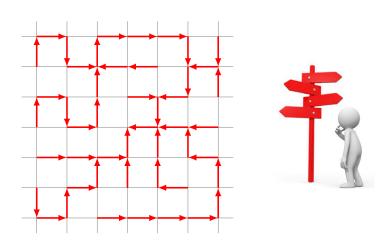
In between random walk and rotor walk

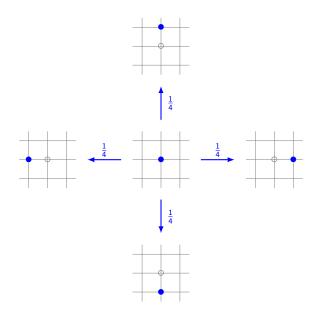
Swee Hong Chan Cornell University Joint work with Lila Greco, Lionel Levine, Boyao Li



Random walk Rotor walk

Simple random walk on $\ensuremath{\mathbb{Z}}^2$

Simple random walk on $\ensuremath{\mathbb{Z}}^2$



Simple random walk on \mathbb{Z}^2

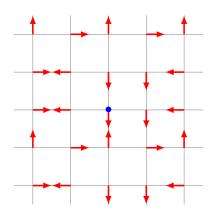
- Visits every site infinitely often? Yes!
- Scaling limit? The standard 2-D Brownian motion:

$$(\underbrace{\frac{1}{\sqrt{n}} \underbrace{X_{[nt]}})_{t \geq 0}}_{\substack{n \to \infty \\ \text{location of the} \\ \text{walker at time } [nt]}} \underbrace{\frac{1}{\sqrt{2}} (\underbrace{B_1(t), B_2(t)})_{t \geq 0}}_{\substack{\text{independent standard} \\ \text{Brownian motions}}}.$$

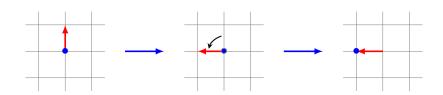
Rotor walk on $\ensuremath{\mathbb{Z}}^2$

Rotor walk on $\ensuremath{\mathbb{Z}}^2$

Put a signpost at each site.

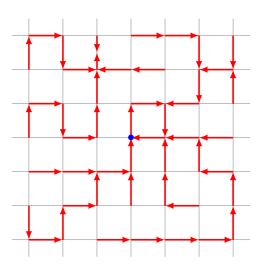


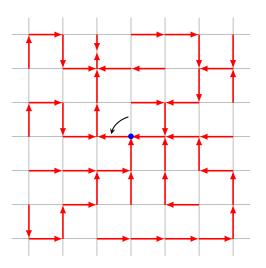
Turn the signpost 90° counterclockwise, then follow the signpost.

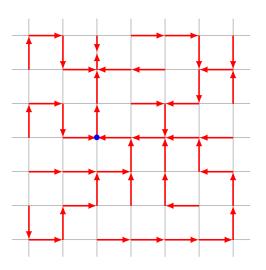


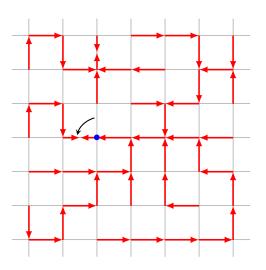
The signpost says:

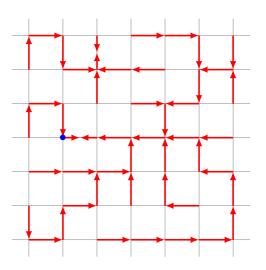
"This is the way you went the last time you were here", (assuming you ever were!)

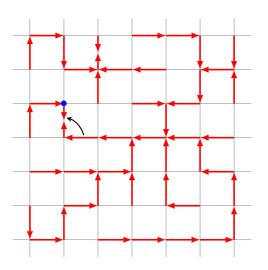


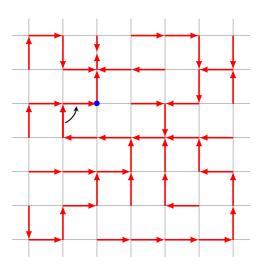


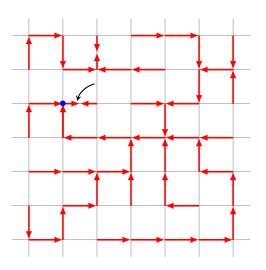


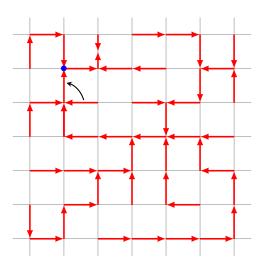




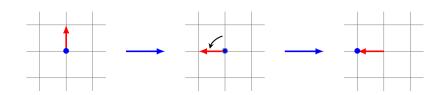








Turn the signpost 90° counterclockwise, then follow the signpost.



