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What is a spanning tree?

Let G = (V ,E ) be a simple graph.

A spanning tree is a subset of edges of G that

includes all vertices (spanning),

has no cycles (tree).

G spanning tree not spanning not tree



Examples: Phylogenetic tree

From Elementary Geology (1840),

by Edward Hitchcock



How many spanning trees can a graph have?



Cayley’s formula

Theorem (Borchardt 1860, Cayley 1889)
The number of spanning trees of a complete graph

with n vertices is nn−2.

Carl W. Borchardt Arthur Cayley



Matrix tree theorem

Theorem (Kirchhoff 1847)
The number of spanning trees t(G ) of G is equal to

the determinant of a minor of its Laplacian matrix.
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Matrix tree theorem

Theorem (Kirchhoff 1847)
The number of spanning trees t(G ) of G is equal to

the determinant of a minor of its Laplacian matrix.

Gustav Kirchhoff

Note: Kirchhoff’s paper has neither matrices nor trees.



Sedláček’s Problems



Set of spanning tree numbers

For n ≥ 1, let

Gn :=
{
all simple graphs with n vertices

}
,

t(Gn) :=

{
number of spanning trees of all

simple graphs with n vertices

}
.
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Properties of t(Gn)

• We have t(Gn) ⊆ t(Gn+1).

• We have
⋃

n≥1

t(Gn) = {0, 1,��SS2, 3, 4, 5, . . .}.



Sedláček’s First Problem

Problem (Sedláček 1966)
Describe the set of spanning tree numbers t(Gn).



Sedláček’s First Problem

Theorem (Sedláček 1966)
For n ≥ 3,

n2 ≤ |t(Gn)| ≤ nn−2.

It is clear that the lower bound is not tight.

Conjecture

t(Gn) ⊃ {0, 1, 3, 4, . . . , cn} for some c > 1.



Motivation: Inverse counting problem

Input: Integer T ≥ 3.

Problem: Construct graph G with t(G ) = T and

|V (G )| ≤ c logT for some c > 0.

Electrical network Engineers



Motivation: Inverse counting problem

Input: Integer T ≥ 3.

Problem: Construct graph G with t(G ) = T and

|V (G )| ≤ c logT for some c > 0.

Solution to the above problem would imply

t(Gn) ⊃ {0, 1, 3, 4, . . . , cn}.



What was known

First super-polynomial lower bound

was due to Azarija (2014):

|t(Gn)| ≥ eΩ(
√

n/ log n).

Best lower bound prior to our work

was due to Stong (2022):

|t(Gn)| ≥ eΩ(n
2/3).



Sedláček’s Second Problem

For n ≥ 1, let

Pn :=
{
all simple planar graphs with n vertices

}
.

Problem (Sedláček 1966)
Describe the set of spanning tree numbers of planar

graphs t(Pn).

Note: Four-color theorem was proved in 1976,

in University of Illinois.



What was known

It follows from Euler’s formula that

|t(Pn)| ≤ 2|E | ≤ 8n.

The best bounds prior to our work were:

eΩ(n
2/3) ≤ |t(Pn)| ≤ (5.2852)n.

Upper bound was due to Buchin-Schulz (2010),

lower bound was due to Stong (2022).



First main result

Theorem 1 (C.–Kontorovich–Pak 2024+)
For sufficiently large n,

|t(Pn)| ≥ (1.1103)n.

Note that this implies

|t(Gn)| ≥ |t(Pn)| ≥ (1.1103)n.

This is the first exponential lower bound

for Sedláček’s First Problem, and a tight

lower bound for Second Problem.



Almost all integers

A set S ⊆ N contains almost all integers if

lim
N→∞

|S ∩ {1, . . . ,N}|
N

= 1.

This is a weaker notion than requiring S

to contain all but finitely many integers.



Second main result
Input: Integer T ≥ 3.

Problem: Construct graph G with t(G ) = T and

|V (G )| ≤ c logT for some c > 1.

Theorem 2 (C.–Kontorovich–Pak 2024+)
For almost all integers T , there exists a planar

graph G with t(G ) = T and

|V (G )| ≤ 56 logφ T .

