Log-concavity, Cross Product
 Conjectures, and FKG Inequalities in Order Theory

Swee Hong Chan

joint with Igor Pak and Greta Panova

What is log-concavity?

A sequence $a_{1}, \ldots, a_{n} \in \mathbb{R}_{\geq 0}$ is log-concave if

$$
a_{k}^{2} \geq a_{k+1} a_{k-1} \quad \text { for all } 1<k<n
$$

Log-concavity (and positivity) implies unimodality:
$a_{1} \leq \cdots \leq a_{m} \geq \cdots \geq a_{n}$ for some $1 \leq m \leq n$.

Example: binomial coefficients

$$
a_{k}=\binom{n}{k} \quad k=0,1, \ldots, n .
$$

This sequence is log-concave because
$\frac{a_{k}^{2}}{a_{k+1} a_{k-1}}=\frac{\binom{n}{k}^{2}}{\binom{n}{k+1}\binom{n}{k-1}}=\left(1+\frac{1}{k}\right)\left(1+\frac{1}{n-k}\right)$,
which is greater than 1 .

Example: permutations with k inversions

$$
a_{k}=\text { number of } \pi \in S_{n} \text { with } k \text { inversions, }
$$

where inversion of π is pair $i<j$ s.t. $\pi_{i}>\pi_{j}$.
This sequence is log-concave because

$$
\sum_{0 \leq k \leq\binom{ n}{2}} a_{k} q^{k}=[n]_{q}!=(1+q) \ldots\left(1+q \ldots+q^{n-1}\right)
$$

is a product of log-concave polynomials.

Log-concavity is a widespread phenomenon observed in numerous subjects in mathematics.

Today we focus on log-concavity for probabilities in posets.

Partially ordered sets

A poset P is a set X with a partial order \prec on X.

Linear extension

A linear extension L is a complete order of \prec.

We write $L(x)=k$ if x is k-th smallest in L.

Stanley's inequality

Fix $z \in P$.
N_{k} is probability that $\mathcal{L}(z)=k$,
where \mathcal{L} is uniform random linear extension of P.
Theorem (Stanley '81)
For every poset and $k \geq 1$,

$$
N_{k}^{2} \geq N_{k+1} N_{k-1}
$$

The inequality was initially conjectured by
Chung-Fishburn-Graham, and was proved using Aleksandrov-Fenchel inequality for mixed volumes.

Our contribution

Problem
(Folklore, Graham '83, Biró-Trotter '11, Stanley '14) Give a combinatorial proof of Stanley's inequality.

Answer (C.-Pak '21+)
More combinatorial proof for Stanley's inequality, with generalizations to weighted version.

Order-reversing weight
A weight $\omega: X \rightarrow \mathbb{R}_{>0}$ is order-reversing if

$$
\omega(x) \geq \omega(y) \quad \text { whenever } \quad x \prec y .
$$

Weight of linear extension L is

$$
\omega(L):=\prod_{L(x)<L(z)} \omega(x)
$$

$\omega(L)=\omega(a) \omega(b)$

Weighted Stanley's inequality

Let $N_{\omega, k}$ be probability that $\mathcal{L}(z)=k$,
where \mathcal{L}_{ω} is ω-weighted random linear extension.
Theorem 1 (C.-Pak '21+)
For every poset and $k \geq 1$,

$$
N_{\omega, k}{ }^{2} \geq N_{\omega, k+1} N_{\omega, k-1} .
$$

Proof used combinatorial atlas method, a new tool to establish log-concave inequalities.

Applications of log-concavity

$\frac{1}{3}-\frac{2}{3}$ Conjecture

Conjecture (Kislitsyn '68, Fredman '75, Linial '84)
For finite poset that is not completely ordered, there exist elements x, y :

$$
\frac{1}{3} \leq \mathbb{P}[\mathcal{L}(x)<\mathcal{L}(y)] \leq \frac{2}{3}
$$

where \mathcal{L} is uniform random linear extension of P.

Quote (Brightwell-Felsner-Trotter '95)
"This problem remains one of the most intriguing problems in the combinatorial theory of posets."

