Equality cases of Alexandrov–Fenchel inequality are not in PH

Swee Hong Chan

joint with Igor Pak

Log-concavity

A sequence $a_1, \ldots, a_n \in \mathbb{R}_{\geq 0}$ is log-concave if

$$
a_k^2 \geq a_{k+1} a_{k-1} \qquad (1 < k < n).
$$

Log-concavity (and positivity) implies unimodality:

$$
a_1 \leq \cdots \leq a_m \geq \cdots \geq a_n \text{ for some } 1 \leq m \leq n.
$$

Example: binomial coefficients

$$
a_k = \binom{n}{k} = \frac{n!}{k!(n-k)!} \qquad k = 0, 1, \ldots, n.
$$

This sequence is log-concave because

$$
\frac{a_k^2}{a_{k+1} a_{k-1}} = \frac{\binom{n}{k}^2}{\binom{n}{k+1} \binom{n}{k-1}} = \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{n-k}\right),
$$

which is greater than 1.

Example: forests of a graph

 a_k = number of forests with k edges of graph G. Forest is a subset of edges of G that has no cycles.

Log-concavity was conjectured for all matroids (Mason '72), and was proved through combinatorial Hodge theory (Huh '15).

Which log-concave inequality is more "difficult"?

We aim to differentiate simple log-concave inequalities from complex log-concave inequalities using **Complexity Theory**.

We aim to differentiate simple log-concave inequalities from complex log-concave inequalities using **Complexity Theory**.

Today we focus on log-concave **poset inequalities**.

Partially ordered sets

A poset P is a set X with a partial order \prec on X.

Linear extension

A linear extension L is a complete order of \prec .

We write $L(x) = k$ if x is k-th smallest in L.

Stanley (poset) inequality: simple form Fix $x \in \mathcal{P}$. $N(k) :=$ number of linear extensions with $L(x) = k$.

Theorem (Stanley '81)

$$
N(k)^2 \geq N(k+1) N(k-1) \qquad (k \in \mathbb{N}).
$$

The inequality was initially conjectured by Chung-Fishburn-Graham, and was proved using Aleksandrov-Fenchel inequality for mixed volumes. Mixed volumes: dimension 2

For convex bodies $K, L \subseteq \mathbb{R}^2$,

 $\mathsf{Vol}(\textit{aK}\!\!+\!\!\textit{bL})\,=\, \mathsf{V}(\mathsf{K}, \mathsf{K})\, \textit{a}^2\!+\mathsf{V}(\mathsf{L}, \mathsf{L})\, \textit{b}^2\!+\!2\mathsf{V}(\mathsf{K}, \mathsf{L})\, \textit{ab}$

is a quadratic polynomial in $a, b > 0$.

Coefficients $V(K, K)$, $V(L, L)$, $V(K, L)$ are mixed volumes.

Mixed volumes: dimension n

Theorem (Minkowski '03) For convex bodies $K_1, \ldots, K_n \subseteq \mathbb{R}^n$, the function $(\lambda_1, \ldots \lambda_n) \mapsto \text{Vol}(\lambda_1 K_1 + \ldots + \lambda_n K_n)$ is a homogeneous polynomial in $\lambda_1, \ldots, \lambda_n > 0$.

> Mixed volume $V(K_1, \ldots, K_n)$ is $\frac{1}{n!}$ of the coefficient of $\lambda_1 \cdots \lambda_n$ in the polynomial expansion of $Vol(\lambda_1 K_1 + \ldots + \lambda_n K_n)$.

Alexandrov-Fenchel (AF) inequality

Theorem (Alexandrov '37, Fenchel '36) For convex bodies $A, B, K_1, \ldots, K_{n-2} \subseteq \mathbb{R}^n$, $V^*(A, B)^2 \geq V^*(A, A) V^*(B, B),$ where $V^*(A, B) := V(A, B, K_1, \ldots, K_{n-2})$.

Stanley inequality $N(k)^2 \ge N(k+1)N(k-1)$ follows by substituting $A, B, K_1, \ldots, K_{n-2}$ with slices of order polytopes of the poset.

