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What is log-concavity?

A sequence aj,...,a, € Ry is log-concave if
ai > api1dk-1 (1< k<n).

Equivalently,

log ax41 + log ak—1
2

— IIII |-
1 4 9 15 20 22 20 15 9 4 1

log ax (1< k<n).



Example: binomial coefficients

n
dy — (k) k:O,l,...,n.

This sequence is log-concave because

2
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1 1
— = (1+3)(1+ ,
Akt k-1 (1) () ( k> ( n= k)

which is greater than 1.




Example: permutations with k inversions

ax = number of m € S, with k inversions,

where inversion of 7 is pair i <j s.t. m > 7.

This sequence is log-concave because

Z ax g = [n]y! = (1+q) ... (L+q...+q" ")
0<k=(2)

is a product of log-concave polynomials.
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Log-concavity appears in different objects

for different reasons.

Today we focus on reason for matroids.



Warmup: graphs and forests

Let G = (V, E) be a graph.
A (spanning) forest F = (V,E’) with E' C E
is a subset of edges without cycles.
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Log-concavity for forests
Theorem (Huh ‘15)
For every graph and k > 1,
L* > Dier I,

where I is the number of forests with k edges.

Proof used Hodge theory from algebraic geometry.

In fact, stronger inequalities for more general

objects are true.



Object: Matroids
Matroid M = (X, Z) is ground set X with
collection of independent sets Z C 2%,

Graphical matroids
@ X = edges of a graph G,

@ 7 = forestsin G.

Realizable matroids

@ X = finite set of vectors over field F,
sets of linearly independent vectors.
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Matroids: Conditions
@ SCT and T €7 implies S € 1.
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x € T\ S such that SU {x} € 7.
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Note: These are natural properties of sets of

linearly independent vectors.



Mason's Conjecture (1972)

For every matroid and k > 1,

(1) L2 > Liyy Lq;

1
(2) L*> > (1+;>]k+1 Ii1;

1 1
1+ — 14+ — | L1 1.
<+k)< +n—k) k+1 k-1

I is number of ind. sets of size k, and n = | X|.

—~
w
N—
~

N
V4

Note: (3) = (2) = (1).



Why (1+ %) (1+-2) ?

Mason (3) is equivalent to ultra/binomial log-concavity,
2
Ik D1 ka

() G2

Equality occurs if every subset with k + 1 elements

is independent.



Solution to Mason (1)

Theorem (Adiprasito-Huh-Katz '18)
For every matroid and k > 1,

L2 > D et

Proof used combinatorial Hodge theory for

matroids.



Solution to Mason (2)

Theorem (Huh-Schréter-Wang ‘18)
For every matroid and k > 1,

1
L > (1 + E) Tiyr Ik—1.

Proof used combinatorial Hodge theory for

correlation inequality on matroids.



Solution to Mason (3)

Theorem

(Anari—Liu—Oveis Gharan-Vinzant, Brandén-Huh ‘20)
For every matroid and k > 1,

1 1
L2 > (1+=2)(1+— )01
k_<+k)(+n_k)k+1k1

Proof used theory of strong log-concave polynomials /

Lorentzian polynomials.



Solution to Mason (3)

Theorem

(Anari—Liu—Oveis Gharan-Vinzant, Brandén-Huh ‘20)
For every matroid and k > 1,

1 1
L2 > (1+=2)(1+— )01
k_<+k)(+n_k)k+1k1

Theorem (Murai-Nagaoka-Yazawa 21)
Equality occurs if and only if every subset with k + 1

elements is independent.




Our contribution



Method: Combinatorial atlas
Results: Log-concave inequalities, and

if and only if conditions for equality

@ Matroids (refined);

@ Morphism of matroids (refined);

@ Discrete polymatroids;

@ Stanley's poset inequality (refined);
@ Poset antimatroids;

@ Branching greedoid (log-convex);

Interval greedoids.



Method: Combinatorial atlas
Results: Log-concave inequalities, and

if and only if conditions for equality

e Matroids (refined);
o
o



Combinatorial atlas application:
Matroids



Warmup: graphical matroids refinement

Corollary (C.-Pak)
For graphical matroid of simple connected graph
G=(V,E), and k=1|V| -2,
3 1
(Ik)2 > 5 (1 + ;) Tiy1 Ix-1,

with equality if and only if G is cycle graph.

Numerically better than Mason (3), because

3o . 1
2 = n—k |E| — V] +2

for G that is not tree.




Comparison with Mason (3)

Our bound gives
(Ix)? 3
— > = when |E| — |V]| — oo,
Leyieer =0 2 El=1V

Meanwhile, Mason (3) bound only gives

(1k)?

—= > 1 when |E| — |V| — o0.
Levi e ™ El=1V

Our bound is better numerically and asymptotically.



Refinement for Mason (3)

Theorem 1 (C.-Pak)
For every matroid and k > 1,

1 1
L2 > [1+=) (1 L1l 1.
C ( *k)( +Prlm(k—1)_1)

This refines Mason (3),

1 1
L2 > (1+ =) [ 1+ ——) Lt Lea,
k n—k

since
priyg(k —1) < n—k+ 1.



