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Motivation: Exploring Times Square



Random model vs deterministic model

Random
walk

Rotor
walk



Simple random walk on Z2



Simple random walk on Z2
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Simple random walk on Z2

Visits every site infinitely often? Yes!

Number of distinct points visited in n steps is ≍ n2/3.

Scaling limit? The standard 2-D Brownian motion:

(
1√
n
X[nt]︸︷︷︸

location of the
walker at time [nt]

)t≥0
n→∞
=⇒ 1√

2
(B1(t),B2(t)︸ ︷︷ ︸

independent standard
Brownian motions

)t≥0.



Rotor walk on Z2



Rotor walk on Z2

Put a signpost at every vertex.



Rotor walk on Z2

Turn the signpost at your location 90◦

counterclockwise, then follow its new direction.

• • •

The signpost says:
“This is the way you went the last time you were here“,
(assuming you ever were!)
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Rotor walk on Z2

Turn the signpost at your location 90◦

counterclockwise, then follow its new direction.

• •◦ •◦

The signpost says:
“This is the way you went the last time you were here“,
(assuming you ever were!)



Why rotor walk?

Randomness can be (was) expensive to simulate!



Why rotor walk?

As a model for ants’ foraging strategy.



Why rotor walk?

As a model of self-organized criticality for statistical
mechanics.

Visited sites after 80 returns to the origin (by Laura Florescu).



Conjectures for rotor walk on Z2

For initial signposts i.i.d. uniform among the four directions,

(PDDK ‘96) Visits every site infinitely often?

(PDDK ‘96) No. of points visited in n steps is ≍ n2/3?
(compare with n/ log n for the simple random walk.)

(Kapri-Dhar ‘09) The asymptotic shape of {X1, . . . ,Xn}
is a disc?



More randomness please!

Random Deterministic

Something
in between

Well
studied

Many open
problems

Let’s
study
this!!!
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p-rotor walk on Z2



p-rotor walk on Z2

With probability p, turn the signpost 90◦ counter-clockwise.
With probability 1− p, turn the signpost 90◦ clockwise.

•

p 1− p

• ◦ •◦



p-rotor walk on Z2

Follow rotor walk rule with probability p,
do the opposite with probability 1− p.
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p-rotor walk on Z2

Follow rotor walk rule with probability p,
do the opposite with probability 1− p.

Do the opposite again.



p-rotor walk on Z2

Follow rotor walk rule with probability p,
do the opposite with probability 1− p.

Follow the rule.



p-rotor walk on Z2

Follow rotor walk rule with probability p,
do the opposite with probability 1− p.

Ops...



p-rotor walk on Z2

With probability p, turn the signpost 90◦ counter-clockwise.
With probability 1− p, turn the signpost 90◦ clockwise.

•

p 1− p

• ◦ •◦

Recover the rotor walk if p = 1.



Recurrence result for p-rotor walk



Recurrence for p-rotor walk on Z2

Theorem (C., ‘23)

Let p = 1
2
and let the i.i.d uniform among four directions be

the initial signpost configuration. Then the p-rotor walk visits
every vertex infinitely often almost surely.



Proof of recurrence for the simple random walk

Consider the following martingale:

M(t) := a(X (t))︸ ︷︷ ︸
potential
kernel

− N(t)︸︷︷︸
# of times
leaving o

.

Use the optional stopping theorem:

0 = E[M(τ(r)︸︷︷︸
hitting time
of ∂Br∪{o}

)] ≈ 2

π
ln r (1− pret(r)︸ ︷︷ ︸

prob. of return
before hitting ∂Br

)− 1.



Proof of recurrence for the simple random walk

(ctd.)

We rewrite the equation to

pret(r)︸ ︷︷ ︸
prob. of return

before hitting ∂Br

≈ 1− π

2 ln r
,

and we then conclude that

prec︸︷︷︸
recurrence
probability

= 1− lim
r→∞

π

2 ln r
= 1.



Proof of recurrence for p-rotor walk

Consider the following martingale:

M(t) := a(X (t)) − N(t) +
∑

x∈{X0,...,Xt}

w(x ; ρt)︸ ︷︷ ︸
compensator

.

By the same argument as before,

prec︸︷︷︸
recurrence
probability

= 1− lim
r→∞

π

2 ln r

∑
|x |≤r

E[w(x ; ρτ(r))]

 .



Proof of recurrence for p-rotor walk (ctd.)

We can estimate the terms in the compensator locally by

∣∣E[w(x ; ρτ(r))]∣∣ ≤
(
1− 1

270

)
2

π|x |2
.

Plugging this estimate into previous equation,

prec ≥ 1− lim
r→∞

π

2 ln r

∑
|x |≤r

(
1− 1

270

)
2

π|x |2

 =
1

270
> 0.

By Kolmogorov zero-one law, the recurrence probability is 1.



So we have proved ...

Theorem (C., ‘23)

Let p = 1
2
and let the i.i.d uniform among four directions be

the initial signpost configuration. Then the p-rotor walk visits
every vertex infinitely often almost surely.



Open problem

Conjecture

Let p ̸= 1
2
. Prove that p-rotor walk with i.i.d. uniform

signpost configuration is recurrent.

