Sorting probability for Young diagrams

Swee Hong Chan (UCLA)

joint with Igor Pak and Greta Panova

<

<

Partially ordered set

A poset P is a set X with a partial order \preccurlyeq on X.

Linear extension

A linear extension L is a complete order of \preccurlyeq .

We write e(P) for number of linear extensions of P.

How many steps needed to complete a partial order?

How many steps needed to complete a partial order? We first compare c and d, and get $c \preccurlyeq d$.

How many steps needed to complete a partial order? We then compare d and e, and get $d \preccurlyeq e$.

How many steps needed to complete a partial order? We continue with *b* and *e*, and get $e \leq b$.

How many steps needed to complete a partial order? Completing the partial order took 3 steps.

Strategy to complete the partial order

At each step, compare x and y that satisfies

$$rac{1}{2} - c \quad \leq \quad \mathsf{P}ig[x \preccurlyeq y ig] \quad \leq \quad rac{1}{2} + c \, ,$$

where P is uniform on linear extensions of P.

Runtime is $\Theta(\log e(P))$ steps.

 $\frac{1}{3} - \frac{2}{3}$ Conjecture

Conjecture (Kislitsyn '68, Fredman '75, Linial '84) For every finite poset that is not completely ordered, there exists x, y:

$$\frac{1}{3} \leq \mathsf{P}\big[x \preccurlyeq y\big] \leq \frac{2}{3}$$

(Brightwell-Felsner-Trotter '95)

"This problem remains one of the most intriguing problems in the combinatorial theory of posets."

Why $\frac{1}{3}$ and $\frac{2}{3}$?

The upper, lower bound are achieved by this poset:

What is known so far

Theorem (Kahn-Saks '84) For every finite poset, there always exists x, y: $\frac{3}{11} \leq P[x \preccurlyeq y] \leq \frac{8}{11},$

roughly between 0.273 and 0.727.

Proof is by applying mixed-volume inequalities to order polytopes.

What is known so far

Theorem (Brightwell-Felsner-Trotter '95) For every finite poset, there always exists x, y:

$$\frac{5-\sqrt{5}}{10} \leq \mathsf{P}\big[x \preccurlyeq y\big] \leq \frac{5+\sqrt{5}}{10},$$

roughly between 0.276 and 0.724.

This bound cannot be improved for infinite posets.

Young diagrams

Elements of P_{λ} are cells of Young diagram of shape λ .

 $x \preccurlyeq y$ if y lies to the Southeast of x.

Young diagram of shape $\lambda = (4, 3, 1)$

We write *n* for number of cells of Young diagram.

Young diagrams

Linear extensions of P_{λ} correspond to standard Young tableau of the Young diagram.

Linear extensions are counted by hook-length formulas.

What is known for Young diagrams

Theorem 1 (Olson–Sagan '18) For Young diagrams, there always exists x, y: $\frac{1}{3} \leq P[x \preccurlyeq y] \leq \frac{2}{3}.$

or

What is known for Young diagrams

Theorem 1 (Olson–Sagan '18) For Young diagrams, there always exists x, y: $\frac{1}{3} \leq P[x \preccurlyeq y] \leq \frac{2}{3}.$

We sketch an alternative proof for Young diagrams using Naruse hook-length formulas.

Hook-length formulas

Number of standard Young tableau of shape λ is

$$f^{\lambda} \ := \ rac{n!}{\displaystyle\prod_{x \in \lambda} h_{\lambda}(x)}$$

٠

Skew Young diagrams

Skew Young diagram of shape λ/μ , $\lambda = (5, 3, 3, 1)$ and $\mu = (2, 1)$.

We write *n* for number of cells in λ , and *m* for number of cells in μ .

Excited diagrams

Black boxes can move on SouthEast direction.

Naruse hook-length formulas

Theorem (Naruse '14, Morales-Pak-Panova '17) Number of skew Young tableau of shape λ/μ is

$$f^{\lambda/\mu} := f^{\lambda} \frac{(n-m)!}{n!} \sum_{\substack{ excited \ ext{diagrams } B}} \prod_{\substack{ excited \ x \in B}} h_{\lambda}(x).$$

Naruse hook-length formulas

The number of SYT of shape λ/μ is equal to 2970 $\frac{9!}{12!} (7 \cdot 6 \cdot 5 + 7 \cdot 5 \cdot 2 + 7 \cdot 2 \cdot 3 + 7 \cdot 6 \cdot 3 + 4 \cdot 2 \cdot 3)$ = 1062.

