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Simple random walk on Z2

Visits every site infinitely often? Yes!

Scaling limit? The standard 2-D Brownian motion:

(
1√
n
X[nt]︸︷︷︸

location of the
walker at time [nt]

)t≥0
n→∞
=⇒ 1√

2
(B1(t),B2(t)︸ ︷︷ ︸

independent standard
Brownian motions

)t≥0.
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Rotor walk on Z2

Put a signpost at each site.

•



Rotor walk on Z2

Turn the signpost 90◦ counterclockwise, then follow the signpost.

• •◦ •◦

The signpost says:
“This is the way you went the last time you were here“,
(assuming you ever were!)



Rotor walk on Z2

Turn the signpost 90◦ counterclockwise, then follow the signpost.

•



Rotor walk on Z2

Turn the signpost 90◦ counterclockwise, then follow the signpost.

•



Rotor walk on Z2

Turn the signpost 90◦ counterclockwise, then follow the signpost.

•



Rotor walk on Z2

Turn the signpost 90◦ counterclockwise, then follow the signpost.

•



Rotor walk on Z2

Turn the signpost 90◦ counterclockwise, then follow the signpost.

•



Rotor walk on Z2

Turn the signpost 90◦ counterclockwise, then follow the signpost.

•



Rotor walk on Z2

Turn the signpost 90◦ counterclockwise, then follow the signpost.

•



Rotor walk on Z2

Turn the signpost 90◦ counterclockwise, then follow the signpost.

•



Rotor walk on Z2

Turn the signpost 90◦ counterclockwise, then follow the signpost.

•



Rotor walk on Z2

Turn the signpost 90◦ counterclockwise, then follow the signpost.

• •◦ •◦

The signpost says:
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Conjectures for rotor walk on Z2

If the initial signposts are i.i.d. uniform among the four directions,
then

(PDDK ‘96) Visits every site infinitely often?

(PDDK ‘96) #{X1, . . . ,Xn} is � n2/3?
(compare with n/ log n for the simple random walk.)

(Kapri-Dhar ‘09) The asymptotic shape of {X1, . . . ,Xn} is a
disc?



More randomness please!

Random Deterministic

Something
in between

Well
studied

Many open
problems

Let’s study
this!!!
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p-rotor walk on Z2

With probability p, turn the signpost 90◦ counter-clockwise.
With probability 1− p, turn the signpost 90◦ clockwise.

•

p 1− p

• ◦ •◦



p-rotor walk on Z2

Follow rotor walk rule with prob. p, do the opposite with prob. 1− p
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p-rotor walk on Z2

Follow rotor walk rule with prob. p, do the opposite with prob. 1− p

Ops...



p-rotor walk on Z2

With probability p, turn the signpost 90◦ counter-clockwise.
With probability 1− p, turn the signpost 90◦ clockwise.

•

p 1− p

• ◦ •◦

Recover the rotor walk if p = 1.



Scaling limit for p-rotor walk on Z
(Huss, Levine, Sava-Huss 18) The scaling limit for p-rotor walk on
Z is a perturbed Brownian motion (Y (t))t≥0,

Y (t) = B(t)︸︷︷︸
standard
Brownian
motion

+ a sup
0≤s≤t

Y (s)︸ ︷︷ ︸
perturbation at

maximum

+ b inf
0≤s≤t

Y (s)︸ ︷︷ ︸
perturbation at

minimum

, t ≥ 0.

Y (t) for a = −0.998, and b = 0 (by Wilfried Huss).



Scaling limit for p-rotor walk on Z2

Question: Is the scaling limit for p-rotor walk on Z2 is a “2-D
perturbed Brownian motion”?

Problem: How to define “2-D perturbed Brownian motion”?.
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Scaling limit for p-rotor walk on Z2

Question: Is the scaling limit for p-rotor walk on Z2 is a “2-D
perturbed Brownian motion”?

Problem: How to define “2-D perturbed Brownian motion”?.

Compromise: Work with the unperturbed p-rotor walk.

Conjecture: The scaling limit for p-rotor walk on Z2 when p = 1
2 is

the standard 2-D Brownian motion.



Uniform spanning tree plus one edge (UST+)
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Uniform spanning tree plus one edge (UST+)

•

Pick a spanning tree of the black box directed to the origin
(uniformly at random).



Uniform spanning tree plus one edge (UST+)

•

Take the limit as the black box grows until it covers Z2.
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•

Take the limit as the black box grows until it covers Z2.



Uniform spanning tree plus one edge (UST+)

•

Add a signpost from the origin, uniform among the four directions.



Our scaling limit result

Theorem (C., Greco, Levine, Li ‘18+)

Let p = 1
2 and let the uniform spanning tree plus one edge be the

initial signposts configuration. Then, with probability 1, the
p-rotor walk on Z2 scales to the standard 2-D Brownian motion:

1√
n

(X[nt]︸︷︷︸
location of the

walker at time [nt]

)t≥0
n→∞
=⇒ 1√

2
(B1(t),B2(t)︸ ︷︷ ︸

independent
Brownian motions

)t≥0.

Can be extended to 1
2 -rotor walk on Zd for d > 2.

Implies transience when d > 2; the case d = 2 remains open.



Preprint coming soon to an arXiv server near you!

Can be contacted at: sweehong@math.cornell.edu

“Randomness makes life easier”
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