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Log-concavity

A sequence a1, . . . , an ∈ R≥0 is log-concave if

a2k ≥ ak+1 ak−1 (1 < k < n).

Log-concavity (and positivity) implies unimodality:

a1 ≤ · · · ≤ am ≥ · · · ≥ an for some 1 ≤ m ≤ n.
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Example: binomial coefficients

ak =

(
n

k

)
=

n!

k! (n − k)!
k = 0, 1, . . . , n.

This sequence is log-concave because

a2k
ak+1 ak−1

=

(
n
k

)2(
n

k+1

) (
n

k−1

) =

(
1 +

1

k

)(
1 +

1

n − k

)
,

which is greater than 1.



Example: forests of a graph

ak = number of forests with k edges of graph G .

Forest is a subset of edges of G that has no cycles.

Log-concavity was conjectured for all matroids

(Mason ‘72), and was proved through combinatorial

Hodge theory (Huh ‘15).

G forest not forest spanning tree



Log-concavity has been observed in different areas of

mathematics and proved through different methods.

Today we focus on log-concavity that

arises from Convex Geometry.



Stanley’s poset inequality



Partially ordered sets

A poset P is a set X with a partial order ≺ on X .

d

cb

a

We write n := |X |.



Linear extension

A linear extension L is a complete order of ≺.
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We write L(x) = k if x is k-th smallest in L.



Stanley’s (poset) inequality: simple form

Fix x ∈ P .

N(k) := number of linear extensions with L(x) = k .

Theorem (Stanley ‘81)
For k ≥ 1,

N(k)2 ≥ N(k + 1)N(k − 1).

The inequality was initially conjectured by

Chung-Fishburn-Graham, and was proved using

Aleksandrov-Fenchel inequality for mixed volumes.



Mixed volumes: dimension 2

For convex bodies K , L ⊆ R2 ,

Vol(aK+bL) = V (K ,K )a2+V (L, L)b2+2V (K , L)ab

is a quadratic polynomial in a, b ≥ 0.

K L K + L

Coefficients V (K ,K ), V (L, L), V (K , L)

are mixed volumes.



Mixed volumes: dimension m

Theorem (Minkowski ‘03)
For convex bodies C1, . . . ,Cm ⊆ Rm, the function

(λ1, . . . λm) 7→ Vol(λ1C1 + . . .+ λmCm)

is a homogeneous polynomial in λ1, . . . , λm ≥ 0.

Mixed volume V (C1, . . . ,Cm) is 1
m! of the

coefficient of λ1 · · ·λm in the polynomial

expansion of Vol(λ1C1 + . . .+ λmCm) .



Alexandrov-Fenchel (AF) inequality

Theorem (Alexandrov ‘37, Fenchel ‘36)
For convex bodies A,B ,C1, . . . ,Cm−2 ⊆ Rm,

V ∗(A,B)2 ≥ V ∗(A,A)V ∗(B ,B),

where V ∗(A,B) := V (A,B ,C1, . . . ,Cm−2) .

Stanley’s inequality N(k)2 ≥ N(k + 1)N(k − 1)

follows by substituting A,B ,C1, . . . ,Cm−2 with

slices of order polytopes of the poset.



Proof of Stanley’s inequality

For poset P , the order polytope is

O(P) :=
{
t ∈ [0, 1]P | ty ≤ tz if y ≺ z in P

}
.

For x ∈ P , the slices are:

K :=
{
t ∈ O(P) | tx = 0

}
,

L :=
{
t ∈ O(P) | tx = 1

}
.

Let n := |P| , and set

A := K , B := L,

C1, . . . ,Cn−3 := K , . . . ,K︸ ︷︷ ︸
n−k−1

, L, . . . , L︸ ︷︷ ︸
k−2

.



Proof of Stanley’s inequality

Then

V ∗(A,B) = 1
(n−1)!N(k), V ∗(A,A) = 1

(n−1)!N(k − 1),

V ∗(B ,B) = 1
(n−1)!N(k + 1).

Thus

V ∗(A,B)2 ≥ V ∗(A,A)V ∗(B ,B) (AF)

implies

N(k)2 ≥ N(k + 1)N(k − 1) (Stanley).



Stanley’s (poset) inequality: true form

Fix d ≥ 0, x , y1, . . . , yd ∈ P and ℓ1, . . . , ℓd ∈ N .

Nd(k) :=
number of linear extensions with

L(x) = k , L(yi) = ℓi for i ∈ [d ].

Theorem (Stanley ‘81)
For k ≥ 1,

Nd(k)
2 ≥ Nd(k + 1)Nd(k − 1).

But an elementary/combinatorial proof

of Stanley’s inequality remains elusive.



Equality conditions



When is equality achieved?

Question (Alexandrov ‘37)
When does AF inequality achieve equality?

Quote (Alexandrov ‘37)
“Serious difficulties occur in determining the

conditions for equality to hold in AF inequality.”