The signpost says:

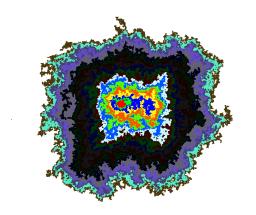
"This is the way you went the last time you were here", (assuming you ever were!)

Why rotor walk?

Randomness can be (was) expensive to simulate!

Why rotor walk?

As a model of self-organized criticality for statistical mechanics.



Visited sites after 80 returns to the origin (by Laura Florescu).

Conjectures for rotor walk on \mathbb{Z}^2

If the initial signposts are i.i.d. uniform among the four directions, then

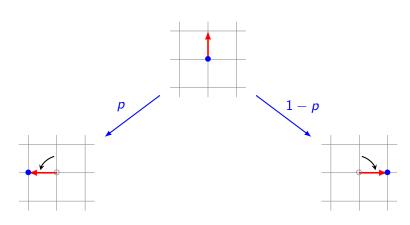
- (PDDK '96) Visits every site infinitely often?
- (PDDK '96) $\#\{X_1, \dots, X_n\}$ is $\asymp n^{2/3}$? (compare with $n/\log n$ for the simple random walk.)
- (Kapri-Dhar '09) The asymptotic shape of $\{X_1, \ldots, X_n\}$ is a disc?

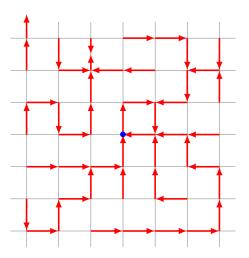
More randomness please!

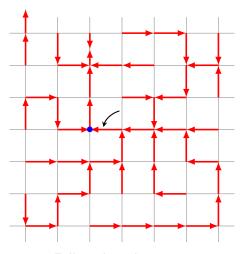
More randomness please!

$\emph{p}\text{-rotor}$ walk on \mathbb{Z}^2

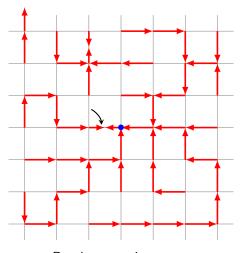
With probability p, turn the signpost 90° counter-clockwise. With probability 1-p, turn the signpost 90° clockwise.



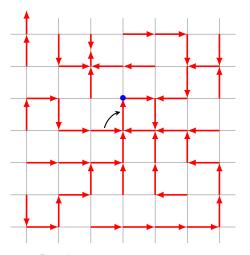




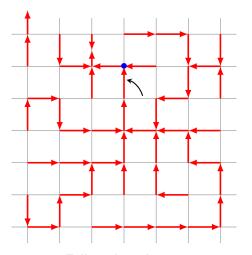
Follow the rule.



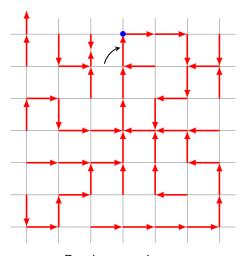
Do the opposite.



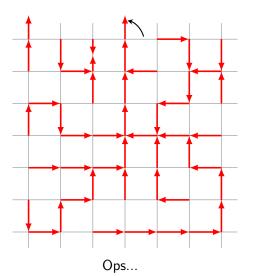
Do the opposite again.



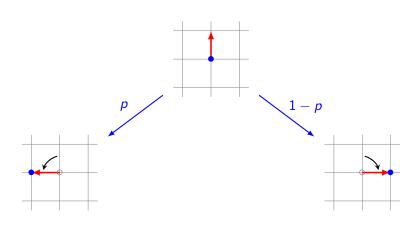
Follow the rule.



Do the opposite.



With probability p, turn the signpost 90° counter-clockwise. With probability 1-p, turn the signpost 90° clockwise.

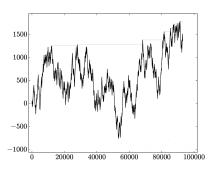


Recover the rotor walk if p = 1.

