Complexity of Combinatorial Log-concave Inequalities

Swee Hong Chan joint with Igor Pak

What is log-concavity?

A sequence $a_{1}, \ldots, a_{n} \in \mathbb{R}_{\geq 0}$ is log-concave if

$$
a_{k}^{2} \geq a_{k+1} a_{k-1} \quad(1<k<n)
$$

Log-concavity (and positivity) implies unimodality:
$a_{1} \leq \cdots \leq a_{m} \geq \cdots \geq a_{n}$ for some $1 \leq m \leq n$.

Example: binomial coefficients

$$
a_{k}=\binom{n}{k} \quad k=0,1, \ldots, n .
$$

This sequence is log-concave because
$\frac{a_{k}^{2}}{a_{k+1} a_{k-1}}=\frac{\binom{n}{k}^{2}}{\binom{n}{k+1}\binom{n}{k-1}}=\left(1+\frac{1}{k}\right)\left(1+\frac{1}{n-k}\right)$,
which is greater than 1 .

Example: permutations with k inversions

$a_{k}=$ number of $\pi \in S_{n}$ with k inversions, where inversion of π is pair $i<j$ s.t. $\pi_{i}>\pi_{j}$. This sequence is log-concave because

$$
a_{k} q^{k}=[n]_{q}!=\prod_{i=1}^{n-1}\left(1+q+q^{2}+\ldots+q^{i}\right)
$$

is a product of log-concave polynomials.

Examples: forests of a graph

$a_{k}=$ number of forests with k edges of graph G.
Forest is a subset of edges of G that has no cycles.

Log-concavity was conjectured for all matroids
(Mason '72), and was proved through combinatorial Hodge theory (Huh '15).

G

forest

not forest

spanning tree

Log-concavity has been proved in various aspects of mathematics in varying degrees of difficulties.

We would like to rigorously formalize this difference in difficulties.

Log-concavity has been proved in various aspects of mathematics in varying degrees of difficulties.

We would like to rigorously formalize this difference in difficulties.

We will start with log-concave poset inequalities.

Poset inequalities

Partially ordered sets

A poset \mathcal{P} is a set X with a partial order \prec on X.

Linear extension

A linear extension L is a complete order of \prec.

We write $L(x)=k$ if x is k-th smallest in L.

Stanley (poset) inequality: simple form

Fix $x \in \mathcal{P}$.
$N(k):=$ number of linear extensions with $L(x)=k$.
Theorem (Stanley '81)

$$
N(k)^{2} \geq N(k+1) N(k-1) \quad(k \in \mathbb{N})
$$

The inequality was initially conjectured by
Chung-Fishburn-Graham, and was proved using Aleksandrov-Fenchel inequality for mixed volumes.

Stanley (poset) inequality: consequence

Weak Bruhat order on permutation group S_{n} is some reduced word of π is a left subword of some reduced word of σ.

For $\sigma \in S_{n}$, let

$$
N^{\sigma}(k):=\begin{aligned}
& \text { number of } \pi \in S_{n} \text { such that } \\
& \pi \unlhd \sigma \text { and } \pi(1)=k .
\end{aligned}
$$

Corollary

Sequence $N^{\sigma}(1), \ldots, N^{\sigma}(n)$ is log-concave.

Stanley (poset) inequality: true form

$$
\begin{aligned}
& \text { Fix } d \geq 0, x, y_{1}, \ldots, y_{d} \in \mathcal{P} \text { and } \ell_{1}, \ldots, \ell_{d} \in \mathbb{N} . \\
& \qquad N_{d}(k):=\begin{array}{l}
\text { number of linear extensions with } \\
L(x)=k, \quad L\left(y_{i}\right)=\ell_{i} \quad \text { for } i \in[d] .
\end{array}
\end{aligned}
$$

Theorem (Stanley '81)

$$
N_{d}(k)^{2} \geq N_{d}(k+1) N_{d}(k-1) \quad(k \in \mathbb{N}) .
$$

This form corresponds to imposing boundary conditions in PDE/statistical physics.

When is equality achieved?

Question (Stanley '81)
Find equality condition for [Stanley inequality].

Quote (Gardner '02)
If inequalities are silver currency in mathematics, those that come along with precise equality conditions are gold.

