Combinatorial Atlas for Log-concave Inequalities

Swee Hong Chan (UCLA)

joint with Igor Pak

What is log-concavity?

A sequence $a_1,\ldots,a_n\in\mathbb{R}_{\geq 0}$ is log-concave if

$$a_k^2 \geq a_{k+1} a_{k-1} \qquad (1 \leq k < n).$$

Equivalently,

$$\log a_k \geq \frac{\log a_{k+1} + \log a_{k-1}}{2} \qquad (1 \leq k < n).$$

Example: binomial coefficients

$$a_k = \binom{n}{k}$$
 $k = 0, 1, \ldots, n$.

This sequence is log-concave because

$$\frac{a_k^2}{a_{k+1} a_{k-1}} = \frac{\binom{n}{k}^2}{\binom{n}{k+1} \binom{n}{k-1}} = \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{n-k}\right),$$

which is greater than 1.

Example: permutations with k inversions

 $a_k = \text{number of } \pi \in S_n \text{ with } k \text{ inversions},$

where inversion of π is pair i < j s.t. $\pi_i > \pi_j$.

This sequence is log-concave because

$$\sum_{0 \leq k \leq \binom{n}{2}} a_k \, q^k \, = \, [n]_q! \, = \, (1+q) \, \ldots \, (1+q\ldots+q^{n-1})$$

is a product of log-concave polynomials.



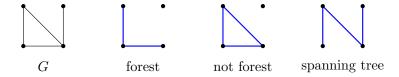
Log-concavity appears in different objects for different reasons.

Today we focus on reason for matroids.

Warmup: graphs and forests

Let G = (V, E) be a graph.

A (spanning) forest F = (V, E') with $E' \subseteq E$ is a subset of edges without cycles.



Log-concavity for forests

Theorem (Huh '15)

For every graph and $k \ge 1$,

$$I_k^2 \geq I_{k+1} I_{k-1},$$

where I_k is the number of forests with k edges.

Proof used Hodge theory from algebraic geometry.

In fact, stronger inequalities for more general objects are true.

Object: Matroids

Matroid $\mathcal{M} = (X, \mathcal{I})$ is ground set X with collection of independent sets $\mathcal{I} \subseteq 2^X$.

Graphical matroids

- X = edges of a graph G,
- \mathcal{I} = forests in G.

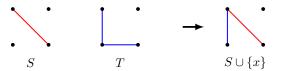
Realizable matroids

- $X = \text{ finite set of vectors over field } \mathbb{F},$
- \bullet \mathcal{I} = sets of linearly independent vectors.

Matroids: Conditions

• $S \subseteq T$ and $T \in \mathcal{I}$ implies $S \in \mathcal{I}$.

• If $S, T \in \mathcal{I}$ and |S| < |T|, then there is $x \in T \setminus S$ such that $S \cup \{x\} \in \mathcal{I}$.



Note: These are natural properties of sets of linearly independent vectors.

Mason's Conjecture (1972)

For every matroid and $k \geq 1$,

$$(1) I_k^2 \geq I_{k+1} I_{k-1};$$

(2)
$$I_k^2 \geq \left(1 + \frac{1}{k}\right) I_{k+1} I_{k-1};$$

(3)
$$I_k^2 \geq \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{n-k}\right) I_{k+1} I_{k-1}.$$

 I_k is number of ind. sets of size k, and n = |X|.

Note:
$$(3) \Rightarrow (2) \Rightarrow (1)$$
.

Why
$$(1+\frac{1}{k})(1+\frac{1}{n-k})$$
?

Mason (3) is equivalent to ultra/binomial log-concavity,

$$\frac{I_k^2}{\binom{n}{k}^2} \geq \frac{I_{k+1}}{\binom{n}{k+1}} \frac{I_{k-1}}{\binom{n}{k-1}}.$$

Equality occurs if every subset with k + 1 elements is independent.

Solution to Mason (1)

Theorem (Adiprasito-Huh-Katz '18)

For every matroid and $k \ge 1$,

$$I_k^2 \geq I_{k+1} I_{k-1}.$$

Proof used combinatorial Hodge theory for matroids.

