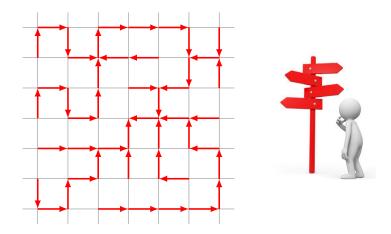
In between random walk and rotor walk

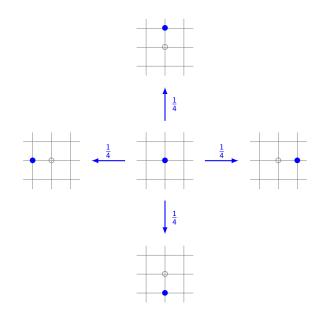
Swee Hong Chan Cornell University Joint work with Lila Greco, Lionel Levine, Boyao Li



Rotor walk

Simple random walk on \mathbb{Z}^2

Simple random walk on \mathbb{Z}^2

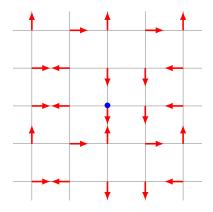


Simple random walk on \mathbb{Z}^2

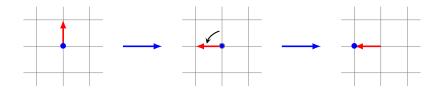
- Visits every site infinitely often? Yes!
- Scaling limit? The standard 2-D Brownian motion:

$$(\underbrace{\frac{1}{\sqrt{n}}X_{[nt]}}_{\substack{\text{location of the walker at time } [nt]})_{t\geq 0} \stackrel{n\to\infty}{\Longrightarrow} \frac{1}{\sqrt{2}} (\underbrace{B_1(t), B_2(t)}_{\substack{\text{independent standard Brownian motions}}})_{t\geq 0})_{t\geq 0}$$

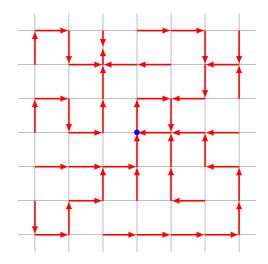
Put a signpost at each site.

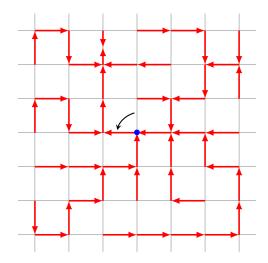


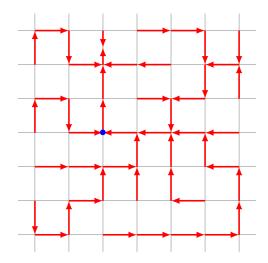
Turn the signpost 90° counterclockwise, then follow the signpost.

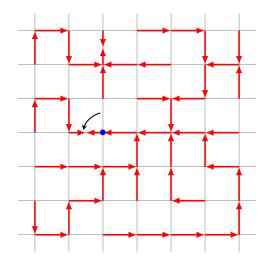


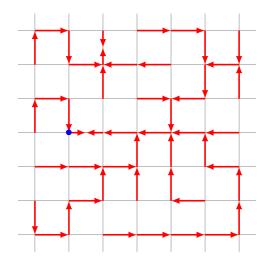
The signpost says: "This is the way you went the last time you were here", (assuming you ever were!)

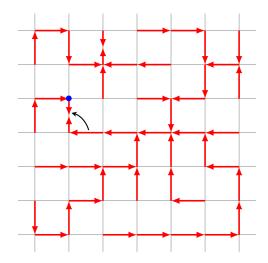


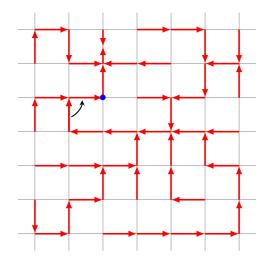


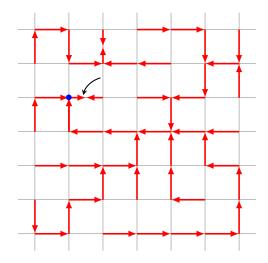


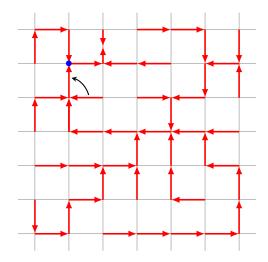




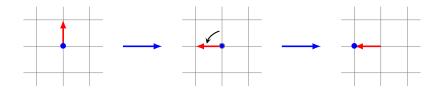








Turn the signpost 90° counterclockwise, then follow the signpost.