Equality condition: $d=0$ (numerical)

Theorem (Shenfeld-van Handel '23)
Suppose $d=0$ and $N_{d}(k)>0$. Then

$$
N_{d}(k)^{2}=N_{d}(k+1) N_{d}(k+1)
$$

if and only if

$$
N_{d}(k)=N_{d}(k+1)=N_{d}(k-1) .
$$

Equality condition: $d=0$ (combinatorial)

Theorem (Shenfeld-van Handel '23)
Suppose $d=0$ and $N_{d}(k)>0$. Then

$$
N_{d}(k)^{2}=N_{d}(k+1) N_{d}(k+1)
$$

if and only if

$$
\begin{array}{ll}
\left|\mathcal{P}_{<z}\right|>k & \text { for all } z \in \mathcal{P}_{>x}, \\
\left|\mathcal{P}_{>z}\right|>|P|-k+1 & \text { for all } z \in \mathcal{P}_{<x}, \\
\text { where } \mathcal{P}_{<z}:=\text { set of } y \in \mathcal{P} \text { with } y<z .
\end{array}
$$

This a combinatorial condition, and can be checked in $O\left(|\mathcal{P}|^{2}\right)$ steps.

Equality condition: $d \geq 1$ (numerical)

Theorem (Ma-Shenfeld '24)
Suppose $d \geq 1$ and $N_{d}(k)>0$. Then

$$
N_{d}(k)^{2}=N_{d}(k+1) N_{d}(k+1)
$$

if and only if

$$
N_{d}(k)=N_{d}(k+1)=N_{d}(k-1) .
$$

Question (Ma-Shenfeld '24)
Find a combinatorial condition for $d \geq 1$.

Main result

Consider the decision problem for

 checking equality in Stanley inequality:$$
N_{d}(k)^{2}=? \quad N_{d}(k+1) N_{d}(k+1)
$$

Theorem 1 (C.-Pak '23+)

- $d \leq 1$: combinatorial equality condition that is checkable in poly $(|\mathcal{P}|)$ steps.
- $d \geq 2$: not part of polynomial hierarchy, unless polynomial hierarchy collapses.

Polynomial hierarchy

Decision vs counting

Decision problem: answer is either 'Yes' or 'No'.
Counting problem: answer is a nonnegative integer.

Example (3-colorings of graph G)

- Decision problem: Check if there exists
a proper 3-coloring of G.
- Counting problem: Find the number of proper 3-colorings of G.

Polynomial hierarchy is a subclass of decision problems.

Complexity class P

$P:=\left\{\begin{array}{l}\text { Decision problems solvable by deterministic } \\ \text { Turing machine in polynomial time }\end{array}\right\}$
Example
Check if a given 3-coloring of a graph G is proper.
This can be solved in $O\left(n^{2}\right)$ time by checking the color of endpoints of every edge.

YES

NO

Complexity class NP

NP $:=\left\{\begin{array}{l}\text { Decision problems solvable by nondetermi- } \\ \text { nistic Turing machine in polynomial time }\end{array}\right\}$.

- Can split into many parallel branches;
- Output 'YES' if one of the branches said 'YES';
- Output ' NO ' if all branches said ' NO '.

Non-Deterministic

Complexity class NP: example

Problem: Check if graph G has a proper 3 -coloring.

Each branch corresponds to checking if a particular 3-coloring of G is proper.

NO
Output to this example is 'YES'.

Turing machine with an oracle

At each step, this machine can either:

- Perform usual nondeterministic Turing machine operation; or
- Ask an oracle that is able to answer any instance of a given computational problem.

Turing machine with an oracle: example

Problem: Check if there is an induced subgraph of
G of size $\lceil n / 2\rceil$ that is not 3 -colorable.
Oracle: Can check if a graph is 3 -colorable.

Turing machine with an oracle: example

Problem: Check if there is an induced subgraph of
G of size $\lceil n / 2\rceil$ that is not 3 -colorable.
Oracle: Can check if a graph is 3 -colorable.
Each branch of the machine corresponds to an induced subgraph of G of size $\lceil n / 2\rceil$.

\rightarrow

For every branch, oracle checks if subgraph is 3 -colorable.

Complexity class \sum_{i}^{P}

The first two classes are

$$
\Sigma_{0}^{\mathrm{P}}:=\mathrm{P} ; \quad \Sigma_{1}^{\mathrm{P}}:=\mathrm{NP} .
$$

For $i \geq 1$, the class $\sum_{i}^{P}:=\mathrm{NP}^{\sum_{i-1}^{\mathrm{P}}}$ is
$\left\{\begin{array}{l}\text { Decision problems solvable by nondetermi- } \\ \text { nistic Turing machine in polynomial time } \\ \text { with an oracle for problem from } \Sigma_{i-1}^{\mathrm{P}} .\end{array}\right\}$.