Solution to Mason (2)

Theorem (Huh-Schröter-Wang '18)

For every matroid and $k \geq 1$,

$$I_k^2 \geq \left(1 + \frac{1}{k}\right) I_{k+1} I_{k-1}.$$

Proof used combinatorial Hodge theory for correlation inequality on matroids.

Solution to Mason (3)

Theorem

(Anari-Liu-Oveis Gharan-Vinzant, Brändén-Huh '20)

For every matroid and $k \ge 1$,

$$I_k^2 \geq \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{n-k}\right) I_{k+1} I_{k-1}.$$

Proof used theory of strong log-concave polynomials / Lorentzian polynomials.

Solution to Mason (3)

Theorem

(Anari-Liu-Oveis Gharan-Vinzant, Brändén-Huh '20)

For every matroid and $k \ge 1$,

$$I_k^2 \geq \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{n-k}\right) I_{k+1} I_{k-1}.$$

Theorem (Murai-Nagaoka-Yazawa '21)

Equality occurs if and only if every subset with k + 1 elements is independent.

Method: Combinatorial atlas

Results: Log-concave inequalities, and if and only if conditions for equality

- Matroids (refined);
- Morphism of matroids (refined);
- Discrete polymatroids;
- Stanley's poset inequality (refined);
- Poset antimatroids;
- Branching greedoid (log-convex);
- Interval greedoids.

Method: Combinatorial atlas

Results: Log-concave inequalities, and

if and only if conditions for equality

- Matroids (refined);
- Morphism of matroids (refined);
- Discrete polymatroids;
- Stanley's poset inequality (refined);
- Poset antimatroids;
- Branching greedoid (log-convex);
- Interval greedoids.

Combinatorial atlas application:

Matroids

Warmup: graphical matroids refinement

Corollary (C.-Pak)

For graphical matroid of simple connected graph G = (V, E), and k = |V| - 2,

$$(I_k)^2 \geq \frac{3}{2} \left(1 + \frac{1}{k}\right) I_{k+1} I_{k-1},$$

with equality if and only if G is cycle graph.

Numerically better than Mason (3), because

$$\frac{3}{2} \geq 1 + \frac{1}{n-k} = 1 + \frac{1}{|E|-|V|+2}$$

for *G* that is not tree.

Comparison with Mason (3)

Our bound gives

$$\frac{(I_k)^2}{I_{k+1} I_{k-1}} \geq \frac{3}{2}$$
 when $|E| - |V| \to \infty$,

Meanwhile, Mason (3) bound only gives

$$\frac{(I_k)^2}{I_{k+1}\,I_{k-1}} \geq 1$$
 when $|E|-|V| \to \infty$.

Our bound is better numerically and asymptotically.

Refinement for Mason (3)

Theorem 1 (C.-Pak)

For every matroid and k > 1,

$${I_k}^2 \geq \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{\mathsf{prl}_{\mathcal{M}}(k-1) - 1}\right) I_{k+1} I_{k-1}.$$

This refines Mason (3),

$$I_k^2 \geq \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{n-k}\right) I_{k+1} I_{k-1},$$

since

$$\operatorname{prl}_{\mathcal{M}}(k-1) \leq n-k+1.$$

Refinement for different matroids

• For all matroids,

$$I_k^2 \geq (1 + \frac{1}{k}) (1 + \frac{1}{n-k}) I_{k+1} I_{k-1}.$$

• Graphical matroids and k = |V| - 2,

$$I_k^2 \geq (1 + \frac{1}{k}) \frac{3}{2} I_{k+1} I_{k-1}.$$

ullet Realizable matroids over \mathbb{F}_q ,

$$I_k^2 \geq (1 + \frac{1}{k}) \left(1 + \frac{1}{a^{m-k+1}-2}\right) I_{k+1} I_{k-1}.$$

• (k, m, n)-Steiner system matroid,

$$I_k^2 > (1 + \frac{1}{L}) \frac{n-k+1}{n-m} I_{k+1} I_{k-1}.$$

Refinement for Mason (3)

Theorem 2 (C.-Pak)

For every matroid and k > 1,

$${I_k}^2 \geq \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{\mathsf{prl}_{\mathcal{M}}(k-1) - 1}\right) I_{k+1} I_{k-1}.$$

This refines Mason (3),

$$I_k^2 \geq \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{n-k}\right) I_{k+1} I_{k-1},$$

since

$$\operatorname{prl}_{\mathcal{M}}(k-1) < n-k+1.$$

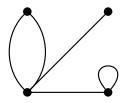
Parallel classes of matroid \mathfrak{M}

Loop is $x \in X$ such that $\{x\} \notin \mathcal{I}$.