The signpost says: "This is the way you went the last time you were here", (assuming you ever were!)

Conjectures for rotor walk on \mathbb{Z}^2

If the initial signposts are i.i.d. uniform among the four directions, then

- (PDDK '96) Visits every site infinitely often?
- (PDDK '96) #{X₁,...,X_n} is ≍ n^{2/3}? (compare with n/ log n for the simple random walk.)
- (Kapri-Dhar '09) The asymptotic shape of {X₁,...,X_n} is a disc?

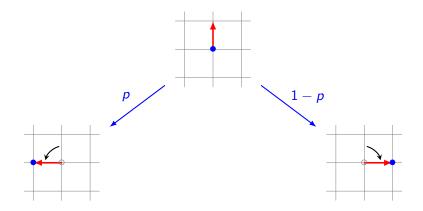
More randomness please!

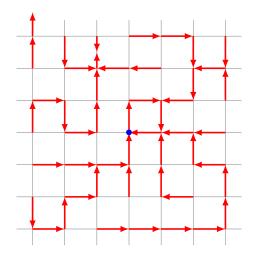
Deterministic

More randomness please!

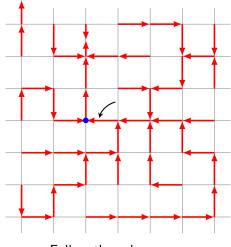
p-rotor walk on \mathbb{Z}^2

With probability p, turn the signpost 90° counter-clockwise. With probability 1 - p, turn the signpost 90° clockwise.

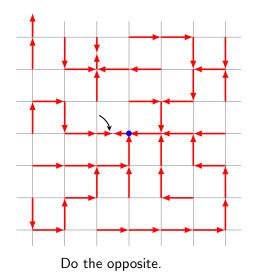




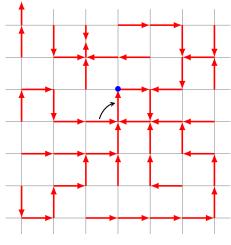
Follow rotor walk rule with prob. p, do the opposite with prob. 1 - p



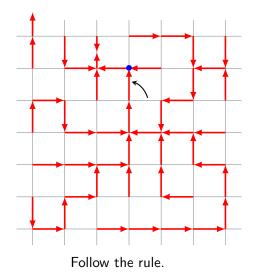
Follow the rule.

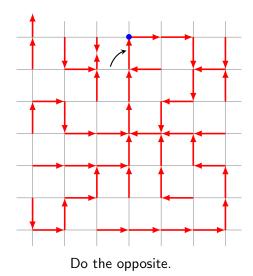


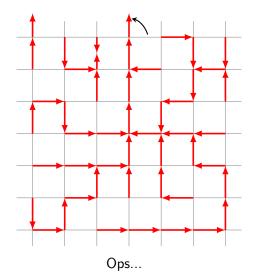
Follow rotor walk rule with prob. p, do the opposite with prob. 1 - p



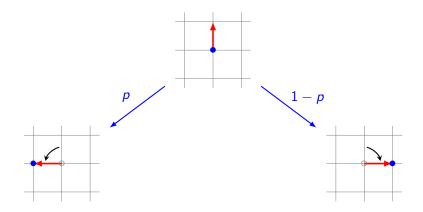
Do the opposite again.







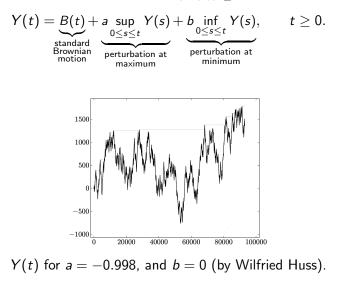
With probability p, turn the signpost 90° counter-clockwise. With probability 1 - p, turn the signpost 90° clockwise.



Recover the rotor walk if p = 1.

Scaling limit for *p*-rotor walk on \mathbb{Z}

(Huss, Levine, Sava-Huss 18) The scaling limit for *p*-rotor walk on \mathbb{Z} is a perturbed Brownian motion $(Y(t))_{t>0}$,



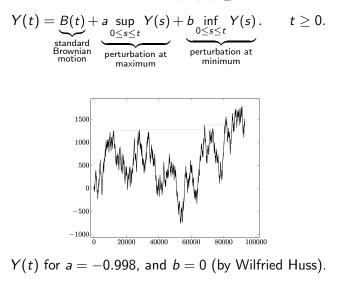
Scaling limit for *p*-rotor walk on \mathbb{Z}^2

Question: Is the scaling limit for *p*-rotor walk on \mathbb{Z}^2 is a "2-D perturbed Brownian motion"?