Refinement for different matroids

@ For all matroids,
L> > (1+3) (14 2) Ier et
@ Graphical matroids and k = |V| — 2,
L2 > (1+3) 2 Ly L
@ Realizable matroids over [,
L2 > (14 3) (1+ gmmrs) ern e
@ (k, m, n)-Steiner system matroid,

L> > (1+3) =k ey

n—m




Refinement for Mason (3)

Theorem 2 (C.-Pak)
For every matroid and k > 1,

1 1
L2 > [1+=) (1 L1l 1.
C ( *k)( +Prlm(k—1)_1)

This refines Mason (3),

1 1
L2 > (1+ =) [ 1+ ——) Lt Lea,
k n—k

since
priyg(k —1) < n—k+ 1.



Parallel classes of matroid M

Loop is x € X such that {x} ¢ Z.
Non-loops x, y are parallel if {x,y} ¢ Z.
Parallelship equiv. relation: x ~y if {x,y} ¢ Z.

Parallel class = equivalence class of ~.



Matroid contraction

Contraction of § € 7 is matroid Mg with

XSIX\S, ZgI{T\SZSQT}.

AN

prl(S) := number of parallel classes of Mg




Parallel number

The k-parallel number is

priyi(k) := max{prl(S) | S € Z with |S| = k}.
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prin(1) =3



Refinement for Mason (3)

Theorem 3 (C.-Pak)
For every matroid and k > 1,

1 1
L2 > [1+=) (1 L1l 1.
C ( *k)( +Prlm(k—1)_1)

This refines Mason (3),

1 1
L2 > (1+ =) [ 1+ ——) Lt Lea,
k n—k

since
priyg(k —1) < n—k+ 1.



When is equality achieved?

@ When every (k + 1)-subset is independent,
priyg(k —1) = n—k+ 1,

@ Graphical matroid when G is a cycle,
priy(k — 1) = 3.

@ Realizable matroids of every m-vectors over I,

priy(k —1) = g™+ —1.

@ (k, m, n)-Steiner system matroid,

n—k+1
Pk =1) = T



Equality conditions

Theorem 4 (C.-Pak)
For every matroid and k > 1,

1 1
L°=(1+=>)(1 Lot I
k <+k)(+prlm(k—1)—1>

if and only if

for every S € Z with |S| = k — 1,
@ Ms has prly(k — 1) parallel classes; and

@ Every parallel class of Mg has same size.




Combinatorial atlas: the method



Combinatorial atlas

Input: Acyclic digraph A, where each vertex v is

associated with
@ Symmetric matrix M with nonnegative entries;

@ Vector g, h with nonnegative entries.



Atlas: example




Atlas: example (zoomed in)

AN




Atlas example: matroid (simplified)

For matroid with X = {a, b, c}, the atlas for k = 2 is




Atlas example: matroid (simplified)

The matrix for the top vertex is

M., = (k+ 1)! x number of independent sets
of size k 4+ 1 containing a, b

M, . = k! X number of independent sets
of size k containing a

M. . = (k —1)! x number of independent sets

of size k — 1



Combinatorial atlas

Input: Acyclic digraph A, where each vertex v is

associated with
@ Symmetric matrix M with nonnegative entries;

@ Vector g, h with nonnegative entries.

Goal: Show every M has hyperbolic inequality.



Hyperbolic inequality

M has hyperbolic inequality property if
(x,My)? > (x,Mx) (y,My),
for every x € R", y € R%,.

This condition is equivalent to
M has at most one positive eigenvalue.
Note: Already known to be important in Lorentzian

polynomials and Bochner's method proof of

Aleksandrov-Fenchel inequality.



How to get log-concave inequalities?

Assume ay_1, ax, ax.1 can be computed by

ay = (g,Mh), a1 = (g,Mg), a1 = (hMh),

for M, g, h from a top vertex of the atlas.

(g,Mh)> > (g.Mg) (h,Mh) (hyperbolic ineq.)
then implies

ai > agr13x-1 (log-concave ineq.)



Combinatorial atlas

Input: Acyclic digraph A, where each vertex v is

associated with
@ Symmetric matrix M with nonnegative entries;

@ Vector g, h with nonnegative entries.

Goal: Show every M has hyperbolic inequality.

Method: Verify three conditions:
@ Irreducibility condition;
@ Inheritance condition;

e Subdivergence condition.



Irreducibility condition

@ Matrix M associated to v is irreducible

when restricted to its support;

@ Vector h is associated to v is a positive vector.

For matroids, this means that the
base exchange graph is connected.

This is a consequence of the exchange property.



Inheritance condition

Edge e = (v, v;) of v is associated with linear map
T, : R" — R" such that, for every x € R,

i-th coordinate of Mx = (T;x,M;T;h),

where M and h are associated to v, and M is

associated to v;.

For matroids with X = {ey, ..., e,}, this means

k x number of independent k-sets

n
= Z number of independent k-sets containing e;.
i=1



Subdivergence condition
For every x € R,
Z hi (Tix,M;Tix) > (x,Mx),

i=1
where h; = i-th coordinate of h.