Non-loops x, y are parallel if $\{x, y\} \notin \mathcal{I}$.

Parallelship equiv. relation: $x \sim y$ if $\{x, y\} \notin \mathcal{I}$.

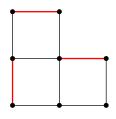
Parallel class = equivalence class of \sim .

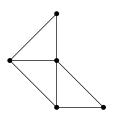


Matroid contraction

Contraction of $S \in \mathcal{I}$ is matroid \mathcal{M}_S with

$$X_S = X \setminus S, \qquad \mathcal{I}_S = \{T \setminus S : S \subseteq T\}.$$



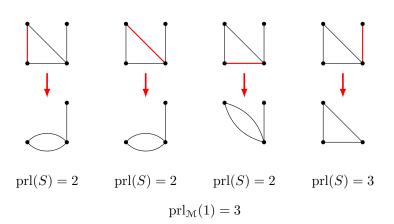


 $\operatorname{prl}(S) := \operatorname{number} \operatorname{of} \operatorname{parallel} \operatorname{classes} \operatorname{of} \mathfrak{M}_S$

Parallel number

The k-parallel number is

$$\operatorname{prl}_{\mathfrak{M}}(k) := \max\{\operatorname{prl}(S) \mid S \in \mathcal{I} \text{ with } |S| = k\}.$$



Refinement for Mason (3)

Theorem 3 (C.-Pak)

For every matroid and k > 1,

$${I_k}^2 \geq \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{\mathsf{prl}_{\mathfrak{M}}(k-1) - 1}\right) I_{k+1} I_{k-1}.$$

This refines Mason (3),

$$I_k^2 \geq \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{n-k}\right) I_{k+1} I_{k-1},$$

since

$$\operatorname{prl}_{\mathcal{M}}(k-1) < n-k+1.$$

When is equality achieved?

- When every (k+1)-subset is independent, $\operatorname{prl}_{\mathfrak{M}}(k-1) = n-k+1.$
- Graphical matroid when G is a cycle, $\operatorname{prl}_{\mathcal{M}}(k-1) = 3$.
- ullet Realizable matroids of every m-vectors over \mathbb{F}_q , $\operatorname{prl}_{\mathbb{M}}(k-1) = q^{m-k+1}-1.$
- (k, m, n)-Steiner system matroid, $\operatorname{prl}_{\mathfrak{M}}(k-1) = \frac{n-k+1}{m-k+1}$.

Equality conditions

Theorem 4 (C.-Pak)

For every matroid and $k \ge 1$,

$$I_k^2 = \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{\operatorname{prl}_{\mathcal{M}}(k-1) - 1}\right) I_{k+1} I_{k-1}$$
if and only if

for every
$$S \in \mathcal{I}$$
 with $|S| = k - 1$,

- ullet $\mathcal{M}_{\mathcal{S}}$ has $\mathsf{prl}_{\mathcal{M}}(k-1)$ parallel classes; and
- Every parallel class of M_S has same size.

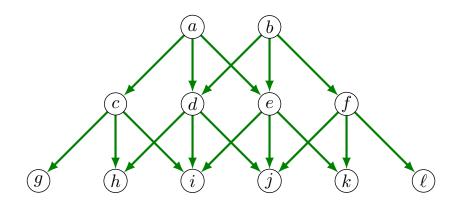
Combinatorial atlas: the method

Combinatorial atlas

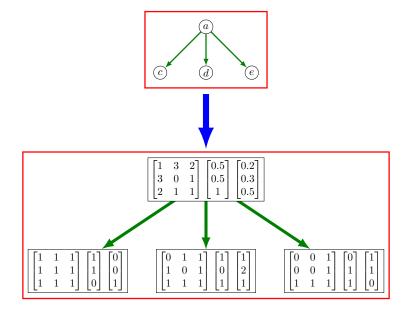
Input: Acyclic digraph A, where each vertex v is associated with

- Symmetric matrix M with nonnegative entries;
- Vector g, h with nonnegative entries.