Scaling limit for p-rotor walk on $\mathbb Z$

(Huss, Levine, Sava-Huss 18) The scaling limit for p-rotor walk on \mathbb{Z} is a perturbed Brownian motion $(Y(t))_{t\geq 0}$,

$$Y(t) = \underbrace{B(t)}_{\substack{\text{standard} \\ \text{Brownian} \\ \text{motion}}} \underbrace{\sup_{\substack{0 \le s \le t \\ \text{perturbation at} \\ \text{maximum}}} Y(s) + \underbrace{b\inf_{\substack{0 \le s \le t \\ \text{minimum}}} Y(s)}_{\substack{0 \le s \le t}}, \quad t \ge 0.$$



Y(t) for a = -0.998, and b = 0 (by Wilfried Huss).

Scaling limit for *p*-rotor walk on \mathbb{Z}^2

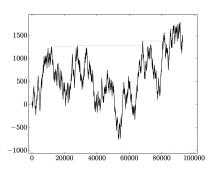
Question: Is the scaling limit for p-rotor walk on \mathbb{Z}^2 is a "2-D perturbed Brownian motion"?

Problem: How to define "2-D perturbed Brownian motion"?.

Scaling limit for p-rotor walk on $\mathbb Z$

(Huss, Levine, Sava-Huss 18) The scaling limit for p-rotor walk on \mathbb{Z} is a perturbed Brownian motion $(Y(t))_{t\geq 0}$,

$$Y(t) = \underbrace{B(t)}_{\substack{\text{standard} \\ \text{Brownian} \\ \text{motion}}} + \underbrace{a \sup_{0 \le s \le t} Y(s)}_{\substack{0 \le s \le t}} + \underbrace{b \inf_{0 \le s \le t} Y(s)}_{\substack{\text{perturbation at} \\ \text{minimum}}} Y(s) \cdot t \ge 0.$$



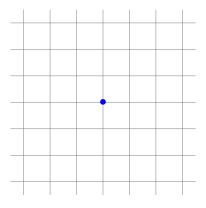
Y(t) for a = -0.998, and b = 0 (by Wilfried Huss).

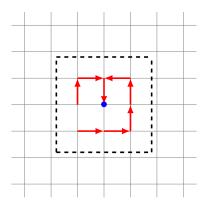
Scaling limit for p-rotor walk on \mathbb{Z}^2

Question: Is the scaling limit for p-rotor walk on \mathbb{Z}^2 is a "2-D perturbed Brownian motion"?

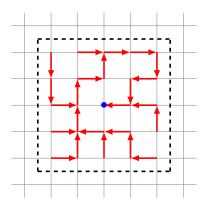
Problem: How to define "2-D perturbed Brownian motion"?.

Conjecture: The scaling limit for *p*-rotor walk on \mathbb{Z}^2 when $p = \frac{1}{2}$ is the standard 2-D Brownian motion.



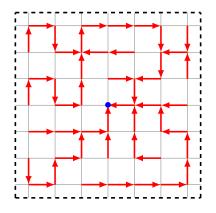


Pick a spanning tree of the black box directed to the origin (uniformly at random).



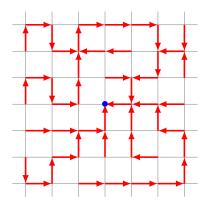
Take the limit as the black box grows until it covers \mathbb{Z}^2 .

Uniform spanning tree plus one edge (UST^+)

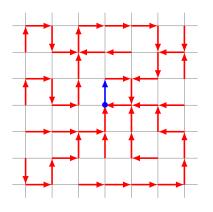


Take the limit as the black box grows until it covers \mathbb{Z}^2 .

Uniform spanning tree plus one edge (UST^+)



Take the limit as the black box grows until it covers \mathbb{Z}^2 .



Add a signpost from the origin, uniform among the four directions.

Scaling limit for *p*-rotor walk on \mathbb{Z}^2

Theorem (C., Greco, Levine, Li '18+)

Let $p = \frac{1}{2}$ and let the uniform spanning tree plus one edge be the initial signpost configuration. Then, with probability 1, the p-rotor walk on \mathbb{Z}^2 scales to the standard 2-D Brownian motion:

$$\frac{1}{\sqrt{n}}(\underbrace{X_{[nt]}})_{t\geq 0} \overset{n\to\infty}{\Longrightarrow} \frac{1}{\sqrt{2}}(\underbrace{B_1(t),B_2(t)})_{t\geq 0}.$$
location of the walker at time [nt] location of the Brownian motions

Main ideas of the proof

• How does $p = \frac{1}{2}$ help?