Note that

$$
\Sigma_{0}^{P} \subseteq \Sigma_{1}^{P} \subseteq \Sigma_{2}^{P} \subseteq \Sigma_{3}^{P} \subseteq \cdots
$$

Complexity class \sum_{i}^{p} : example

Problem A: Check if a 3-coloring of G is proper.
Problem A is in $\Sigma_{0}^{P}=P$.
Problem B: Check if G has a proper 3-coloring.
Problem B is in $\Sigma_{1}^{P}=N P$.
Problem C: Check if there is an induced subgraph of G of size $\lceil n / 2\rceil$ that is not 3 -colorable.
Problem C is in $\Sigma_{2}^{P}=N P^{N P}$.

Polynomial hierarchy (PH)

Polynomial hierarchy is the union of all Σ_{i}^{P} 's,

$$
\mathrm{PH}:=\bigcup_{i=0}^{\infty} \Sigma_{i}^{\mathrm{P}} .
$$

Conjecture
Polynomial hierarchy does not collapse,

$$
\Sigma_{0}^{P} \subsetneq \Sigma_{1}^{P} \subsetneq \Sigma_{2}^{P} \subsetneq \Sigma_{3}^{P} \subsetneq \cdots
$$

- $\Sigma_{0}^{P}=\Sigma_{1}^{P}$ is equivalent to $P=N P$.
- $\Sigma_{1}^{P}=\Sigma_{2}^{P}$ is equivalent to $N P=$ coNP.

Back to main result

Consider the decision problem for checking equality in Stanley inequality:

$$
N_{d}(k)^{2}=? \quad N_{d}(k+1) N_{d}(k+1)
$$

Theorem (C.-Pak '23+)

- $d \leq 1$: Problem is in P .
- $d \geq 2$: Problem is not in PH , unless PH collapses.

Recall our goal ...

Log-concavity has been proved in various aspects of mathematics in varying degrees of difficulties.

We would like to rigorously formalize this difference in difficulties.

Complexity class \#P

Complexity class \#P

Example
Count number of proper 3-colorings of graph G.
Example
Count number of linear extensions $N_{d}(k)$ of poset \mathcal{P}

Main result

Theorem 2 (C.-Pak '23+)
For $d \geq 2$, the defect of Stanley inequality

$$
N_{d}(k)^{2}-N_{d}(k+1) N_{d}(k+1)
$$

is not in \#P, unless PH collapses.

Note: $N_{d}(k)^{2}$ and $N_{d}(k+1) N_{d}(k+1)$ are in \#P.
Theorem is a consequence of previous main result.

Example: defect of binomial inequalities

$$
\binom{n}{k}^{2} \geq\binom{ n}{k+1}\binom{n}{k-1} \quad(1<k<n)
$$

This inequality has a lattice path interpretation:
$K(a \rightarrow c, b \rightarrow d):=$ no. of pairs of north-east lattice paths from a to c and b to d,
for $a, b, c, d \in \mathbb{Z}^{2}$.

Example: defect of binomial inequalities

 Let$$
\begin{array}{lll}
a=(0,1), & & c=(k, n-k+1), \\
b=(1,0), & d=(k+1, n-k) .
\end{array}
$$

Then

$$
\begin{aligned}
& K(a \rightarrow c, b \rightarrow d)=\binom{n}{k}^{2}, \\
& K(a \rightarrow d, b \rightarrow c)=\binom{n}{k-1}\binom{n}{k+1} .
\end{aligned}
$$

Example: defect of binomial inequalities

Note $K(a \rightarrow c, b \rightarrow d) \geq K(a \rightarrow d, b \rightarrow c)$ by path-swapping injections.

$$
K(a \rightarrow c, b \rightarrow d)-K(a \rightarrow d, b \rightarrow c) \text { is }
$$

number of pairs of north-east lattice paths
from a to c, b to d, that do not intersect.
This number is thus in $\# P$.

Example: Edge correlation for spanning trees

Let G be a graph, let e, f be distinct edges of G.
$\mathcal{T}:=$ no. of spanning trees of G,
$\mathcal{T}_{e}:=$ no. of spanning trees of G containing e,
$\mathcal{T}_{e, f}:=$ no. of spanning trees of G containing e and f.
Theorem

$$
\mathcal{T}_{e} \mathcal{T}_{f} \geq \mathcal{T} \mathcal{T}_{e, f}
$$

Defect can be computed in polynomial time by matrix tree theorem. This number is thus in $\# P$.

Example: defect of Sidorenko inequality

For a permutation $\sigma \in S_{n}$, let
$\mathrm{LI}(\sigma):=$ number of $\pi \in S_{n}$ such that $\pi \unlhd \sigma$,
where \unlhd is the weak Bruhat order on S_{n}.
Theorem (Sidorenko '91)

$$
\operatorname{LI}(\sigma) \operatorname{LI}(\bar{\sigma}) \geq n!, \quad\left(\sigma \in S_{n}\right),
$$

where $\bar{\sigma}$ is the reverse of σ.