Atlas: example

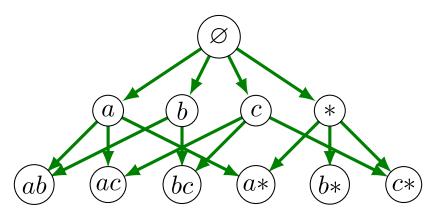


Atlas: example (zoomed in)



Atlas example: matroid (simplified)

For matroid with $X = \{a, b, c\}$, the atlas for k = 2 is



Atlas example: matroid (simplified)

The matrix for the top vertex is

$$m{M}_{a,b} = (k+1)! imes ext{number of independent sets}$$
of size $k+1$ containing a,b
 $m{M}_{a,*} = k! imes ext{number of independent sets}$
of size k containing a
 $m{M}_{*,*} = (k-1)! imes ext{number of independent sets}$
of size $k-1$

Combinatorial atlas

Input: Acyclic digraph A, where each vertex v is associated with

- Symmetric matrix M with nonnegative entries;
- Vector **g**, **h** with nonnegative entries.

Goal: Show every *M* has hyperbolic inequality.

Hyperbolic inequality

M has hyperbolic inequality property if

$$\langle x, My \rangle^2 \geq \langle x, Mx \rangle \langle y, My \rangle$$

for every $\mathbf{x} \in \mathbb{R}^r$, $\mathbf{y} \in \mathbb{R}^r_{\geq 0}$.

This condition is equivalent to

M has at most one positive eigenvalue.

Note: Already known to be important in Lorentzian polynomials and Bochner's method proof of Aleksandrov-Fenchel inequality.

How to get log-concave inequalities?

Assume a_{k-1} , a_k , a_{k+1} can be computed by

$$a_k = \langle \mathbf{g}, \mathbf{M} \mathbf{h} \rangle, \ a_{k+1} = \langle \mathbf{g}, \mathbf{M} \mathbf{g} \rangle, \ a_{k-1} = \langle \mathbf{h}, \mathbf{M} \mathbf{h} \rangle,$$

for M, g, h from a top vertex of the atlas.

$$\langle m{g}, m{M}m{h}
angle^2 \geq \langle m{g}, m{M}m{g}
angle \langle m{h}, m{M}m{h}
angle \quad ext{(hyperbolic ineq.)}$$
 then implies

$$a_k^2 \ge a_{k+1}a_{k-1}$$
 (log-concave ineq.)

Combinatorial atlas

Input: Acyclic digraph A, where each vertex v is associated with

- Symmetric matrix M with nonnegative entries;
- Vector **g**, **h** with nonnegative entries.

Goal: Show every M has hyperbolic inequality.

Method: Verify three conditions:

- Irreducibility condition;
- Inheritance condition;
- Subdivergence condition.

Irreducibility condition

- Matrix *M* associated to *v* is irreducible when restricted to its support;
- Vector h is associated to v is a positive vector.

For matroids, this means that the base exchange graph is connected.

This is a consequence of the exchange property.

Inheritance condition

i=1

Edge $e = (v, v_i)$ of v is associated with linear map $T_i : \mathbb{R}^r \to \mathbb{R}^r$ such that, for every $\mathbf{x} \in \mathbb{R}^r$,

i-th coordinate of
$$Mx = \langle T_i x, M_i T_i h \rangle$$
,

where M and h are associated to v, and M_i is associated to v_i .

For matroids with $X = \{e_1, \ldots, e_n\}$, this means

 $k \times$ number of independent k-sets

 $=\sum$ number of independent k-sets containing e_i .

Subdivergence condition

For every $\mathbf{x} \in \mathbb{R}^r$,

$$\sum_{i=1}^r h_i \langle T_i \mathbf{x}, \mathbf{M}_i T_i \mathbf{x} \rangle \geq \langle \mathbf{x}, \mathbf{M} \mathbf{x} \rangle,$$

where $h_i = i$ -th coordinate of h.

Note: Equality occurs for Lorentzian polynomials and for matroids.

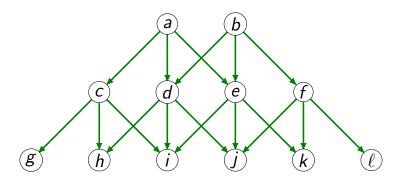
For matroids, this is consequence of hereditary property.