Stanley (poset) inequality: true form

Fix
$$
d \ge 0
$$
, $x, y_1, \ldots, y_d \in \mathcal{P}$ and $\ell_1, \ldots, \ell_d \in \mathbb{N}$.

 $N_d(k) :=$ number of linear extensions with $L(x) = k$, $L(y_i) = \ell_i$ for $i \in [d]$.

Theorem (Stanley '81)

$$
N_d(k)^2 \geq N_d(k+1) N_d(k-1) \qquad (k \in \mathbb{N}).
$$

This form corresponds to imposing boundary conditions in PDE/statistical physics.

When is equality achieved?

Question (Stanley '81) Find equality condition for [Stanley inequality].

Quote (Gardner '02)

If inequalities are silver currency in mathematics, those that come along with precise equality conditions are gold.

Equality condition: $d = 0$

Theorem (Shenfeld-van Handel '23) Suppose $d = 0$ and $N_d(k) > 0$. Then

$$
N_d(k)^2 = N_d(k+1) N_d(k-1)
$$

if and only if

 $|\mathcal{P}_{\leq z}| > k$ for all $z \in \mathcal{P}_{\leq x}$, $|\mathcal{P}_{>}| > |P| - k + 1$ for all $z \in \mathcal{P}_{< x}$, where $P_{\leq z} := \text{set of } y \in \mathcal{P}$ with $y \leq z$.

This is a combinatorial condition, and can be checked in $O(|\mathcal{P}|^2)$ steps.

Main result

Consider the decision problem for checking equality in Stanley inequality:

$$
N_d(k)^2 = N_d(k+1) N_d(k-1).
$$

Theorem 1 $(C.-Pak '23+)$ \bullet $d \leq 1$ combinatorial equality condition that is checkable in poly $(|P|)$ steps.

 \bullet $d > 2$ not part of **polynomial hierarchy**, unless polynomial hierarchy collapses.

Alexandrov–Fenchel equality condition

Consider the decision problem for checking equality in AF inequality for unimodular polytopes:

$$
V^*(A, B)^2 = V^*(A, A) V^*(B, B).
$$

Theorem 2 $(C.-Pak '23+)$ Problem is not in PH, unless PH collapses.

Shenfeld–van Handel ('23) obtained complete geometric description of AF equality, but those conditions are computationally intractable.

We aim to differentiate **simple** log-concave inequalities from **complex** log-concave inequalities using Complexity Theory.

Consequence of main result

Theorem 3 (C.-Pak '23+)
For
$$
d \ge 2
$$
, the counting problem of determining
 $N_d(k)^2 - N_d(k+1)N_d(k-1)$
is not in $\#P$, unless PH collapses.

Note: $N_d(k)^2$ and $N_d(k+1)N_d(k-1)$ are in $\#P$.

Comparison: binomial inequalities

For $1 < k < n$, the counting problem \bigcap k \setminus^2 − $\binom{n}{k+1}\binom{n}{k-1}$ \setminus

can be determined in poly(n), and thus in $\#P$.

Combinatorial interpretation: number of pairs of non-intersecting north-east lattice paths.

We compare two log-concave inequalities:

Binomial inequality: in $\#P$.

Stanley inequality: not in $\#P$, unless PH collapses.

This differentiates Stanley inequality from binomial inequality and many other combinatorial inequalities.

THANK YOU!

Preprint: <www.arxiv.org/abs/2309.05764> Webpage: <www.math.rutgers.edu/~sc2518/> Email: sweehong.chan@rutgers.edu

Example: defect of Sidorenko inequality For a permutation $\sigma \in S_n$, let $LI(\sigma) :=$ number of $\pi \in S_n$ such that $\pi \leq \sigma$, where \leq is the weak Bruhat order on S_n . Theorem (Sidorenko '91) $LI(\sigma)LI(\overline{\sigma}) \geq n!, \quad (\sigma \in S_n),$ where $\overline{\sigma}$ is the reverse of σ .

> Proved by max-flow min-cut argument. Defect was shown to be in $\#P$ by C.–Pak–Panova '23.