Why $\frac{1}{3}$ and $\frac{2}{3}$?

The upper,lower bound are achieved by this poset:

$$
\begin{aligned}
& \mathbb{P}[\mathcal{L}(x)<\mathcal{L}(y)]=\frac{1}{3} ; \quad \mathbb{P}[\mathcal{L}(y)<\mathcal{L}(x)]=\frac{2}{3} .
\end{aligned}
$$

The big breakthrough

Theorem (Kahn-Saks '84)
For poset that is not completely ordered, there exist elements x, y :

$$
\frac{3}{11} \leq \mathbb{P}[\mathcal{L}(x)<\mathcal{L}(y)] \leq \frac{8}{11},
$$

roughly between 0.273 and 0.727 .

Proof used log-concavity as a crucial component.

Proof sketch of Kahn-Saks Theorem

Find $x, y \in P$ such that

$$
|h(y)-h(x)| \leq 1
$$

where $h(x):=\mathbb{E}[\mathcal{L}(x)]$ and $h(y):=\mathbb{E}[\mathcal{L}(y)]$.

Let F_{k} be probability that $\mathcal{L}(y)-\mathcal{L}(x)=k$.

$$
\begin{aligned}
& \mathbb{P}[\mathcal{L}(x)<\mathcal{L}(y)]=F_{1}+F_{2}+\cdots+F_{n} \\
& \mathbb{P}[\mathcal{L}(y)<\mathcal{L}(x)]=F_{-1}+F_{-2}+\cdots+F_{-n}
\end{aligned}
$$

Proof sketch of Kahn-Saks Theorem

Since $|h(y)-h(x)|$ is small,

$$
F_{1}+2 F_{2}+\cdots+n F_{n} \approx F_{-1}+2 F_{-2}+\cdots+n F_{-n} .
$$

One can hope this implies

$$
F_{1}+F_{2}+\cdots+F_{n} \approx F_{-1}+F_{-2}+\cdots+F_{-n},
$$

which would then imply

$$
\mathbb{P}[\mathcal{L}(x)<\mathcal{L}(y)] \approx \mathbb{P}[\mathcal{L}(y)<\mathcal{L}(x)] \approx 0.5 .
$$

But things can go really wrong:
$\begin{array}{lllllllllll}\overline{F_{-4}} & \overline{F_{-3}} & \overline{F_{-2}} & F_{F_{-1}} & \overline{F_{1}} & \overline{F_{2}} & \overline{F_{3}} & \cdots & \overline{F_{n-2}} & \overline{F_{n-1}}\end{array}$

Log-concavity comes to rescue

Theorem (Kahn-Saks '84)
For $k \neq 0$,

$$
\begin{aligned}
F_{k}^{2} & \geq F_{k+1} F_{k-1} \\
F_{-k}^{2} & \geq F_{-(k+1)} F_{-(k-1)}
\end{aligned}
$$

This generalizes Stanley's inequality, and was proved by Aleksandrov-Fenchel inequality.

Proof sketch of Kahn-Saks Theorem

Log-concavity (and other ineqs.) imply:

- $\mathbb{P}[\mathcal{L}(x)<\mathcal{L}(y)]$ is maximized (resp. minimized) when $F_{1}, F_{2}, \ldots, F_{n}$ is geometric sequence,
- $\mathbb{P}[\mathcal{L}(y)<\mathcal{L}(x)]$ is minimized (resp. maximized) when $F_{-1}, F_{-2}, \ldots, F_{-n}$ is geometric sequence.

Combined with $|h(y)-h(x)| \leq 1$, the result follows.

Best known bound for $\frac{1}{3}-\frac{2}{3}$ Conjecture
Theorem (Brightwell-Felsner-Trotter '95)
For poset that is not completely ordered, there exist elements x, y :

$$
\frac{5-\sqrt{5}}{10} \leq \mathbb{P}[\mathcal{L}(x)<\mathcal{L}(y)] \leq \frac{5+\sqrt{5}}{10}
$$

roughly between 0.276 and 0.724 .