• How does uniform spanning tree plus one edge help?

Main ideas of the proof

• How does $p = \frac{1}{2}$ help? Because then the *p*-rotor walk is a martingale:

$$\begin{split} \mathbb{E}[X_{t+1} \mid \mathcal{F}_t] = & X_t + \left(\rho \underbrace{\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}}_{90^\circ \text{ rotation }} + (1-\rho) \underbrace{\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}}_{-90^\circ \text{ rotation }} \underbrace{\underbrace{\rho_t(X_t)}_{\text{ signpost of } X_t}}_{\text{ at time } t} \\ = & X_t. \end{split}$$

• How does uniform spanning tree plus one edge help?

Martingale CLT

If $(X_t)_{t\geq 0}$ is a martingale with bounded differences in \mathbb{R}^2 , then

$$\frac{1}{\sqrt{n}}(X_{[nt]})_{t\geq 0} \stackrel{n\to\infty}{\Longrightarrow} \frac{1}{\sqrt{2}} \underbrace{(B_1(t), B_2(t))}_{\substack{\text{independent} \\ \text{Brownian motions}}}_{\text{Brownian motions}},$$

provided that:

$$\frac{1}{n} \sum_{t=0}^{n-1} \underbrace{(X_{t+1} - X_t)}_{\text{martingale difference}} (X_{t+1} - X_t)^{\top} \xrightarrow{n \to \infty} \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{bmatrix}. \quad \text{(LLN)}$$

Martingale CLT

If $(X_t)_{t\geq 0}$ is a martingale with bounded differences in \mathbb{R}^2 , then

$$\frac{1}{\sqrt{n}}(X_{[nt]})_{t\geq 0} \stackrel{n\to\infty}{\Longrightarrow} \frac{1}{\sqrt{2}} \underbrace{(B_1(t), B_2(t))}_{\substack{\text{independent} \\ \text{Brownian motions}}}_{\text{Brownian motions}},$$

provided that:

$$\frac{1}{n} \sum_{t=0}^{n-1} \mathbf{1} \{ \widehat{\rho}_t(0) = \text{vertical} \} \xrightarrow{n \to \infty} \frac{1}{2}.$$
 (LLN)

In our case, (LLN) means the fraction of vertical signposts encountered by the walker converges (in probability) to one-half.

Martingale CLT

If $(X_t)_{t\geq 0}$ is a martingale with bounded differences in \mathbb{R}^2 , then

$$\frac{1}{\sqrt{n}}(X_{[nt]})_{t\geq 0} \stackrel{n\to\infty}{\Longrightarrow} \frac{1}{\sqrt{2}} \underbrace{(B_1(t), B_2(t))}_{\substack{\text{independent} \\ \text{Brownian motions}}}_{\text{Brownian motions}},$$

provided that:

$$\frac{1}{n} \sum_{t=0}^{n-1} \mathbf{1} \{ \widehat{\rho}_t(0) = \text{vertical} \} \xrightarrow{n \to \infty} \frac{1}{2}.$$
 (LLN)

In our case, (LLN) means the fraction of vertical signposts encountered by the walker converges (in probability) to one-half.

Main ideas of the proof

- How does $p = \frac{1}{2}$ help? Because then the *p*-rotor walk is a martingale.
- How does uniform spanning tree plus one edge help?

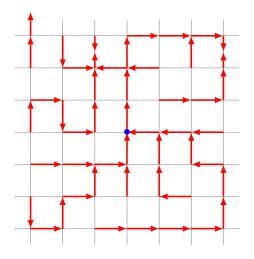
Main ideas of the proof

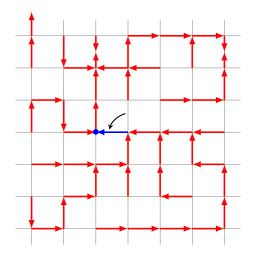
- How does $p = \frac{1}{2}$ help? Because then the *p*-rotor walk is a martingale.
- How does uniform spanning tree plus one edge help?
 Because it is stationary and ergodic from the walker's POV.