Problem: How to define "2-D perturbed Brownian motion"?.

Scaling limit for *p*-rotor walk on \mathbb{Z}

(Huss, Levine, Sava-Huss 18) The scaling limit for *p*-rotor walk on \mathbb{Z} is a perturbed Brownian motion $(Y(t))_{t>0}$,



Scaling limit for *p*-rotor walk on \mathbb{Z}^2

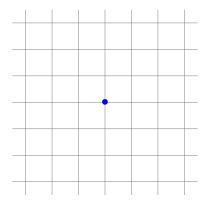
Question: Is the scaling limit for *p*-rotor walk on \mathbb{Z}^2 is a "2-D perturbed Brownian motion"?

Problem: How to define "2-D perturbed Brownian motion"?.

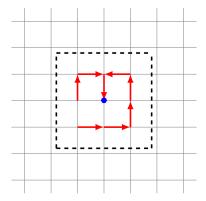
Compromise: Work with the unperturbed *p*-rotor walk.

Conjecture: The scaling limit for *p*-rotor walk on \mathbb{Z}^2 when $p = \frac{1}{2}$ is the standard 2-D Brownian motion.

Uniform spanning tree plus one edge (UST⁺)

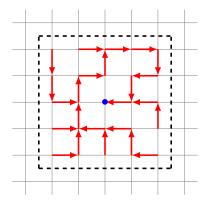


Uniform spanning tree plus one edge (UST^+)



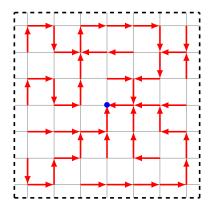
Pick a spanning tree of the black box directed to the origin (uniformly at random).

Uniform spanning tree plus one edge (UST^+)



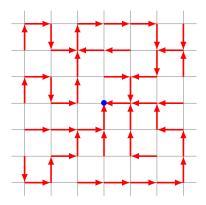
Take the limit as the black box grows until it covers \mathbb{Z}^2 .

Uniform spanning tree plus one edge (UST⁺)



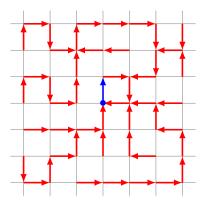
Take the limit as the black box grows until it covers \mathbb{Z}^2 .

Uniform spanning tree plus one edge (UST⁺)



Take the limit as the black box grows until it covers \mathbb{Z}^2 .

Uniform spanning tree plus one edge (UST^+)



Add a signpost from the origin, uniform among the four directions.

Our scaling limit result

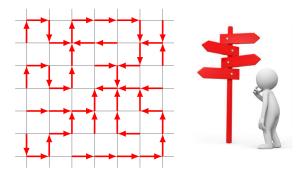
Theorem (C., Greco, Levine, Li '18+)

Let $p = \frac{1}{2}$ and let the uniform spanning tree plus one edge be the initial signposts configuration. Then, with probability 1, the p-rotor walk on \mathbb{Z}^2 scales to the standard 2-D Brownian motion:

$$\frac{1}{\sqrt{n}}(\underbrace{X_{[nt]}}_{t\geq 0})_{t\geq 0} \stackrel{n\to\infty}{\Longrightarrow} \frac{1}{\sqrt{2}}(\underbrace{B_1(t),B_2(t)}_{t\geq 0})_{t\geq 0}.$$

location of the walker at time [nt] independent Brownian motions

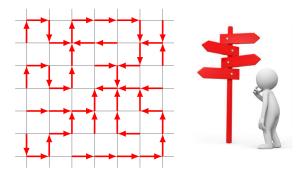
- Can be extended to $\frac{1}{2}$ -rotor walk on \mathbb{Z}^d for d > 2.
- Implies transience when d > 2; the case d = 2 remains open.



Preprint coming soon to an arXiv server near you!

Can be contacted at: sweehong@math.cornell.edu

"Randomness makes life easier"



Preprint coming soon to an arXiv server near you!

Can be contacted at: sweehong@math.cornell.edu

THANK YOU!