Note: Kahn-Saks bound was 0.273 and 0.727 .
This bound cannot be improved for infinite posets.

Cross Product Conjecture

New ingredient: Cross Product Conjecture

Fix $x, y, z \in P$. Let $F(k, \ell)$ be probability that

$$
\mathcal{L}(y)-\mathcal{L}(x)=k \text { and } \mathcal{L}(z)-\mathcal{L}(y)=\ell .
$$

Conjecture (Brightwell-Felsner-Trotter '95) For $k, \ell \geq 1$,
$F(k, \ell) F(k+1, \ell+1) \leq F(k+1, \ell) F(k, \ell+1)$.

Equivalently,

$$
\operatorname{det}\left[\begin{array}{cc}
F(k, \ell) & F(k, \ell+1) \\
F(k+1, \ell) & F(k+1, \ell+1)
\end{array}\right] \leq 0 .
$$

What was known

Conjecture (Brightwell-Felsner-Trotter '95)

 For $k, \ell \geq 1$, $F(k, \ell) F(k+1, \ell+1) \leq F(k+1, \ell) F(k, \ell+1)$.Brightwell-Felsner-Trotter proved the case $k=\ell=1$ by Ahlswede-Daykin inequality.

Combined with Kahn-Saks proof, this gives the $\frac{5 \pm \sqrt{5}}{10}$ bound for $\frac{1}{3}-\frac{2}{3}$ Conjecture.

What was known

Conjecture (Brightwell-Felsner-Trotter '95) For $k, \ell \geq 1$, $F(k, \ell) F(k+1, \ell+1) \leq F(k+1, \ell) F(k, \ell+1)$.

Quote (Brightwell-Felsner-Trotter '95)
"Something more powerful seems to be needed to prove general form of Cross Product Conjecture."

Our results

Theorem 2 (C.-Pak-Panova '22)
Cross Product Conjecture is true for posets of width two.

Proved algebraically using matrix algebra argument and combinatorially through
Lindström-Gessel-Viennot type argument.

Our results

Theorem 3 (C.-Pak-Panova '23+)
For every poset and $k, \ell \geq 1$,
$F(k, \ell) F(k+1, \ell+1)<2 F(k+1, \ell) F(k, \ell+1)$.
Proof is based on Favard's inequality for mixed volumes, for which factor of 2 is tight for general geometric objects.

On the other hand, for specific classes of posets this factor of 2 can be improved.

A new protagonist

We now shift the attention
from linear extensions to order-preserving maps.

Order-preserving maps

Fix poset $P=(X, \prec)$.
A map $M: X \rightarrow\{1, \ldots, t\}$ is order-preserving if

$$
x \prec y \quad \text { implies } \quad M(x) \leq M(y) .
$$

Linear extensions are order-preserving maps that are also bijections to $\{1, \ldots,|X|\}$.

Previously on linear extensions ...

- Log-concavity?

Solved: Stanley '81, Kahn-Saks ‘84, C.-Pak

- Cross-product conjecture?

Open: Brightwell-Felsner-Trotter '95, C.-Pak-Panova '22

- $\frac{1}{3}-\frac{2}{3}$ Conjecture?

Open: Kahn-Saks ‘84, Brightwell-Felsner-Trotter ‘95

Can we improve on these results for order-preserving maps?

Log-concavity for order-preserving maps

Graham's conjecture

Fix $z \in P$ and positive integer t.
G_{k} is probability that $\mathcal{M}(z)=k$,
where \mathcal{M} is uniform random ord.-pres. map $X \rightarrow[t]$.
Conjecture (Graham '83)
For every poset and $k \geq 1$,

$$
G_{k}^{2} \geq G_{k+1} G_{k-1}
$$

Graham's conjecture

Quote (Graham '83)
"It would seem that [the conjecture] should have a proof based on the FKG or AD inequalities. However, such a proof has up to now successfully eluded all attempts to find it".

What is Harris/FKG/AD inequalities?

They are fundamental inequalities in probability that shows, in many random systems, increasing events are positively correlated.