Note: Equality occurs for Lorentzian polynomials

and for matroids.

For matroids, this is consequence of hereditary property.



Bottom-to-top principle for hyperbolic inequalities

Proposition
Assume irreducibility, inheritance, subdivergence.
If every child vertex has hyperbolic inequality

property, then so does the parent vertex.

Bottom-to-top principle reduces Goal to checking

hyperbolic inequality only for sink vertices.



Bottom-to-top principle




Bottom-to-top principle










How about equalities?



Combinatorial atlas equality

Input:
@ An atlas A satisfying irreducibility, inheritance,

subdivergence conditions.

Goal: Show “every” M has hyperbolic equality,
(g,Mh)> = (g, Mg) (h,Mh).



Top-to-bottom principle for equalities

Proposition
If parent vertex has hyperbolic equality property,

then so does children vertices.

Top-to-bottom principle expands hyperbolic equality to
sink vertices, and gives combinatorial characterizations.



Top-to-bottom principle




Top-to-bottom principle










Moral of the story

Problem: Log-concave inequalities and equalities.

Strategy:
@ Build a combinatorial atlas;
@ Verify the required conditions;

@ Use hyperbolic inequality property to derive
log-concave inequalities;
@ Use hyperbolic equality property to derive

log-concave equalities.



Other applications

Full version: 2110.10740 (71 pages)

Expository version: 2203.01533 (28 pages)
Results: Log-concave inequalities and equalities for
Matroids (refined);

@ Discrete polymatroids;

Morphism of matroids (refined) (conjecture on
equality conditions is resolved);

Stanley's poset inequality (refined);

Poset antimatroids:

Branching greedoid (log-convex);

Interval greedoids.



THANK YOU!

Preprint: www.arxiv.org/abs/2110.10740
www.arxiv.org/abs/2203.01533

Webpage: www.math.ucla.edu/~sweehong/

Email: sweehong@math.ucla.edu


www.arxiv.org/abs/2110.10740
www.arxiv.org/abs/2203.01533
www.math.ucla.edu/~sweehong/

Negative dependence for forests

Conjecture (Kahn '00, Grimmett-Winkler '04)

Let G be a graph, let e, f be distinct edges of G.
Then

Ple,f € F] < Ple € F]P[f € F],

where F is uniform random forest of G.

@ Known with extra factor of 2 in RHS by

Lorentzian polynomials

@ For matroids, the conjectured factor is %.



Combinatorial atlas application:
Stanley’s poset inequality



Partially ordered sets

A poset P is a set X with a partial order < on X.




Linear extension

A linear extension L is a complete order of <.

@ :@ :@ :@
0 (©)
@ :@ :@ :@

We write L(x) = k if x is k-th smallest in L.



Stanley's inequality

Fix z € P.

Ny is number of linear extensions with L(z) = k.

Theorem (Stanley ‘81)
For every poset and k > 1,

N> > Niyr Ngq.

Proof used Aleksandrov-Fenchel inequality for mixed

volumes.



When is equality achieved?

Theorem (Shenfeld-van Handel)
Suppose N, > 0. Then

N = Niy1 Ni—q
if and only if
Nk = Niepr = Neq.

Proof used classifications of extremals of

Aleksandrov-Fenchel inequality for convex polytopes.



Our contribution

Open Problem (Folklore)

Give a combinatorial proof to Stanley’s inequality.

Answer (C.—Pak)
We give new combinatorial proof for Stanley’s ineq.

and extend to weighted version.




Order-reversing weight
A weight w : X — R.q is order-reversing if
w(x) > w(y) whenever  x <y.

Weight of linear extension L is




Weighted Stanley's inequality

Fix z € P.

Ny « is w-weight of linear extensions with L(z) = k.

Theorem 5 (C. Pak)
For every poset and k > 1,

2
Nw,k > Nw,k—l—l Nw,k—l-




When is equality achieved?
Theorem 6 (C.-Pak)
Suppose N, > 0. Then
N i® = Nosr1 Ny k1
if and only if

for every linear extension L with L(z) = k,

w(L N (k+1)) = w(L(k-1)) = s,

and
Ahvk Ahmk+1 . Ahmkfl

)

k gk+1 gk—1 "~

S




Combinatorial atlas application:
Poset antimatroids



Feasible words of a poset

A word a € X* is feasible if no repeating elements, and

y occursin &« and x <y = x occurs in « before y.

Feasible: @, a, ab, ac, abc, acb, abcd, achd.
Not feasible: aa, bc, ba.



Chain weight

For x € P, chain weight is
w(x) = number of maximal chains that starts with x.

@—0—@

w(a) =2

W
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Weight of word «a is w(a) := w(aq) ... w(ap).



Log-concave inequality for poset antimatroids

Fu .k 1s sum of w-weight of feasible words of length k.

Theorem 7 (C.-Pak)
For every poset and k > 1,

2
Fw,k > Fw,k+1 Fw,kfl-




When is equality achieved?

Theorem 8 (C.-Pak)
Equality occurs for k =1, ... height(P) — 1
if and only if
Hasse diagram of P is a forest where every leaf is of

the same level.
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