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Log-concavity

A sequence a1, . . . , an ∈ R≥0 is log-concave if

a2k ≥ ak+1 ak−1 (1 < k < n).

Log-concavity (and positivity) implies unimodality:

a1 ≤ · · · ≤ am ≥ · · · ≥ an for some 1 ≤ m ≤ n.
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Example: binomial coefficients

ak =

(
n

k

)
=

n!

k! (n − k)!
k = 0, 1, . . . , n.

This sequence is log-concave because

a2k
ak+1 ak−1

=

(
n
k

)2(
n

k+1

) (
n

k−1

) =

(
1 +

1

k

)(
1 +

1

n − k

)
,

which is greater than 1.



Example: forests of a graph

ak = number of forests with k edges of graph G .

Forest is a subset of edges of G that has no cycles.

Log-concavity was conjectured for all matroids

(Mason ‘72), and was proved through combinatorial

Hodge theory (Huh ‘15).

G forest not forest spanning tree



Motivation

Which log-concave inequality is more “difficult”?



Our goal

We aim to differentiate simple log-concave

inequalities from complex log-concave inequalities

using Complexity Theory.

Today we focus on log-concave poset inequalities.
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Partially ordered sets

A poset P is a set X with a partial order ≺ on X .
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Linear extension

A linear extension L is a complete order of ≺.
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We write L(x) = k if x is k-th smallest in L.



Stanley (poset) inequality: simple form

Fix x ∈ P .

N(k) := number of linear extensions with L(x) = k .

Theorem (Stanley ‘81)

N(k)2 ≥ N(k + 1)N(k − 1) (k ∈ N).

The inequality was initially conjectured by

Chung-Fishburn-Graham, and was proved using

Aleksandrov-Fenchel inequality for mixed volumes.



Mixed volumes: dimension 2

For convex bodies K , L ⊆ R2 ,

Vol(aK+bL) = V (K ,K )a2+V (L, L)b2+2V (K , L)ab

is a quadratic polynomial in a, b ≥ 0.

K L K + L

Coefficients V (K ,K ), V (L, L), V (K , L)

are mixed volumes.



Mixed volumes: dimension n

Theorem (Minkowski ‘03)
For convex bodies K1, . . . ,Kn ⊆ Rn, the function

(λ1, . . . λn) 7→ Vol(λ1K1 + . . .+ λnKn)

is a homogeneous polynomial in λ1, . . . , λn ≥ 0.

Mixed volume V (K1, . . . ,Kn) is 1
n! of the

coefficient of λ1 · · ·λn in the polynomial

expansion of Vol(λ1K1 + . . .+ λnKn) .



Alexandrov-Fenchel (AF) inequality

Theorem (Alexandrov ‘37, Fenchel ‘36)
For convex bodies A,B ,K1, . . . ,Kn−2 ⊆ Rn,

V ∗(A,B)2 ≥ V ∗(A,A)V ∗(B ,B),

where V ∗(A,B) := V (A,B ,K1, . . . ,Kn−2) .

Stanley inequality N(k)2 ≥ N(k + 1)N(k − 1)

follows by substituting A,B ,K1, . . . ,Kn−2 with

slices of order polytopes of the poset.



Stanley (poset) inequality: true form

Fix d ≥ 0, x , y1, . . . , yd ∈ P and ℓ1, . . . , ℓd ∈ N .

Nd(k) :=
number of linear extensions with

L(x) = k , L(yi) = ℓi for i ∈ [d ].

Theorem (Stanley ‘81)

Nd(k)
2 ≥ Nd(k + 1)Nd(k − 1) (k ∈ N).

This form corresponds to imposing boundary

conditions in PDE/statistical physics.



When is equality achieved?

Question (Stanley ‘81)
Find equality condition for [Stanley inequality ].

Quote (Gardner ‘02)
If inequalities are silver currency in mathematics,

those that come along with precise equality

conditions are gold.



Equality condition: d = 0

Theorem (Shenfeld-van Handel ’23)
Suppose d = 0 and Nd(k) > 0 . Then

Nd(k)
2 === Nd(k + 1)Nd(k − 1)

if and only if

|P<z | > k for all z ∈ P>x ,

|P>z | > |P | − k + 1 for all z ∈ P<x ,

where P<z := set of y ∈ P with y < z .

This is a combinatorial condition, and

can be checked in O(|P|2) steps.



Main result

Consider the decision problem for

checking equality in Stanley inequality:

Nd(k)
2 =?=?=? Nd(k + 1)Nd(k − 1).

Theorem 1 (C.–Pak ‘23+)
d ≤ 1: combinatorial equality condition that is

checkable in poly(|P|) steps.
d ≥ 2: not part of polynomial hierarchy,

unless polynomial hierarchy collapses.



Alexandrov–Fenchel equality condition

Consider the decision problem for checking equality

in AF inequality for unimodular polytopes:

V ∗(A,B)2 =?=?=? V ∗(A,A)V ∗(B ,B).

Theorem 2 (C.–Pak ‘23+)
Problem is not in PHPHPH, unless PH collapses.

Shenfeld–van Handel (‘23) obtained complete

geometric description of AF equality, but those

conditions are computationally intractable.



Recall our goal ...

We aim to differentiate simple log-concave

inequalities from complex log-concave inequalities

using Complexity Theory.



Consequence of main result

Theorem 3 (C.–Pak ‘23+)
For d ≥ 2, the counting problem of determining

Nd(k)
2 − Nd(k + 1)Nd(k − 1)

is not in #P , unless PH collapses.

Note: Nd(k)
2 and Nd(k + 1)Nd(k − 1) are in #P .



Comparison: binomial inequalities
For 1 < k < n, the counting problem(

n

k

)2

−
(

n

k + 1

)(
n

k − 1

)
can be determined in poly(n), and thus in #P .

Combinatorial interpretation: number of pairs of

non-intersecting north-east lattice paths.

•
(0, 1)

•(1, 0)

• (k, n− k + 1)
•
(k + 1, n− k)



Back to our goal

We compare two log-concave inequalities:

Binomial inequality: in #P .

Stanley inequality: not in #P , unless PH collapses.

This differentiates Stanley inequality from binomial

inequality and many other combinatorial inequalities.
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Example: defect of Sidorenko inequality

For a permutation σ ∈ Sn, let

LI(σ) := number of π ∈ Sn such that π � σ,

where � is the weak Bruhat order on Sn.

Theorem (Sidorenko ‘91)

LI(σ)LI(σ) ≥ n!, (σ ∈ Sn),

where σ is the reverse of σ.

Proved by max-flow min-cut argument. Defect

was shown to be in #P by C.–Pak–Panova ‘23.


