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What is a spanning tree?

Let G = (V, E) be a simple graph.

A spanning tree is a subset of edges of G that
@ includes all vertices (spanning),

@ has no cycles (tree).
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Examples: Phylogenetic tree
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From Elementary Geology (1840),
by Edward Hitchcock



How many spanning trees can a graph have?



Cayley's formula

Theorem (Borchardt 1860, Cayley 1889)

The number of spanning trees of a complete graph

with n vertices is n" 2.

Carl W. Borchardt Arthur Cayley



Matrix tree theorem

Theorem (Kirchhoff 1847)
The number of spanning trees t(G) of G is equal to

the determinant of a minor of its Laplacian matrix.

(1) (2) 2 0 -1 -1
0 1 0 -1
10 2 -1
() 0 1 -1 -1 3

G Laplacian



Matrix tree theorem

Theorem (Kirchhoff 1847)
The number of spanning trees t(G) of G is equal to

the determinant of a minor of its Laplacian matrix.

Gustav Kirchhoff
Note: Kirchhoff's paper has neither matrices nor trees.



Sedlaéek’s Problems



Set of spanning tree numbers

For n > 1, let

g, = {aII simple graphs with n vertices},

t(Gp) =

simple graphs with n vertices

{number of spanning trees of all}
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Properties of t(G,)

e We have t(G,) C t(Gni1).

—

o Wehave | t(G,) = {0,1,2,3,4,5,...}.

AN

n>1
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Sedlacek’s First Problem
Problem (Sedlad¢ek 1966)

Describe the set of spanning tree numbers t(G,).

O KOSTRACH KONECNYCH GRAFU ON THE SPANNING TREES OF FINITE GRAPHS

Jikf SEDLACEK, Praha Jikf SEDLACEK, Praha

(Doslo dne 28. srpna 1965)



Sedlaéek’s First Problem

Theorem (Sedlatek 1966)
For n > 3,

n < t(Gn)| < n"2.

It is clear that the lower bound is not tight.

Conjecture

t(Gn,) O {0,1,3,4,...,c"} for some c > 1.




Motivation: Inverse counting problem

Input: Integer T > 3.
Problem: Construct graph G with t(G) = T and
|V(G)] < clogT forsome c > 0.
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Motivation: Inverse counting problem

Input: Integer T > 3.
Problem: Construct graph G with t(G) = T and
|IV(G)| < clogT forsome c > 0.

Solution to the above problem would imply

t(G,) D {0,1,3,4,...,c"}.



What was known

First super-polynomial lower bound
was due to Azarija (2014):

|t(g,,)| > eQ(\/n/ log n).

Best lower bound prior to our work
was due to Stong (2022):

t(G,)| > 2,



Sedlagek’s Second Problem

For n > 1, let

P, = {aII simple planar graphs with n vertices}.

Problem (Sedld¢ek 1966)

Describe the set of spanning tree numbers of planar
graphs t(P,).

Note: Four-color theorem was proved in 1976,

in University of lllinois.



What was known

It follows from Euler’'s formula that

1t(P,)| < 2Bl < 8"

The best bounds prior to our work were:

M) < ¢(Py)| < (5.2852)".

Upper bound was due to Buchin-Schulz (2010),
lower bound was due to Stong (2022).



First main result

Theorem 1 (C.—Kontorovich—Pak 2024+ )

For sufficiently large n,

t(P,)| > (1.1103)".

Note that this implies
4G = 6P| > (1.1103)".
This is the first exponential lower bound

for Sedlacek’s First Problem, and a tight

lower bound for Second Problem.



Almost all integers

A set S C N contains almost all integers if
Sni{1.....N
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1.

This is a weaker notion than requiring S

to contain all but finitely many integers.



Second main result
Input: Integer T > 3.

Problem: Construct graph G with t(G) = T and
|IV(G)] < clog T for some ¢ > 1.
Theorem 2 (C.—Kontorovich-Pak 2024+ )

For almost all integers T, there exists a planar
graph G with t(G) = T and

|V(G)| < 56log, T.

Here ¢ = # = 1.618 is the golden ratio.



Connections to continued fractions



Continued fractions

For integers a1, ...,ax > 1,

[al,...,ak] =

a +

1
aH+ ——
"-—I—ak

t

Every rational number < 1 can be written as a

<

finite continued fraction using Euclidean algorithm.

Furthermore, we have k < Iog(p u.



Connect spanning trees to continued fractions
Input: by,...,b > 1.

Output: Planar graph G and edge e with

t(G —e)
——r = 1 1,... 1
t(G/e) [b17 ) b27 ) ) bﬁ) i|7

t(G —e) and t(G/e) are coprime,
\V(G)| = bi+---+ b +2.

Here G — e is graph deletion,

and G/e is graph contraction.



The silkworm graph

DEg)

The i-th cycle has b; + 2 vertices.

The example above has

63

229’

t(G—e) = 63, t(G/e) = 229.

3,1,1,1,2,1,4,1] =



Zaremba’s conjecture



Zaremba's conjecture

Conjecture (Zaremba 1972)

For every integer u, there exists coprime t < u with
t
- = [al,...,ak],
u

ai,...,ax < b.

Conjecture is false if 5 is replaced with 4,
with u = 54.

Note a; + ...+ ax < 5Iog(pu
by Euclidean’s algorithm.



Bourgain—Kontorovich theorem

Theorem (Bourgain—Kontorovich 2014)
For almost all integers u, that there exists coprime
t < u with

E = I:al,...,ak]7

ap,...,ax < b0.

Huang (2015) has since improved
the bound from 50 to 5.