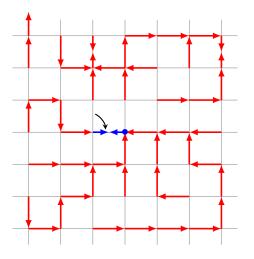
Stationarity from the walker's POV

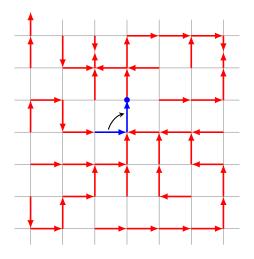
A signpost configuration $(\rho_0(x))_{x\in\mathbb{Z}^2}$ is stationary in time from the walker's point of view if

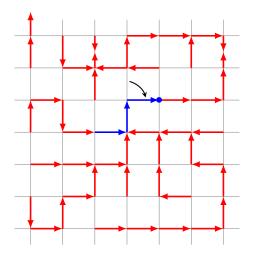
$$\widehat{(\rho_1(x))}_{x\in\mathbb{Z}^2} := (\rho_1(x-X_1))_{x\in\mathbb{Z}^2} \stackrel{d}{=} \underbrace{(\rho_0(x))_{x\in\mathbb{Z}^2}}_{\text{signpost conf. at time 1 from walker's POV}}.$$

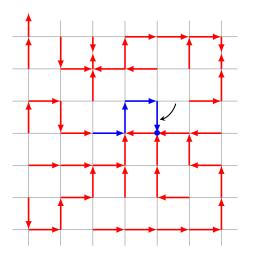


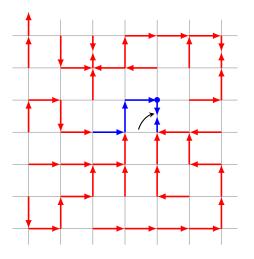


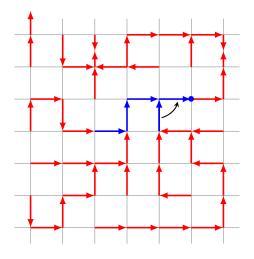


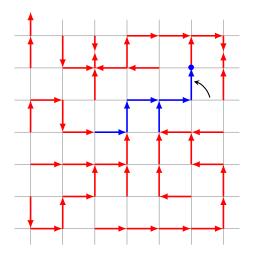


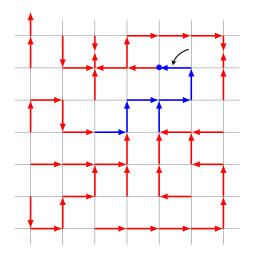


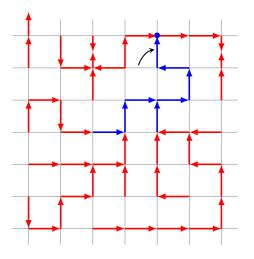


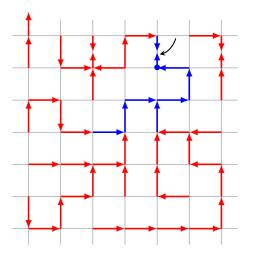


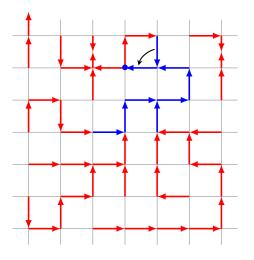












Pointwise ergodic theorem

For a Markov chain (Ω, T, π) and any integrable function f,

$$\frac{1}{n} \sum_{t=0}^{n-1} f(T^t(x)) \xrightarrow[\pi-a.s.]{n \to \infty} \underbrace{\mathbb{E}[f \mid \mathcal{I}]}_{\text{conditioning on the invariant } \sigma-\text{field}}_{\text{invariant } \sigma-\text{field}}$$

Pointwise ergodic theorem

For a Markov chain (Ω, T, π) and any integrable function f,

$$\frac{1}{n} \sum_{t=0}^{n-1} f(T^t(x)) \xrightarrow[n\to\infty]{} \underbrace{\mathbb{E}[f\mid\mathcal{I}]}_{\text{conditioning on the invariant }\sigma-\text{field}}.$$

