

χ(An−1,ZA∨n−1; t) = (−1)n−1(n−1)!
∑
d |n

(−1)
n
d
−1ϕ(d)

( t
d − 1
n
d − 1

)

(Ardila Castillo Henley ‘15)



Divisible colorings

A proper divisible m-coloring of G is a function f : V → Zm with

f (i) 6= f (j) if i and j are adjacent in G ; and∑
i∈V f (i) ≡ 0 (mod m).

Theorem

For any positive multiple m of n, the number of proper divisible
m-colorings of G is equal to |χ(G ,ZA∨n−1; m)|.
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Divisible activities
Fix a total order on E (G ). For any d ∈ N and any T ∈ Tree(G ),

An edge e is externally active w.r.t T if e /∈ T and e is the
minimum edge in Cycle(T , e).
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An edge e is d-internally active w.r.t T if e ∈ T and e is the
minimum edge in d-Cut(T , e).
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A formula for the coroot characteristic polynomial

Theorem

The coroot characteristic polynomial of G is equal to

χ(G ,ZA∨n−1; t) = (−1)n−1
∑
d |n

ϕ(d)χd(G ; t),

where ϕ is the Euler’s totient function and χd(G ; t) is

χd(G ; t) :=
∑

T spanning tree of G
with ext. activity 0

(1− t)intd (T ).
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THANK YOU!
Extended abstract : http://www.mat.univie.ac.at/ slc/wpapers/
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