The jump probabilities are

$$p_i := \mathsf{P}[y_i \preccurlyeq x \preccurlyeq y_{i+1}]$$

$$p_i := \mathsf{P}[y_i \preccurlyeq x \preccurlyeq y_{i+1}]$$

The jump probabilities are

$$p_i := \mathsf{P}[y_i \preccurlyeq x \preccurlyeq y_{i+1}]$$

The jump probabilities are

$$p_i := \mathsf{P}[y_i \preccurlyeq x \preccurlyeq y_{i+1}]$$

The jump probabilities are

$$p_i := \mathsf{P}[y_i \preccurlyeq x \preccurlyeq y_{i+1}]$$

Linial-type argument

Look at when the probability exceeds $\frac{1}{3}$. Then

$$\frac{1}{3} \leq \mathsf{P}\big[x \preccurlyeq y_{i+1}\big] \leq \frac{2}{3}$$

Proof of
$$p_1 < \frac{1}{3}$$

Suppose to the contrary that $p_1 \geq \frac{1}{3}$. Then

o If
$$\frac{1}{3} \leq p_1 \leq \frac{2}{3}$$
, then
 $\frac{1}{3} \leq p_1 = \mathsf{P}[x \preccurlyeq y_2] \leq \frac{2}{3}.$

• If $p_1 > \frac{2}{3}$, then conjugate to get $p_1 < \frac{1}{3}$.

Skew diagrams enter the scene

It suffices to show $p_1 \ge p_2 \ge \ldots \ge p_\ell$.

$$p_1 = \mathsf{P}[y_1 \preccurlyeq x \preccurlyeq y_2] = \frac{\# \text{ of SYTs of}}{f^{\lambda}}$$

$$p_2 = \mathsf{P}[y_2 \preccurlyeq x \preccurlyeq y_3] = \frac{\# \text{ of SYTs of}}{f^{\lambda}}$$

Skew diagrams enter the scene

It suffices to show $p_1 \ge p_2 \ge \ldots \ge p_\ell$.

$$p_1 = \mathsf{P}[y_1 \preccurlyeq x \preccurlyeq y_2] = \frac{\# \text{ of SYTs of}}{f^{\lambda}}$$

$$p_2 = \mathsf{P}[y_2 \preccurlyeq x \preccurlyeq y_3] = \frac{\# \text{ of SYTs of}}{f^{\lambda}}$$

We can now use NHLF.

Proof of $p_1 \ge p_2$

Thus we complete the proof of this theorem.

Theorem (Olson–Sagan '18) There always exists x, y:

$$\frac{1}{3} \quad \leq \quad \mathsf{P}\big[\, x \preccurlyeq y \, \big] \quad \leq \quad \frac{2}{3},$$

for poset P_{λ} of Young diagram of shape λ .

Back to previous example

Comparison probability for this Young diagram is

$$P[x \preccurlyeq y] = \frac{16}{33} \approx 0.4848,$$

which is closer to $\frac{1}{2}$ than $\frac{1}{3}$, $\frac{2}{3}$.
What we will do next

Previously, we want to find x, y:

$$\frac{1}{3} \leq \mathsf{P}\big[x \preccurlyeq y\big] \leq \frac{2}{3},$$

Now, we want to find x, y:

$$rac{1}{2} - \delta \leq \mathsf{P} ig[x \preccurlyeq y ig] \leq rac{1}{2} + \delta,$$

Sorting probability

Sorting probability of a poset P is

$$\delta(P) := \min_{\text{distinct } x, y} \left| \mathsf{P}[x \prec y] - \mathsf{P}[y \prec x] \right|.$$

In particular, there exists x, y:

$$\frac{1}{2} - \frac{\delta(P)}{2} \leq \mathsf{P}\big[x \preccurlyeq y\big] \leq \frac{1}{2} + \frac{\delta(P)}{2}.$$

Kahn–Saks Conjecture

Conjecture (Kahn-Saks '84) For every finite poset,

 $\delta(P) \rightarrow 0$ as width $(P) \rightarrow \infty$.

Here width(P) is the largest size of anti-chains in P.

Komlós '90 proved such a result for posets with $\Omega(\frac{n}{\log \log \log n})$ minimal elements.

Our results

First result

Theorem (C.-Pak-Panova '20+) Let $\lambda_1 \geq \ldots \geq \lambda_d \geq \varepsilon n$. For poset P_{λ} of Young diagram of λ ,

$$\delta(P_{\lambda}) \leq \frac{C}{\sqrt{n}},$$

for some
$$C = C(d, \varepsilon) > 0$$
.

Before: x is 2nd element in 1st row, y is in 1st column.

Before: x is 2nd element in 1st row, y is in 1st column.

Before: x is 2nd element in 1st row, y is in 1st column.

Before: x is 2nd element in 1st row, y is in 1st column.

Before: x is 2nd element in 1st row, y is in 1st column.

Sketch of proof

After reductions using Hoeffding's inequality,

$$\begin{split} \delta(P_{\lambda}) &\leq \sum_{\mu} \frac{\mathrm{SYTs} \text{ of }}{f^{\lambda}} \qquad \mu \qquad \lambda \\ \text{with } \mu &\approx \Big(\frac{\lambda_1}{2} \pm \sqrt{n}, \dots, \frac{\lambda_d}{2} \pm \sqrt{n}\Big). \end{split}$$

Right side is then upper-bounded via NHLF.