This implies:

$$\frac{1}{n} \sum_{t=0}^{n-1} \mathbf{1}\{\widehat{\rho}_t(0) = \text{vertical}\} \xrightarrow{n \to \infty} \mathbb{E}[f \mid \mathcal{I}], \qquad \text{(LLN')}$$
walker's signpost at time t

$$\Omega = \text{set of signpost configurations};$$
 $T = \text{One step of } p\text{-rotor walk} + \text{recentering};$ $\pi = \text{UST}^+;$ $f = \mathbf{1}\{\rho(0) = \text{vertical}\}.$

Back to (LLN)

Note that:

$$\frac{1}{n} \sum_{t=0}^{n-1} \mathbf{1}\{\widehat{\rho}_t(0) = \text{vertical}\} \xrightarrow{n \to \infty} \underbrace{\mathbb{E}[f \mid \mathcal{I}]}_{\text{conditioning on the invariant } \sigma-\text{field}} \text{(LLN')}$$

implies

$$\frac{1}{n} \sum_{t=0}^{n-1} \mathbf{1} \{ \widehat{\rho}_t(0) = \text{vertical} \} \xrightarrow{n \to \infty} \frac{1}{2}, \tag{LLN}$$

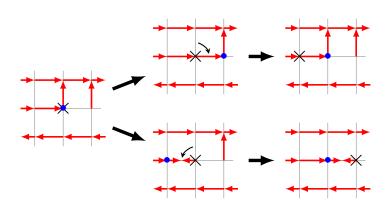
if the chain is ergodic,

A is invariant
$$\Rightarrow$$
 $\mathbb{P}[A] \in \{0,1\}.$

Invariant sets

A set of signpost configurations A is invariant if

$$\rho \in A \iff T(\rho) \in A$$
 almost surely.

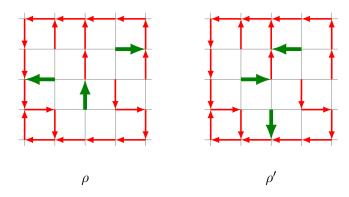


Tail triviality

A set of signpost configurations A is a tail set if

$$\rho \in A \quad \Leftrightarrow \quad \rho' \in A,$$

for any ρ, ρ' that differ by finitely many edges.



Tail triviality

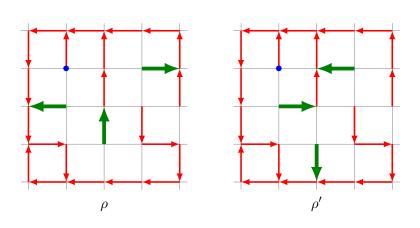
A set of signpost configurations A is a tail set if

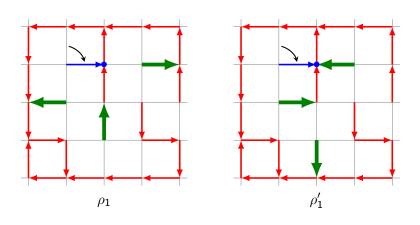
$$\rho \in A \quad \Leftrightarrow \quad \rho' \in A,$$

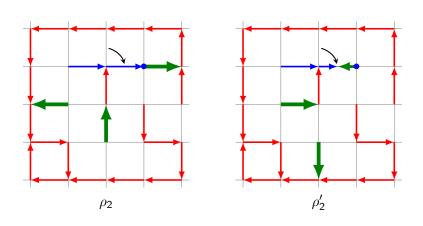
for any ρ,ρ' that differ by finitely many edges.

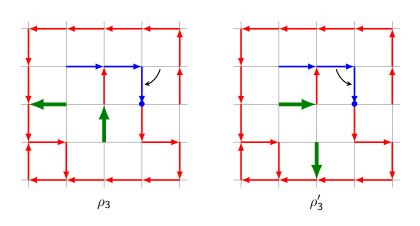
It is known that UST⁺ is tail trivial,

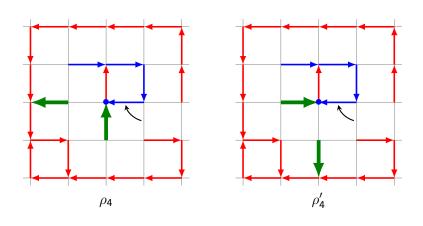
 $A ext{ is a tail set } \Rightarrow \mathbb{P}[A] \in \{0,1\}.$