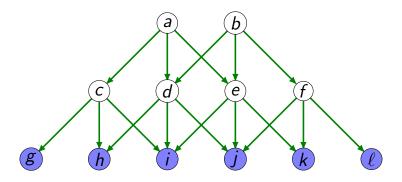
Bottom-to-top principle for hyperbolic inequalities

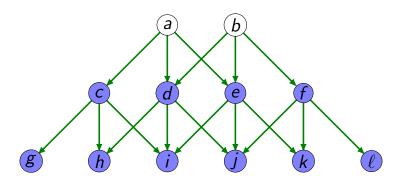
Proposition

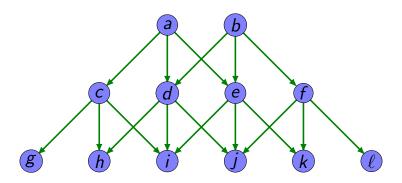
Assume irreducibility, inheritance, subdivergence. If every child vertex has hyperbolic inequality property, then so does the parent vertex.

Bottom-to-top principle reduces **Goal** to checking hyperbolic inequality only for sink vertices.









How about equalities?

Combinatorial atlas equality

Input:

 An atlas A satisfying irreducibility, inheritance, subdivergence conditions.

Goal: Show "every" **M** has hyperbolic equality,

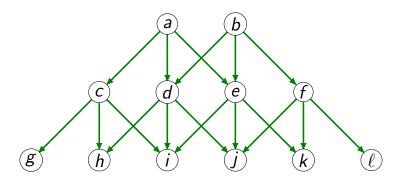
$$\langle \mathbf{g}, \mathbf{M} \mathbf{h} \rangle^2 = \langle \mathbf{g}, \mathbf{M} \mathbf{g} \rangle \langle \mathbf{h}, \mathbf{M} \mathbf{h} \rangle.$$

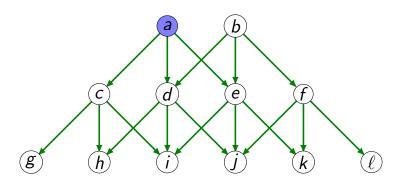
Top-to-bottom principle for equalities

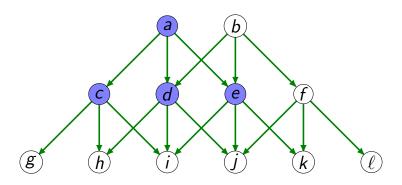
Proposition

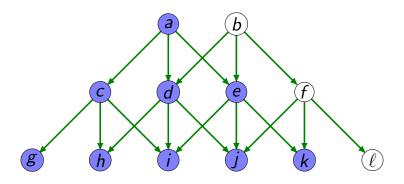
If parent vertex has hyperbolic equality property, then so does children vertices.

Top-to-bottom principle expands hyperbolic equality to sink vertices, and gives combinatorial characterizations.









Moral of the story

Problem: Log-concave inequalities and equalities. **Strategy**:

- Build a combinatorial atlas;
- Verify the required conditions;
- Use hyperbolic inequality property to derive log-concave inequalities;
- Use hyperbolic equality property to derive log-concave equalities.

Other applications

- **Full version:** 2110.10740 (71 pages)
- **Expository version:** 2203.01533 (28 pages)
- Results: Log-concave inequalities and equalities for
 - Matroids (refined);
 - Discrete polymatroids;
 - Morphism of matroids (refined) (conjecture on equality conditions is resolved);
 - Stanley's poset inequality (refined);
 - Poset antimatroids;
 - Branching greedoid (log-convex);
 - Interval greedoids.

THANK YOU!

Preprint: www.arxiv.org/abs/2110.10740

www.arxiv.org/abs/2203.01533

Webpage: www.math.ucla.edu/~sweehong/

Email: sweehong@math.ucla.edu

Negative dependence for forests

Conjecture (Kahn '00, Grimmett-Winkler '04)

Let G be a graph, let e, f be distinct edges of G. Then

$$P[e, f \in \mathcal{F}] \le P[e \in \mathcal{F}]P[f \in \mathcal{F}],$$

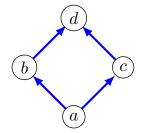
where \mathcal{F} is uniform random forest of G.

