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Toric arrangements

@ Layman’s terms: lines on a donut.

e Studied in connection to Kostant partition functions (De
Concini-Procesi ‘'05), arithmetic matroids (Moci ‘12),
arithmetic Tutte polynomial (D'Adderio-Moci ‘13), etc.

@ This talk is about toric arrangements that are built from
graphs.



Motivation

@ The current study of toric graphic arrangements is mainly
focused on the case of the standard torus.

@ We study graphic arrangements on two other types of tori,
the coweight torus and the coroot torus.

@ We will see that these two arrangements tell us new things
about the acyclic orientations of the input graph.
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Tori

Let V be a real vector space.

A lattice L is the integer-span of a basis of V.
The associated torus is the quotient T := V//L.
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Graphic arrangements

Let G be a simple connected graph.
A(G) is called the linear graphic arrangement.
A(G) is called the affine graphic arrangement.
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Toric graphic arrangements, example 1
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Toric graphic arrangements, example 2
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Toric graphic arrangements, example 2
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Toric graphic arrangements, example 2
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Root system of type A

Vpi={xeR"| xg+---+x, =0} (ambient space);
An—1:={e— ¢ |1<i<j<n} (rootsystem of type A);
ZA, 1 = Z{l/n(e1 +---+ep) —e |1 <i<n} ((co)weight lattice);
ZAn—1 =Z{ej—e |1 <i<j<n} ((co)root lattice).
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One graph, three toric arrangements

@ The standard arrangement: V =R", L =7Z".
@ The coweight arrangement: V =V, L= Z/A\n_l
@ The coroot arrangement: V =V, L =ZA,_1.
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Toric chambers
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Acyclic orientations
Recall the bijection of Greene and Zaslavsky ('83):

Chambers of A(G) <+ Acyclic orientations of G
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Coweight Voronoi cells
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Coweight Voronoi relation




Coweight Voronoi relation
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Two orientations that are projected to the same toric chamber are
Voronoi equivalent.



Coroot Voronoi cells
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Coroot Voronoi relation




Coroot Voronoi relation

No two distinct acyclic orientations are Voronoi equivalent.



Combinatorial description for coweight Voronoi equivalence

The relation is source-to-sink flip.

o Studied by
o Mosesjan (‘72) and Pretzel (‘86) in combinatorics;
o Eriksson and Eriksson (‘09), and Speyer (‘09) in connection to
conjugacy of Coxeter elements;
o Develin, Macauley and Reiner (‘16) in the context of toric

arrangements.
@ It also arises in connection to sandpile groups and chip-firing.



Combinatorial description for coroot Voronoi equivalence

The relation has several equivalent descriptions.

One is source-sink exchange.
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