Obstacle: Need a good estimate for the compensator.

M(t)︸ ︷︷ ︸
martingale

:= a(X (t)) − N(t) +
∑

x∈{X0,...,Xt}

w(x ; ρt)︸ ︷︷ ︸
compensator

.



Scaling limit result for p-rotor walk



Scaling limit for p-rotor walk on Z
(Huss, Levine, Sava-Huss 18) The scaling limit for p-rotor
walk on Z is a perturbed Brownian motion (Y (t))t≥0,

Y (t) = B(t)︸︷︷︸
standard
Brownian
motion

+ a sup
0≤s≤t

Y (s)︸ ︷︷ ︸
perturbation at

maximum

+ b inf
0≤s≤t

Y (s)︸ ︷︷ ︸
perturbation at

minimum

, t ≥ 0.

Y (t) for a = −0.998, and b = 0 (by Wilfried Huss).



Scaling limit for p-rotor walk on Z2

Question: Is the scaling limit for p-rotor walk on Z2 a “2-D
perturbed Brownian motion”?

Problem: How to define “2-D perturbed Brownian motion”?.

Conjecture: The scaling limit for p-rotor walk on Z2 when
p = 1

2
is the standard 2-D Brownian motion.



Scaling limit for p-rotor walk on Z2

Question: Is the scaling limit for p-rotor walk on Z2 a “2-D
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2
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Uniform spanning forest plus one edge (USF+)

•



Uniform spanning forest plus one edge (USF+)

•

Pick a spanning tree of the black box directed to the origin
(uniformly at random).



Uniform spanning forest plus one edge (USF+)

•

Take the limit as the black box grows until it covers Z2.
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Uniform spanning forest plus one edge (USF+)

•

Take the limit as the black box grows until it covers Z2.



Uniform spanning forest plus one edge (USF+)

•

Add a signpost from the origin, uniform among the four
directions.



Scaling limit for p-rotor walk on Z2

Theorem (C., Greco, Levine, Li ‘21)

Let p = 1
2
and let the uniform spanning forest plus one edge

be the initial signpost configuration. Then, with probability 1,
the p-rotor walk on Z2 scales to the standard 2-D Brownian
motion:

1√
n
(X[nt]︸︷︷︸

location of the
walker at time [nt]

)t≥0
n→∞
=⇒ 1√

2
(B1(t),B2(t)︸ ︷︷ ︸

independent
Brownian motions

)t≥0.

Disclaimer: Proof in the paper was for h-v walks, not p-rotor
walks.



Stationarity from the walker’s POV

A signpost configuration (ρ0(x))x∈Z2 is stationary in time from
the walker’s point of view if

(ρ̂1(x))x∈Z2︸ ︷︷ ︸
signpost conf. at

time 1 from walker’s POV

:= (ρ1(x − X1))x∈Z2
d
= (ρ0(x))x∈Z2︸ ︷︷ ︸

signpost conf.
at time 0

.

×• •× •×

ρ0 ρ1 ρ̂1



Why is USF+ stationary from walker’s POV?

The signposts at previously visited vertices
form a tree oriented toward the walker.
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Why is USF+ stationary from walker’s POV?

The signposts at previously visited vertices
form a tree oriented toward the walker.



Sketch of the scaling limit proof

Scaling limit

Martingale CLT

Ergodic theorem

Encounters vertical sign-
posts half the time a.s.

Stationarity and ergodicity
of USF+ from walker’s POV



So we have proved...

Theorem (C., Greco, Levine, Li ‘21)

Let p = 1
2
and let the uniform spanning forest plus one edge

be the initial signpost configuration. Then, with probability 1,
the p-rotor walk on Z2 scales to the standard 2-D Brownian
motion:

1√
n
(X[nt]︸︷︷︸

location of the
walker at time [nt]

)t≥0
n→∞
=⇒ 1√

2
(B1(t),B2(t)︸ ︷︷ ︸

independent
Brownian motions

)t≥0.



Open Problem

Problem
Find the scaling limit for the p-rotor walk with i.i.d. uniform
signpost configuration.

Obstacle: Definition of “2-D perturbed Brownian motion (?)”.

2-D?



Back to our motivation

Simple
random walk

Rotor walk
p-rotor
walk

Well
studied

Many open
problems

Know a
little bit now

Let’s apply what we have learnt to rotor walk.



Escape rate of rotor walk



Prison break using rotor walk

Put n walkers at the origin (the prison).

••
• •



Prison break using rotor walk

First walker performs rotor walk, remove if returns to prison.

•
• ••
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Prison break using rotor walk

First walker returns to prison, and is removed.

•
• •



Prison break using rotor walk

Second walker performs rotor walk, remove if returns to
prison.

• ••



Prison break using rotor walk

Second walker performs rotor walk, remove if returns to
prison.
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Prison break using rotor walk

Second walker performs rotor walk, remove if returns to
prison.
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Prison break using rotor walk

Second walker performs rotor walk, remove if returns to
prison.

• •

•



Prison break using rotor walk

Second walker performs rotor walk, remove if returns to
prison.