Here φ := 1+
√
5

2 = 1.618 is the golden ratio.



Connections to continued fractions



Continued fractions

For integers a1, . . . , ak ≥ 1 ,

[
a1, . . . , ak

]
:=

1

a1 +
1

a2 +
1

. . . + ak

.

Every rational number t
u ≤ 1 can be written as a

finite continued fraction using Euclidean algorithm.

Furthermore, we have k ≤ logφ u.



Connect spanning trees to continued fractions

Input: b1, . . . , bℓ ≥ 1.

Output: Planar graph G and edge e with

t(G − e)

t(G/e)
=

[
b1, 1, b2, 1, . . . , bℓ, 1

]
,

t(G − e) and t(G/e) are coprime,

|V (G )| = b1 + · · ·+ bℓ + 2.

Here G − e is graph deletion,

and G/e is graph contraction.



The silkworm graph

The i -th cycle has bi + 2 vertices.

The example above has
[
3, 1, 1, 1, 2, 1, 4, 1

]
=

63

229
,

t(G − e) = 63, t(G/e) = 229.



Zaremba’s conjecture



Zaremba’s conjecture

Conjecture (Zaremba 1972)
For every integer u, there exists coprime t < u with

t

u
=

[
a1, . . . , ak

]
,

a1, . . . , ak ≤ 5.

Conjecture is false if 5 is replaced with 4,

with u = 54.

Note a1 + . . .+ ak ≤ 5 logφ u

by Euclidean’s algorithm.



Bourgain–Kontorovich theorem

Theorem (Bourgain–Kontorovich 2014)
For almost all integers u, that there exists coprime

t < u with
t

u
=

[
a1, . . . , ak

]
,

a1, . . . , ak ≤ 50.

Huang (2015) has since improved

the bound from 50 to 5.

This is almost what we need for Sedláček’s Problem.



Bourgain–Kontorovich theorem

Theorem (Bourgain–Kontorovich 2014)
For almost all integers u, that there exists coprime

t < u with
t

u
=

[
a1, . . . , ak

]
,

a1, . . . , ak ≤ 50.

Huang (2015) has since improved

the bound from 50 to 5.

This is almost what we need for Sedláček’s Problem.



Alternating BK theorem

Theorem (C.–Kontorovich–Pak 2024+)
For almost all integers t, there exists coprime u > t

with
t

u
=

[
b1, 1, b2, 1, . . . , bℓ, 1

]
,

b1, . . . , bℓ ≤ 110.

This is exactly what we need!



Back to inverse counting problem

Input: Integer T ≥ 3.

Goal: Construct graph G with t(G ) = T and

|V (G )| ≤ 56 logφ T .

We now give a construction that is

guaranteed to work 99% of the time.



Solution to inverse counting problem

For u ∈ {T , . . . , 110T} coprime to T :

Compute continued fraction T
u =

[
a1, . . . , ak

]
.

If (a1, . . . , ak) = (b1, 1, . . . , bk/2, 1), bi ≤ 110:

construct silkworm (b1, . . . , bk/2) graph (G , e).

Note that

t(G − e) = T ,

|V (G )| = b1 + . . .+ bk/2 + 2 ≤ 56 logφ T .

Output: graph G − e.



Solution to inverse counting problem

Input: Integer T ≥ 3.

Goal: Construct graph G with t(G ) = T and

|V (G )| ≤ 56 logφ T .

Alternating BK theorem thus guarantees our

construction works 99% of the time...

and might still work for the other 1%.



Solution to inverse counting problem

Input: Integer T ≥ 3.

Goal: Construct graph G with t(G ) = T and

|V (G )| ≤ 56 logφ T .

Alternating BK theorem thus guarantees our

construction works 99% of the time...

and might still work for the other 1%.



Alternating Zaremba’s conjecture

Conjecture
There exists an absolute constant A > 0, such that

for every integer t, there exists coprime u > t with
t

u
=

[
b1, 1, a2, 1, . . . , bℓ, 1

]
,

b1, . . . , bℓ ≤ A.

If this conjecture is true,

then our construction will always work.