When is equality achieved?

Quote (Gardner ‘02)
If inequalities are silver currency in mathematics,

those that come along with precise equality

conditions are gold.

Example (Isoperimetric problem)
Among all closed curves in the plane of fixed

perimeter, the curve that maximizes the area

of its enclosed region is the circle.



(Informal) answer for convex polytopes

Theorem (Shenfeld-van Handel ‘23)
Let A,B ,C1, . . . ,Cm−2 be convex polytopes. Then

V ∗(A,B)2 === V ∗(A,A)V ∗(B ,B)

arises from a combination of three mechanisms:

Translation and scaling;

Relative positions of normal cones of

boundaries of C1, . . . ,Cm−2;

Relative positions of affine hulls of

C1, . . . ,Cm−2.



The key takeaway is the equality condition of

AF inequality is extremely complicated.

We can in fact prove this statement

rigorously by using Complexity Theory.
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Complexity theory perspective

Consider the decision problem:

Input: unimodular polytopes A,B ,C1, . . . ,Cm−2;

Output: - YES if V ∗(A,B)2 = V ∗(A,A)V ∗(B ,B) ;

- NO if V ∗(A,B)2 > V ∗(A,A)V ∗(B ,B) .

Theorem (C.–Pak ‘24)
This decision problem cannot be solved in

polynomial time, unless NP = coNP .



A stronger result

Theorem (C.–Pak ‘24)
This decision problem does not belong to the

polynomial hierarchy (PH), unless PH collapses .

Thus the geometric description of AF equality

must be computationally intractable.



Back to posets

Consider the decision problem:

Input: poset P , x , y1, . . . , yd ∈ P , ℓ1, . . . , ℓd ∈ N .

Output: - YES if Nd(k)
2 = Nd(k + 1)Nd(k − 1) ;

- NO if Nd(k)
2 > Nd(k + 1)Nd(k − 1) .

Theorem (C.–Pak ‘24)
This decision problem does not belong to the

polynomial hierarchy (PH), unless PH collapses .



Application of main result

An injection f : A → B is combinatorial if

both f and f −1 are poly-time computable.

Corollary (C.–Pak ‘24)
There is no combinatorial injective proof for

Stanley’s inequality

Nd(k)
2 ≥ Nd(k + 1)Nd(k − 1)

unless PH collapses .
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Combinatorial injection
An injection f : A → B is combinatorial if

Given x ∈ A , the image f (x) is computable in

poly(|x |) steps;

Given y ∈ B , it takes poly(|y |) steps to decide

if y is in image of f ; and if so, the pre-image

f −1(y) is computable in poly(|y |) steps.
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Complexity class P

P :=

{
Decision problems solvable by deterministic

Turing machine in polynomial time

}

Example
Check if a given 3-coloring of a graph G is proper.

This can be solved in O(n2) time by checking

the color of endpoints of every edge.

YES NO



Complexity class NP

NP :=

{
Decision problems solvable by nondetermi-

nistic Turing machine in polynomial time

}
.

Can split into many parallel branches;

Output ‘YES’ if one of the branches said ‘YES’;

Output ‘NO’ if all branches said ‘NO’.



Complexity class NP: example

Problem: Check if graph G has a proper 3-coloring.

Each branch corresponds to checking if

a particular 3-coloring of G is proper.

YES NO

· · ·

NO

Output to this example is ‘YES’.



Turing machine with an oracle

At each step, this machine can either:

Perform usual nondeterministic Turing

machine operation; or

Ask an oracle that is able to answer any

instance of a given computational problem.



Turing machine with an oracle: example

Problem: Check if there is an induced subgraph of

G of size ⌈n/2⌉ that is not 3-colorable.

Oracle: Can check if a graph is 3-colorable.

Each branch of the machine corresponds to

an induced subgraph of G of size ⌈n/2⌉ .

· · ·

For every branch, oracle checks

if subgraph is 3-colorable.



Complexity class ΣP
i

The first two classes are

ΣP
0 := P; ΣP

1 := NP.

For i ≥ 1, the class ΣP
i := NPΣP

i−1 is
Decision problems solvable by nondetermi-

nistic Turing machine in polynomial time

with an oracle for problem from ΣP
i−1.

 .

Note that

ΣP
0 ⊆ ΣP

1 ⊆ ΣP
2 ⊆ ΣP

3 ⊆ · · ·



Polynomial hierarchy (PH)

Polynomial hierarchy is the union of all ΣP
i ’s,

PH :=
∞⋃
i=0

ΣP
i .

Conjecture
Polynomial hierarchy does not collapse,

ΣP
0 ⊊ ΣP

1 ⊊ ΣP
2 ⊊ ΣP

3 ⊊ · · ·

ΣP
0 = ΣP

1 is equivalent to P = NP.

ΣP
1 = ΣP

2 is equivalent to NP = coNP.