Example

For any $a, b, c, d \in \mathbb{Z}^{d}$ in bond percolation,

$$
\mathbb{P}[a \leftrightarrow b, c \leftrightarrow d] \geq \mathbb{P}[a \leftrightarrow b] \mathbb{P}[c \leftrightarrow d]
$$

where $a \leftrightarrow b$ is event that a and b are connected.
Presence of one path increases probability of other path.

Graham's conjecture is true

Theorem (Daykin-Daykin-Paterson '84)
For every poset and $k \geq 1$,

$$
G_{k}^{2} \geq G_{k+1} G_{k-1}
$$

Proof used an explicit injective argument, not based on FKG/AD inequality.

Quote (Daykin-Daykin-Paterson '84) "[Proof using FKG or Ahlswede-Daykin inequality] have as yet eluded discovery".

Our results

Theorem 4 (C.-Pak '22+)
New proof of Daykin-Daykin-Paterson inequality based on Ahlswede-Daykin inequality, with generalization to multi-weighted version.

This proof validates Graham's prediction.

Cross product conjecture for order-preserving maps

Our results

Fix $x, y, z \in P$ and $t \geq 1$. Let $G(k, \ell)$ be probability

$$
\mathcal{M}(y)-\mathcal{M}(x)=k \text { and } \mathcal{M}(z)-\mathcal{M}(y)=\ell,
$$

where \mathcal{M} is uniform random ord.-pres. map $X \rightarrow[t]$.

Theorem 5 (C.-Pak '22+)
For all integers k, ℓ,
$G(k, \ell) G(k+1, \ell+1) \leq G(k+1, \ell) G(k, \ell+1)$.
This proves cross product conjecture for order-preserving maps.

Our results

Theorem (C.-Pak '22+)
For all integers k, ℓ,
$G(k, \ell) G(k+1, \ell+1) \leq G(k+1, \ell) G(k, \ell+1)$.

Proof is based on same approach discovered when proving Daykin-Daykin-Paterson inequality.

This approach does not work for linear extensions, where inequality is known with factor of 2 in RHS.

$\frac{1}{3}-\frac{2}{3}$ Conjecture for order-preserving maps

Conjecture
For finite poset that is not completely ordered, there exist elements x, y :

$$
\begin{gathered}
\frac{1}{3} \leq \lim _{t \rightarrow \infty} \mathbb{P}\left[\mathcal{M}_{t}(x)<\mathcal{M}_{t}(y)\right] \leq \frac{2}{3}, \\
\text { where } \mathcal{M}_{t} \text { is uniform random o.p. map } X \rightarrow[t] .
\end{gathered}
$$

This is in fact equivalent to $\frac{1}{3}-\frac{2}{3}$ Conjecture for linear extensions.

All recent advances unfortunately do not improve known bounds for this conjecture.

Open problem

Kahn-Saks Conjecture

$\delta(P)$ is largest number such that there exist $x, y \in P$:

$$
\delta(P) \leq \mathbb{P}[\mathcal{L}(x)<\mathcal{L}(y)] \leq 1-\delta(P)
$$

Note that $\frac{1}{3}-\frac{2}{3}$ Conjecture is equivalent to $\delta(P) \geq \frac{1}{3}$ for P not completely ordered.

Conjecture (Kahn-Saks '84)

$$
\delta(P) \rightarrow \frac{1}{2} \quad \text { as } \quad \text { width }(P) \rightarrow \infty
$$

Kahn-Saks Conjecture

Conjecture (Kahn-Saks '84)

$$
\delta(P) \rightarrow \frac{1}{2} \quad \text { as } \quad \text { width }(P) \rightarrow \infty
$$

Komlós '90 proved Conjecture for posets with $\Omega\left(\frac{n}{\log \log \log n}\right)$ minimal elements.
C.-Pak-Panova '21 proved Conjecture for Young diagram posets with fixed width.

THANK YOU!

Webpage: www.math.rutgers.edu/~sc2518/ Email: sc2518@rutgers.edu