- Known with extra factor of 2 in RHS by Lorentzian polynomials
- For matroids, the conjectured factor is $\frac{8}{7}$.

Combinatorial atlas application: Stanley's poset inequality

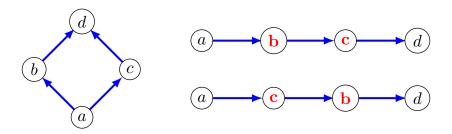
Partially ordered sets

A poset P is a set X with a partial order \prec on X.



Linear extension

A linear extension L is a complete order of \prec .



We write L(x) = k if x is k-th smallest in L.

Stanley's inequality

Fix $z \in P$.

 N_k is number of linear extensions with L(z) = k.

Theorem (Stanley '81)

For every poset and $k \ge 1$,

$$N_k^2 \geq N_{k+1} N_{k-1}$$

Proof used Aleksandrov-Fenchel inequality for mixed volumes.

When is equality achieved?

Theorem (Shenfeld-van Handel)

Suppose $N_k > 0$. Then

$$N_k^2 = N_{k+1} N_{k-1}$$

if and only if

$$N_k = N_{k+1} = N_{k-1}.$$

Proof used classifications of extremals of Aleksandrov-Fenchel inequality for convex polytopes.

Our contribution

Open Problem (Folklore)

Give a combinatorial proof to Stanley's inequality.

Answer (C.–Pak)

We give new combinatorial proof for Stanley's ineq. and extend to weighted version.

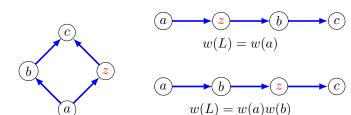
Order-reversing weight

A weight $w: X \to \mathbb{R}_{>0}$ is order-reversing if

$$w(x) \ge w(y)$$
 whenever $x \prec y$.

Weight of linear extension L is

$$w(L) := \prod_{L(x) < L(z)} w(x).$$



Weighted Stanley's inequality

Fix $z \in P$.

 $N_{w,k}$ is w-weight of linear extensions with L(z) = k.

Theorem 5 (C. Pak)

For every poset and $k \ge 1$,

$$N_{w,k}^2 \geq N_{w,k+1} N_{w,k-1}$$
.

When is equality achieved?

Theorem 6 (C.-Pak)

Suppose $N_{w,k} > 0$. Then

$$N_{w,k}^2 = N_{w,k+1} N_{w,k-1}$$

if and only if

for every linear extension L with L(z) = k,

$$w(L^{-1}(k+1)) = w(L^{-1}(k-1)) =: s,$$

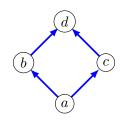
and

$$\frac{N_{w,k}}{r^k} = \frac{N_{w,k+1}}{r^{k+1}} = \frac{N_{w,k-1}}{r^{k-1}}.$$

Combinatorial atlas application: Poset antimatroids

Feasible words of a poset

A word $\alpha \in X^*$ is feasible if no repeating elements, and y occurs in α and $x \prec y \Rightarrow x$ occurs in α before y.



Feasible: \emptyset , a, ab, ac, abc, acb, abcd, acbd.

Not feasible: aa, bc, ba.

Chain weight

For $x \in P$, chain weight is $\omega(x) = \text{number of maximal chains that starts with } x$.

$$\omega(a) = 2$$

$$\omega(b) = 1$$

$$\omega(c) = 1$$

$$\omega(d) = 1$$

$$\omega(d) = 1$$

$$\omega(d) = 1$$

Weight of word α is $\omega(\alpha) := \omega(\alpha_1) \dots \omega(\alpha_\ell)$.

Log-concave inequality for poset antimatroids

 $F_{\omega,k}$ is sum of ω -weight of feasible words of length k.

Theorem 7 (C.-Pak)

For every poset and $k \ge 1$,

$$|F_{\omega,k}|^2 \geq |F_{\omega,k+1}|F_{\omega,k-1}|$$

When is equality achieved?

Theorem 8 (C.-Pak)

Equality occurs for k = 1, ..., height(P) - 1if and only if

Hasse diagram of P is a forest where every leaf is of the same level.