Bourgain—Kontorovich theorem

Theorem (Bourgain—Kontorovich 2014)
For almost all integers u, that there exists coprime
t < u with

E = [31,...7ak]7

ap,...,ax < b0.

Huang (2015) has since improved
the bound from 50 to 5.

This is almost what we need for Sedla¢ek’s Problem.



Alternating BK theorem

Theorem (C.—Kontorovich—Pak 2024+)

For almost all integers t, there exists coprime u > t
with

- [b1717b2717"'7b£’1}’

< |~

by,...,by < 110.

This is exactly what we need!




Back to inverse counting problem

Input: Integer T > 3.
Goal: Construct graph G with t(G) = T and
[V(G)| < 56 log, T.

We now give a construction that is

guaranteed to work 99% of the time.



Solution to inverse counting problem

For ue {T,...;110T} coprimeto T:

@ Compute continued fraction % = [al, e ak} :
o If (al, ceey ak) = (bl, 1, cee bk/2, 1), b,' < 110:

construct silkworm (by, ..., bc2) graph (G, e).
Note that

t(G—e) = T,
\V(G)] = bi+...+bpp+2 < 56log, T,

Output: graph G — e.



Solution to inverse counting problem

Input: Integer T > 3.
Goal: Construct graph G with t(G) = T and
|V(G)] < 56log, T.

Alternating BK theorem thus guarantees our

G/

construction works 99% of the time...




Solution to inverse counting problem

Input: Integer T > 3.
Goal: Construct graph G with t(G) = T and
|V(G)] < 56log, T.

Alternating BK theorem thus guarantees our
construction works 99% of the time...
and might still work for the other 1%.



Alternating Zaremba's conjecture

Conjecture
There exists an absolute constant A > 0, such that

for every integer t, there exists coprime u > t with

t
= [bl,]. 32, . bg, }

u
bi,....by < A

If this conjecture is true,

then our construction will always work.



Open problem



Improvement for Sedlaéek’s First Problem

Conjecture
There exists ¢ > 0 so that

‘t(gn)‘ Z 2cn|og n

Contrast this with the trivial upper bound

\t(g,,)\ < nn—2 < enlogn.

Solving this problem would most likely

require new ideas.



Improvement for Sedlaéek’s Second Problem

Alon—Buci¢-Gishboliner (2025+) recently improved
our lower bound from (1.1103)" to

|t(P,)| > (1.49)".

Problem
Does there exist ¢ > 0 so that

. 1 .
lim = log [t(P,)] = c.

If ¢ exists, then it must satisfy

149 < ¢ < 5.2852



THANK YOU!

Preprint: www.arxiv.org/abs/2411.18782

Webpage: www.math.rutgers.edu/~sc2518/

Email: sweehong.chan@rutgers.edu


www.arxiv.org/abs/2411.18782
www.math.rutgers.edu/~sc2518/

Sketch of proof of
original and alternating BK theorem



Cantor-like fractals

For A > 2,
Q:A = {[31,32,...] \a,-SA},

limit set of rational numbers in Zaremba's conjecture.
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We would like to measure this set.



Hausdorff dimension
For SC R and d € R, Hausdorff measure HY(S) is
lim inf i—a;)? - iy bi) 2 i—a :
lim in {;(b ai) g(a,b) D S, bi—a <5}

The Hausdorff dimension of S is
Hdim(S) := inf{d >0 : H’(S) = 0}.

Note that, for Cantor-like fractals,

0 < Hdim(€,) < 1, Hdim(€,4) "1 as A — oc.



Black box: Orbital circle method

Theorem (Bourgain—Kontorovich 2014)
Let A > 2. Then, for almost all integers u, there

exists coprime t < u with

t

E: [al,...,ak], ai,...,dk SA
if

Hdim(¢,) > 0.984.

This reduces density one version of Zaremba's

conjecture to computing Hausdorff dimension.



Original BK theorem
Bourgain—Kontorovich (2014) computed that

Hdim(€s) = 0.986... > 0.984.

Theorem (Bourgain—Kontorovich 2014)

For almost all integers u, there exists coprime t < u
with

t

i [al,...,ak], ap,...,ax < b0.

Improvements have since been made on orbital

circle method and computing Hausdorff dimensions.




Improvements to orbital circle method

Frolenkov—Kan (2014) improves to

Hdim(€4) > 0.83 = (positive proportion).

Huang (2015) improves to
Hdim(€4) > 0.83 = (density one).

Kan (2015, 2017, 2021) improves to

Hdim(€4) > 0.7749 = (positive proportion)
—> (density one).



Improvements to computing Hausdorff dimension

The state of the art algorithm to compute Hausdorff
dimension is due to Pollicott—Vytnova (2022):

Hdim(€5) = 0.836829443680...

Recall the result of Huang (2015):
Hdim(€4) > 0.83 = (density one),

which gives the current best result for Zaremba's

conjecture.



Back to alternating BK theorem

For A > 2, the Han¢l-Turek fractal is

Hd|m(CDA = {[bl,l,bg, 3o - } |b <A}

Based on Kan (2021), we need to find A satisfying
Hdim(®4) > 0.7749.

If such A exists, we get everything.

If such A does not exist, we get nothing.



Luck is on our side
Assisted by Pollicott—Vytnova and computers,

Hdim(D110) = 0.7750... > 0.7749.

Theorem (C.—Kontorovich—Pak 2024+)

For almost all integers t, there exists coprime u > t
with

5 = [by,1,...,b;1], by,....b < 110.

Pollicott (2025+) has since shown that

Hdim(D100) = 0.774902739... > o.7749.w




