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What is log-concavity?

A sequence a1, . . . , an ∈ N≥0 is log-concave if

a2k ≥ ak+1 ak−1 (1 < k < n).

Log-concavity (and positivity) implies unimodality:

a1 ≤ · · · ≤ am ≥ · · · ≥ an for some 1 ≤ m ≤ n.
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Log-concave shaped objects in real life

Cheonmachong (천마총) in Gyeongju.



Example 1: Binomial coefficients

ak =

(
n

k

)
k = 0, 1, . . . , n.

This sequence is log-concave because

a2k
ak+1 ak−1

=

(
n
k

)2(
n

k+1

) (
n

k−1

) =

(
1 +

1

k

)(
1 +

1

n − k

)
,

which is greater than 1.



Example 2: Permutation inversion sequence

Let

ak := number of π ∈ Sn with k inversions,

where inversion of π is pair i < j s.t. πi > πj .

This sequence is log-concave because∑
0≤k≤(n2)

ak q
k = [n]q! =

n−1∏
i=1

(1 + q + q2 + . . .+ qi)

is a product of log-concave polynomials.



Example 3: Forests of a graph

ak = number of forests with k edges of graph G .

Forest is a subset of edges of G that has no cycles.

Log-concavity was conjectured for all matroids

(Mason ‘72), and was proved through combinatorial

Hodge theory (Huh ‘15).

G forest not forest spanning tree
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Object: Matroids

Matroid M = (X , I) is ground set X with

collection of independent sets I ⊆ 2X .

Graphic matroids

X = edges of a graph G ,

I = forests in G .

Realizable matroids

X = finite set of vectors over field F,

I = sets of linearly independent vectors.



Matroids: Axioms

(Hereditary) If S ⊆ T and T ∈ I , then
S ∈ I.

T S

(Exchange) If S ,T ∈ I and |S | < |T |, then
there is x ∈ T \ S such that S ∪ {x} ∈ I.

S T S ∪ {x}



Matroid: Bases and ranks

A basis of M is a maximal independent set.

Rank r of M is the size of the bases.

G Basis 1 Basis 2 Not Basis

Matroid generalizes the notion of vector spaces.



Mason’s conjecture



Mason’s conjecture

For matroid M, let

I(k) := no. of independents sets with k elements.

For graphic matroid, I(k) is no. of forest with k edges.

Conjecture (Mason ‘72)
The sequence I(1), I(2), . . . is log-concave,

I(k)2 ≥ I(k + 1) I(k − 1) (k ∈ N),



Mason’s conjecture (continued)

Conjecture (Mason ‘72)

I(k)2 ≥ I(k + 1) I(k − 1) (k ∈ N).

Conjecture was proved for graphic matroids

by (Huh ‘15), and for all matroids

by (Adiprasito–Huh–Katz ‘18).

Both proofs used combinatorial Hodge theory.

We will show that Mason’s conjecture is

consequence of a stronger inequality.
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Stanley–Yan inequality



Stanley–Yan inequality (simple case)

Let M be a matroid with ground set X and rank r .

Fix a subset S of X . Let

B(k) := no. of bases B such that |B ∩ S | = k ,

multiplied by r !×
(
r
k

)−1
.

Theorem (Stanley ‘81, Yan ‘23)
The sequence B(1),B(2), . . . is log-concave,

B(k)2 ≥ B(k + 1)B(k − 1) (k ∈ N).



Stanley–Yan inequality (simple)

Theorem (Stanley ‘81, Yan ‘23)

B(k)2 ≥ B(k + 1)B(k − 1) (k ∈ N).

Proved for regular matroids by (Stanley ‘81) using

Alexandrov–Fenchel inequality for mixed volumes.

Proved for all matroids by (Yan ‘23) using theory

of Lorentzian polynomials.



Proof of Mason’s conjecture

using Stanley–Yan inequality



Direct sum of matroids

Direct sum of M1 = (X1, I1) and M2 = (X2, I2)
is the matroid M′ = (X ′, I ′) given by

X ′ := X1 ⊔ X2 (disjoint union)

I ′ := {S1 ∪ S2 : S1 ∈ I1, S2 ∈ I2 }.

This generalizes the notion of

direct sum for vector spaces.



Proof of Mason’s conjecture using SY inequality

Let

M := original matroid in Mason’s conjecture;

F :=
matroid with r elements and with every

subset being independent;

M′ := direct sum of M and F;

S := ground set of M.

Then

I(k) for M = 1
r ! × B(k) for M′.



Proof of Mason’s conjecture using SY inequality

Since

I(k) for M = 1
r ! × B(k) for M′,

we then conclude that

Stanley–Yan inequality for M′

implies Mason’s conjecture for M.



Stanley–Yan inequality (full version)

Fix d ≥ 0 , disjoint subsets S , S1, . . . , Sd of X ,

and ℓ1, . . . , ℓd ∈ N .

Bd(k) :=
number of bases B of M such that

|B ∩ S | = k , |B ∩ Si | = ℓi for i ∈ [d ],

multiplied by r !×
(

r
k ,ℓ1,...,ℓd

)−1
.

Theorem (Stanley ‘81, Yan ‘23)
The sequence Bd(1),Bd(2), . . . is log-concave,

Bd(k)
2 ≥ Bd(k + 1)Bd(k − 1) (k ∈ N).



What we want to do

Theorem (Stanley ‘81, Yan ‘23)
The sequence Bd(1),Bd(2), . . . is log-concave,

Bd(k)
2 ≥ Bd(k + 1)Bd(k − 1) (k ∈ N).

Both LHS and RHS of this inequality has

combinatorial interpretations.