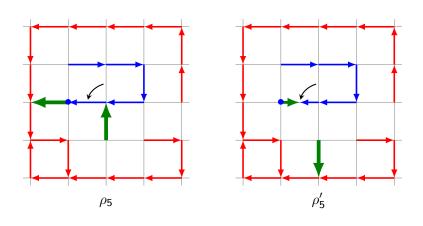


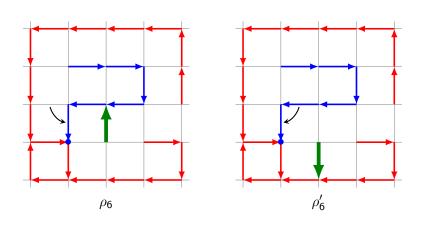


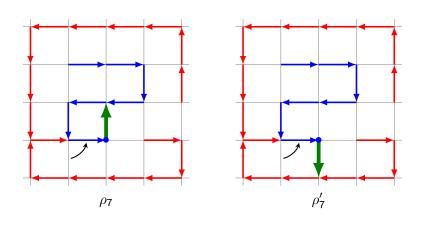


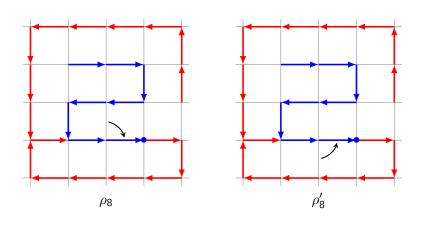


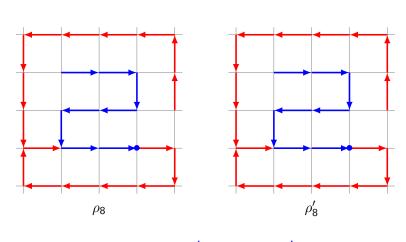






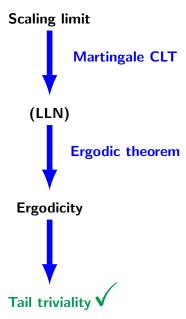






$$\rho \in A \quad \Leftrightarrow \quad \rho_8 = \rho_8' \in A \quad \Leftrightarrow \quad \rho' \in A.$$

Back to the scaling limit



Back to the scaling limit

Theorem (C., Greco, Levine, Li '18+)

Let $p = \frac{1}{2}$ and let the uniform spanning tree plus one edge be the initial signpost configuration. Then, with probability 1, the p-rotor walk on \mathbb{Z}^2 scales to the standard 2-D Brownian motion:

$$\frac{1}{\sqrt{n}}(X_{[nt]})_{t\geq 0} \stackrel{n\to\infty}{\Longrightarrow} \frac{1}{\sqrt{2}}(B_1(t),B_2(t))_{t\geq 0}.$$
location of the walker at time [nt] location motions

What is next?

For *p*-rotor walk with UST⁺ as the initial signpost configuration:

What is next?

For *p*-rotor walk with UST⁺ as the initial signpost configuration:

Question: Prove scaling limit for when $p \neq \frac{1}{2}$?

Problem: Need to define the "2-D perturbed Brownian motion (?)".



What is next?

For *p*-rotor walk with UST⁺ as the initial signpost configuration:

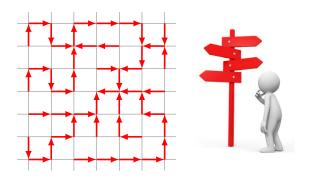
Question: Does the walk visit every site in \mathbb{Z}^d infinitely often?

Answer for $p \in \{0,1\}$: NO (Florescu, Levine, Peres 16):

Answer for $\mathbb Z$ with $p\in (0,1)$: YES (Huss, Levine, Sava-Huss 18).

Answer for \mathbb{Z}^d with $p = \frac{1}{2}$ and $d \geq 3$: NO.

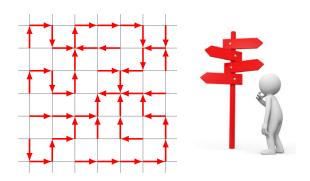
Open for \mathbb{Z}^d with $p \in (0,1)$ and d=2.



Preprint: https://math.cornell.edu/~sc2637/RWLM.pdf

Can be contacted at: sweehong@math.cornell.edu

THANK YOU!



Preprint: https://math.cornell.edu/~sc2637/RWLM.pdf

Can be contacted at: sweehong@math.cornell.edu