Open problem



Improvement for Sedláček’s First Problem

Conjecture
There exists c > 0 so that

|t(Gn)| ≥ 2cn log n.

Contrast this with the trivial upper bound

|t(Gn)| ≤ nn−2 ≤ en log n.

Solving this problem would most likely

require new ideas.



Improvement for Sedláček’s Second Problem

Alon–Bucić–Gishboliner (2025+) recently improved

our lower bound from (1.1103)n to

|t(Pn)| ≥ (1.49)n.

Problem
Does there exist c > 0 so that

lim
n→∞

1
n log |t(Pn)| = c .

If c exists, then it must satisfy

1.49 < c < 5.2852.



THANK YOU!

Preprint: www.arxiv.org/abs/2411.18782

Webpage: www.math.rutgers.edu/~sc2518/

Email: sweehong.chan@rutgers.edu

www.arxiv.org/abs/2411.18782
www.math.rutgers.edu/~sc2518/


Sketch of proof of

original and alternating BK theorem



Cantor-like fractals

For A ≥ 2,

CA :=
{[
a1, a2, . . .

]
| ai ≤ A

}
,

limit set of rational numbers in Zaremba’s conjecture.
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We would like to measure this set.



Hausdorff dimension

For S ⊆ R and d ∈ R+ , Hausdorff measure Hd(S) is

lim
δ→0

inf

{ ∞∑

i=1

(bi−ai)
d :

∞⋃

i=1

(ai , bi) ⊇ S , bi−ai < δ

}
.

The Hausdorff dimension of S is

Hdim(S) := inf
{
d ≥ 0 : Hd(S) = 0

}
.

Note that, for Cantor-like fractals,

0 < Hdim(CA) < 1, Hdim(CA) ↗ 1 as A → ∞.



Black box: Orbital circle method

Theorem (Bourgain–Kontorovich 2014)
Let A ≥ 2. Then, for almost all integers u, there

exists coprime t < u with
t

u
=

[
a1, . . . , ak

]
, a1, . . . , ak ≤ A

if

Hdim(CA) > 0.984.

This reduces density one version of Zaremba’s

conjecture to computing Hausdorff dimension.



Original BK theorem

Bourgain–Kontorovich (2014) computed that

Hdim(C50) = 0.986... > 0.984.

Theorem (Bourgain–Kontorovich 2014)
For almost all integers u, there exists coprime t < u

with
t

u
=

[
a1, . . . , ak

]
, a1, . . . , ak ≤ 50.

Improvements have since been made on orbital

circle method and computing Hausdorff dimensions.



Improvements to orbital circle method

Frolenkov–Kan (2014) improves to

Hdim(CA) > 0.83 =⇒ (positive proportion).

Huang (2015) improves to

Hdim(CA) > 0.83 =⇒ (density one).

Kan (2015, 2017, 2021) improves to

Hdim(CA) > 0.7749 =⇒ (positive proportion)

=⇒ (density one).



Improvements to computing Hausdorff dimension

The state of the art algorithm to compute Hausdorff

dimension is due to Pollicott–Vytnova (2022):

Hdim(C5) = 0.836829443680...

Recall the result of Huang (2015):

Hdim(CA) > 0.83 =⇒ (density one),

which gives the current best result for Zaremba’s

conjecture.



Back to alternating BK theorem

For A ≥ 2, the Hanc̆l–Turek fractal is

Hdim(DA) :=
{[

b1, 1, b2, 1, . . .
]
| bi ≤ A

}
.

Based on Kan (2021), we need to find A satisfying

Hdim(DA) > 0.7749.

If such A exists, we get everything.

If such A does not exist, we get nothing.



Luck is on our side

Assisted by Pollicott–Vytnova and computers,

Hdim(D110) = 0.7750... > 0.7749.

Theorem (C.–Kontorovich–Pak 2024+)
For almost all integers t, there exists coprime u > t

with
t

u
=

[
b1, 1, . . . , bℓ, 1

]
, b1, . . . , bℓ ≤ 110.

Pollicott (2025+) has since shown that

Hdim(D109) = 0.774902739... > 0.7749.