But we will show that this inequality has

no combinatorial injective proof.



Combinatorial injective proof



Combinatorial injection
An injection f : A → B is combinatorial if

Given x ∈ A , the image f (x) is computable in

poly(|x |) steps;

Given y ∈ B , it takes poly(|y |) steps to decide

if y is in image of f ; and if so, the pre-image

f −1(y) is computable in poly(|y |) steps.

B

y

A

x



Example: Injective proof of binomial inequality(
n

k

)2

≥
(

n

k + 1

)(
n

k − 1

)
(1 < k < n).

This inequality has a lattice path interpretation:

K (a → c , b → d) :=
no. of pairs of north-east lattice

paths from a to c and b to d ,

for a, b, c , d ∈ Z2.

•b

• d

•a

• c



Example: Injective proof of binomial inequality
Let

a = (0, 1), c = (k , n − k + 1),

b = (1, 0), d = (k + 1, n − k).

Then

K (a → c , b → d) =

(
n

k

)2

,

K (a → d , b → c) =

(
n

k − 1

)(
n

k + 1

)
.

•a
•b

• c
• d

•a
•b

• c
• d



Example: Injective proof of binomial inequality

f : K (a → d , b → c) → K (a → c , b → d)

is defined by path-swapping injections.

•a
•b

• c
• d

•a
•b

• c
• d

Images of f are pairs of lattice paths that intersects.



First main result

Theorem 1 (C.–Pak ‘24+)
There is no combinatorial injective proof for

Stanley–Yan inequality, assuming NPNP ̸≠≠= coNPNP.

The assumption above is slightly stronger than

P ̸≠≠= NP, and is widely used in Complexity Theory.



First main result

Theorem 1 (C.–Pak ‘24+)
There is no combinatorial injective proof for

Stanley–Yan inequality, assuming NPNP ̸≠≠= coNPNP.

This result is a consequence of Stanley–Yan

inequality being not in #P (explained next slide).
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Complexity class #P

Informal definition for intuition:

#P :=

Problems of counting the number

of objects satisfying some property;

this property is simple to verify.

Example (Problem in #P)
Count number of proper 3-colorings of graph G .



Complexity class NP

NP :=

Problems asking about existence of

a solution S for input x , where validity

of S can be verified in polynomial time.

Example (Problem in NP)
Does graph G have a proper 3-coloring?



Complexity class #P: Formal definition

#P :=

Problems asking for number of solutions

S for input x , where validity of S can be

verified in polynomial time.

Example (Problem in #P)
Count the number of proper 3-colorings of graph G .

It might take exponential time

to solve a problem in #P.



Second main result

Theorem 2 (C.–Pak ‘24+)
Let M be a binary matroid. Then the defect of

Stanley–Yan inequality

Bd(k)
2 − Bd(k + 1) Bd(k − 1)

is not in #P, assuming NPNP ̸≠≠= coNPNP.

This means LHS and RHS of Stanley–Yan inequality

belongs to #P, but their difference does not.



Recall our goal

We will now show that Stanley–Yan inequality is

strictly more difficult than the binomial inequality

and permutation inversion inequality.



Example 1: Binomial inequality

It follows from path-swapping injections that(
n
k

)2 −
(

n
k+1

)(
n

k−1

)
= number of non-intersecting

lattice paths from a to c and b to d .

•a
•b

• c
• d

•a
•b

• c
• d

Thus the defect of this inequality belongs to #P.



Example 2: Permutation inversion inequality

Let ak = number of π ∈ Sn with k inversions.

Then
∑

0≤k≤(n2)

ak q
k =

n−1∏
i=1

(1 + q + . . .+ qi)

is computable in poly(n) time.

Thus a2k − ak+1ak−1 is computable in poly(n) time;

and thus belongs to #P.



Conclusion

We compare three log-concave inequalities:

Binomial inequality: in #P;

Permutation inversion inequality: in #P;

Stanley–Yan inequality: not in #P.

This differentiates Stanley–Yan inequality from

binomial inequality and permutation inversion

inequality.



Open Problem

Conjecture
Defect of Mason’s conjecture

I(k)2 − I(k + 1) I(k − 1) /∈ #P.

We have shown Stanley–Yan inequality is not in

#P , but not Mason’s conjecture.



감사합니다!

THANK YOU!

Preprint: www.arxiv.org/abs/2407.19608

Webpage: www.math.rutgers.edu/~sc2518/

Email: sweehong.chan@rutgers.edu

www.arxiv.org/abs/2407.19608
www.math.rutgers.edu/~sc2518/


Complexity class NP

NP :=

Problems asking about existence of

a solution S for input x , where validity

of S can be verified in polynomial time.

Example (Problem in NP)
Is given graph G 3-colorable?



Complexity class coNP

coNP :=

Problems asking about non-existence of

a solution S for input x , where validity

of S can be verified in polynomial time.

Example (Problem in coNP)
Is given graph G not 3-colorable?

It is known that

NP ̸≠≠= coNP =⇒ P ̸≠≠= NP .



NP-oracle

An NP-oracle is a black box that is able to

solve any problem in NP in a single operation.

Oracle
OutputInput



Complexity class coNPNP

NPNP :=

Problems asking about existence of

a solution S for input x , where validity

of S can be verified in polynomial time,

with an NP-oracle.



Complexity class NPNP

coNPNP :=

Problems asking about non-existence of

a solution S for input x , where validity

of S can be verified in polynomial time,

with an NP-oracle.

It is known that

NPNP ̸≠≠= coNPNP =⇒ NP ̸≠≠= coNP =⇒ P ̸≠≠= NP .