Back to first result

Theorem (C.-Pak-Panova '20+) Let $\lambda_1 \geq ... \geq \lambda_d \geq \varepsilon n$. For poset P_{λ} of Young diagram of λ , $\delta(P_{\lambda}) \leq \frac{C}{\sqrt{n}}$, for some $C = C(d, \varepsilon) > 0$.

Next: better bound for Catalan posets.

Catalan posets, $\lambda = \left(\frac{n}{2}, \frac{n}{2}\right)$

Young diagram is rectangle with 2 rows and n cells.

Theorem (C.-Pak-Panova '21) For Catalan posets with n cells,

$$\delta(P_{\lambda}) \leq C n^{-\frac{5}{4}},$$

for some C > 0.

How good is this bound?

Show that

$$\limsup_{n\to\infty}\frac{\log\delta(P_{\lambda})}{n} = -\frac{5}{4}; \quad \liminf_{n\to\infty}\frac{\log\delta(P_{\lambda})}{n} < -\frac{5}{4}.$$

Before: x is fixed at midpoint, only y is optimized.

Now: Optimize y = y(x) for each x, then optimize x.

		x			
	y(x)				

Before: x is fixed at midpoint, only y is optimized.

Now: Optimize y = y(x) for each x, then optimize x.

		x			
	y(x)				

Before: x is fixed at midpoint, only y is optimized.

Now: Optimize y = y(x) for each x, then optimize x.

		x			
	y(x)				

Before: x is fixed at midpoint, only y is optimized.

Now: Optimize y = y(x) for each x, then optimize x.

		x			
	y(x)				

Before: x is fixed at midpoint, only y is optimized.

Now: Optimize y = y(x) for each x, then optimize x.

		x			
	y(x)				

Before: x is fixed at midpoint, only y is optimized.

Now: Optimize y = y(x) for each x, then optimize x.

		x			
	y(x)				

Before: x is fixed at midpoint, only y is optimized.

Now: Optimize y = y(x) for each x, then optimize x.

		x			
	y(x)				

Before: x is fixed at midpoint, only y is optimized.

Now: Optimize y = y(x) for each x, then optimize x.

Before: x is fixed at midpoint, only y is optimized.

Now: Optimize y = y(x) for each x, then optimize x.

Before: x is fixed at midpoint, only y is optimized.

Now: Optimize y = y(x) for each x, then optimize x.

	x			
y(x)				

Before: x is fixed at midpoint, only y is optimized.

Now: Optimize y = y(x) for each x, then optimize x.

		x			
	y(x)				

Before: x is fixed at midpoint, only y is optimized.

Now: Optimize y = y(x) for each x, then optimize x.

		x		
	y(x)			

Before: x is fixed at midpoint, only y is optimized.

Now: Optimize y = y(x) for each x, then optimize x.

		X		
	y(x)			

Before: x is fixed at midpoint, only y is optimized.

Now: Optimize y = y(x) for each x, then optimize x.

			x	
		y(x)		

Before: x is fixed at midpoint, only y is optimized.

Now: Optimize y = y(x) for each x, then optimize x.

Before: x is fixed at midpoint, only y is optimized.

Now: Optimize y = y(x) for each x, then optimize x.

Before: x is fixed at midpoint, only y is optimized.

Now: Optimize y = y(x) for each x, then optimize x.

		x			
	y(x)				

Location of the optimizer y(x) for n = 2000

For each x, y(x) is the element that minimizes

$$\delta(x, y(x)) := \left| \mathsf{P} \left[x \prec y(x) \right] - \mathsf{P} \left[y(x) \prec x \right] \right|.$$

Sorting probability $\delta(P)$ for n = 2000

$$\delta(x, y(x)) := \left| \mathsf{P} \left[x \prec y(x) \right] - \mathsf{P} \left[y(x) \prec x \right] \right|.$$

Back to second result

Theorem (C.-Pak-Panova '21) For Catalan posets with n cells,

$$\delta(P_{\lambda}) \leq C n^{-\frac{5}{4}}$$

for some C > 0.

Important: Estimates are not done by NHLF, but by direct computation.

Better upper bound for general Young diagrams remain open.

What is next?

Theorem (C.-Pak-Panova '20+) Let $\lambda_1 \ge \ldots \ge \lambda_d \ge \varepsilon n$. For poset P_{λ} of Young diagram of λ , there exists x, y:

$$\delta(P_{\lambda}) o 0$$
 as $n \to \infty$.

Open Problem

Prove same result for other families of posets, e.g., k-dimensional Young diagrams and periodic posets.
arXiv preprints: 2005.08390 and 2005.13686. Webpage: http://math.ucla.edu/~sweehong/

THANK YOU!

arXiv preprints: 2005.08390 and 2005.13686. Webpage: http://math.ucla.edu/~sweehong/