Proved by max-flow min-cut argument. Defect was shown to be in \#P by C.-Pak-Panova '23.

Back to main result

Theorem (C.-Pak '23+)
For $d \geq 2$, the defect of Stanley inequality

$$
N_{d}(k)^{2}-N_{d}(k+1) N_{d}(k+1)
$$

is not in $\# P$, unless PH collapses.

This suggests Stanley inequality can't be proved by

- 'Effective' injection arguments;
- Determinantal process arguments;
- 'Effective' max-flow min-cut arguments.

Matroids

Object: matroids

Matroid $\mathcal{M}=(X, \mathcal{I})$ is ground set X with

 collection of independent sets $\mathcal{I} \subseteq 2^{X}$.Graphical matroids

- $X=$ edges of a graph G,
- $\mathcal{I}=$ forests in G.

Realizable matroids

- $X=$ finite set of vectors over field \mathbb{F},
- $\mathcal{I}=$ sets of linearly independent vectors.

Matroids: conditions

- $S \subseteq T$ and $T \in \mathcal{I}$ implies $S \in \mathcal{I}$.

- If $S, T \in \mathcal{I}$ and $|S|<|T|$, then there is
$x \in T \backslash S$ such that $S \cup\{x\} \in \mathcal{I}$.

A basis is a maximal independent set.
Rank r of matroid is the size of the bases.

Ultra log-concavity for bases

Fix $d \geq 0$, disjoint subsets S, S_{1}, \ldots, S_{d} of X, and $\ell_{1}, \ldots, \ell_{d} \in \mathbb{N}$.
$\mathrm{B}_{d}(k):=$ number of bases B of \mathcal{M} such that

$$
|B \cap S|=k,\left|B \cap S_{i}\right|=\ell_{i} \text { for } i \in[d],
$$

divided by $\left(\begin{array}{c}\left.{ }_{k, \ell_{1}, \ldots, \ell_{d}}\right)\end{array}\right)$.
Theorem (Basis ULC)

$$
\mathrm{B}_{d}(k)^{2} \geq \mathrm{B}_{d}(k+1) \mathrm{B}_{d}(k-1) \quad(k \in \mathbb{N}) .
$$

Proved for regular matroids by (Stanley '81), and for all matroids by (Yan '23).

Basis ULC implies Mason inequality

$\mathrm{I}(k):=$ no. of independents sets with k elements.
$\mathrm{I}(k)$ is no. of forest with k edges for graphic matroids.
Theorem (Mason inequality)

$$
\mathrm{I}(k)^{2} \geq \mathrm{I}(k+1) \mathrm{I}(k-1)
$$

Proof.
$\mathcal{M}=$ given matroid with ground set X.
$\mathcal{N}^{\prime}=$ direct sum of \mathcal{M} with the free matroid.
Set $d=0$ and $S=X$. Then

$$
\mathrm{I}(k) \text { for } \mathcal{M}=\mathrm{B}_{d}(k) \text { for } \mathcal{M}^{\prime}
$$

Main result

Consider the decision problem for checking equality in Basis ULC for binary matroids:

$$
\mathrm{B}_{d}(k)^{2}=? \mathrm{~B}_{d}(k+1) \mathrm{B}_{d}(k-1)
$$

Theorem 3 (C.-Pak)

- $d=0$: Problem is in coNP.
- $d \geq 1$: Problem is not in PH , unless PH collapses.

Main result

Theorem 4 (C.-Pak)
For $d \geq 1$, defect of Basis ULC for binary matroids

$$
\mathrm{B}_{d}(k)^{2}-\mathrm{B}_{d}(k+1) \mathrm{B}_{d}(k-1)
$$

is not in \#P, unless PH collapses.
This suggests Basis ULC can't be proved by

- 'Effective' injection arguments;
- Determinantal process arguments;
- 'Effective' max-flow min-cut arguments.

What is next?

Conjecture
For $d=0$, defect of Stanley inequality

$$
N(k)^{2}-N(k+1) N(k-1) \notin \# P .
$$

For $d=0$, defect of Basis ULC

$$
\mathrm{B}(k)^{2}-\mathrm{B}(k+1) \mathrm{B}(k-1) \notin \# P .
$$

For $d=0$, defect of Mason inequality

$$
\mathrm{I}(k)^{2}-\mathrm{I}(k+1) \mathrm{I}(k-1) \notin \# P .
$$

THANK YOU!

Preprint: www.arxiv.org/abs/2309.05764
Webpage: www.math.rutgers.edu/~sc2518/
Email: sweehong.chan@rutgers.edu