• •



Prison break using rotor walk

Second walker never returns to origin.

• •



Prison break using rotor walk

Third walker performs rotor walk, remove if returns to prison.

••



Prison break using rotor walk

Third walker performs rotor walk, remove if returns to prison.

• •



Prison break using rotor walk

Third walker performs rotor walk, remove if returns to prison.

• •



Prison break using rotor walk

Third walker performs rotor walk, remove if returns to prison.

• •



Prison break using rotor walk

Third walker performs rotor walk, remove if returns to prison.

•



Prison break using rotor walk

Third walker never returns to prison.

•



Prison break using rotor walk

Fourth walker performs rotor walk, remove if returns to
prison.

•



Prison break using rotor walk

Fourth walker performs rotor walk, remove if returns to
prison.

•



Prison break using rotor walk

Fourth walker performs rotor walk, remove if returns to
prison.

•



Prison break using rotor walk

Fourth walker returns to prison, and is removed.



Escape rate of rotor walk

The escape rate of n rotor walkers with initial signpost ρ is

resc(ρ, n) :=
number of escaped walkers

n
.

The escape rate of rotor walk is a deterministic counterpart
of the escape probability of simple random walk.



What was known about escape rate

Theorem (Schramm ’10 (posthumous))

For any initial signpost ρ,

lim sup
n→∞

resc(ρ, n)︸ ︷︷ ︸
escape rate
of rotor walk

≤ pesc(SRW)︸ ︷︷ ︸
escape prob.

of SRW

.

Corollary

On Z2, for any initial signpost ρ,

lim
n→∞

resc(ρ, n) = pesc(SRW) = 0.

In fact, this is true for all recurrent graphs.



What was known about escape rate

Theorem (Angel Holroyd ‘09)

On Zd with d ≥ 3, there exists an initial signpost ρ so that

lim
n→∞

resc(ρ, n) = 0.

Theorem (Florescu Ganguly Levine Peres ‘13)

On Zd with d ≥ 3, for the one-directional initial signpost ρ,

lim inf
n→∞

resc(ρ, n) > 0.



Escape rate conjecture

Conjecture (FGLP ‘13)

For any transient graph, there exists an initial signpost ρ
for which

lim
n→∞

resc(ρ, n) = pesc(SRW).



Uniform spanning forest oriented to infinity (USF∞)

•

Start with uniform spanning forest plus one edge from before.



Uniform spanning forest oriented to infinity (USF∞)

•

Remove the signpost at the origin.



Uniform spanning forest oriented to infinity (USF∞)

•

Find the unique infinite path oriented to origin.



Uniform spanning forest oriented to infinity (USF∞)

•

Reverse the orientation of this infinite path.



Answering the escape rate conjecture

Theorem (C. ‘19)

On Zd , almost every ρ sampled from USF∞ satisfies

lim
n→∞

resc(ρ, n) = pesc(SRW).

Remark: Similar result applies to all vertex-transitive graphs.



Except that ...

The conjecture of FGLP ‘13 is for all transient graphs;

There are already other constructions for the special case
of Zd (He ‘14) and trees (Angel Holroyd ‘11);

Our construction of the initial signpost ρ is not
deterministic.



Complete answer to the escape rate conjecture

Theorem (C., ‘20)

For any transient graph, the initial signpost ρmax satisfies

lim
n→∞

resc(ρmax, n) = pesc(SRW).



Escape rate formula

Lemma
For any initial signpost ρ and number of walkers n,

resc(ρ, n) = pesc(SRW )−
∑
x∈Zd

(
wx [ρn(x)︸ ︷︷ ︸
signpost at x
after n-th walk

]− wx [ρ(x)︸︷︷︸
initial signpost

at x

]

)
,

where wx is a local compensator term.

The formula is inspired by the martingale used in proving
recurrence for p-rotor walk.



Our initial signpost configuration

The configuration ρmax is constructed by choosing, for each x ,

the direction ρmax(x) that maximizes compensator wx .



Proof of the escape rate conjecture

By the escape rate formula,

resc(ρ, n) = pesc(SRW )−
∑
x∈Zd

(
wx [ρn(x)]− wx [ρ(x)]

)
,

By our choice of ρmax,

resc(ρmax, n) ≥ pesc(SRW ).

On the other hand, Schramm’s inequality gives us

lim sup
n→∞

resc(ρmax, n) ≤ pesc(SRW ).

Hence,
lim
n→∞

resc(ρmax, n) = pesc(SRW ).



So we have proved...

Theorem (C., ‘20)

For any transient graph, the initial signpost ρmax satisfies

lim
n→∞

resc(ρmax, n) = pesc(SRW).



Open problem

Conjecture
For any graph, the i.i.d. uniform signpost configuration has
rotor walk escape rate equal to the escape probability of the
SRW, i.e.,

lim
n→∞

resc(ρ, n) = pesc(SRW ).

Conjecture is known only for regular trees (Angel Holroyd ‘11).



THANK YOU!

Corresponding papers can be found in the webpage:

https://sites.math.rutgers.edu/∼sc2518

Email: sweehong.chan@math.rutgers.edu


