Combinatorial Atlas for Log-concave Inequalities

Swee Hong Chan (UCLA)

joint with Igor Pak

What is log-concavity?

A sequence $a_1, \ldots, a_n \in \mathbb{R}_{\geq 0}$ is log-concave if

$$a_k^2 \geq a_{k+1} a_{k-1} \qquad (1 \leq k < n).$$

Equivalently,

$$\log a_k \geq \frac{\log a_{k+1} + \log a_{k-1}}{2}$$
 $(1 \leq k < n).$

1 4 9 15 20 22 20 15 9 4 1

Example: binomial coefficients

$$a_k = \binom{n}{k}$$
 $k = 0, 1, \ldots, n$

This sequence is log-concave because

$$\frac{a_k^2}{a_{k+1} a_{k-1}} = \frac{\binom{n}{k}^2}{\binom{n}{k+1}\binom{n}{k-1}} = \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{n-k}\right),$$

which is greater than 1.

Example: permutations with k inversions

 a_k = number of $\pi \in S_n$ with k inversions, where inversion of π is pair i < j s.t. $\pi_i > \pi_j$.

This sequence is log-concave because

$$\sum_{0 \le k \le \binom{n}{2}} a_k x^k = (1+x) \dots (1+x+\dots+x^{n-1})$$

is a product of log-concave polynomials.

Log-concavity appears in many objects:

algebras, matroids, mixed volumes, measures, posets, random walks.

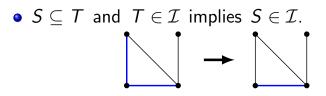
Log-concavity appears in many objects:

algebras, matroids, mixed volumes, measures, posets, random walks

Today we focus on matroids and posets.

Matroids

Matroid \mathcal{M} is ground set X with collection of independent sets $\mathcal{I} \subseteq 2^X$,



• If $S, T \in \mathcal{I}$ and |S| < |T|, then there is $x \in T \setminus S$ such that $S \cup \{x\} \in \mathcal{I}$.

Examples: Matroids

Graphical matroids

- X = edges of a graph G,
- $\mathcal{I} = \text{ forests in } G$.

Realizable matroids

- X = finite set of vectors over field \mathbb{F} ,
- \mathcal{I} = sets of linearly independent vectors.

Mason's Conjecture (1972)

For every matroid and $k \ge 1$,

(1)
$$I_k^2 \ge I_{k+1} I_{k-1};$$

(2) $I_k^2 \ge \left(1 + \frac{1}{k}\right) I_{k+1} I_{k-1};$
(3) $I_k^2 \ge \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{n-k}\right) I_{k+1} I_{k-1}.$

 I_k is number of ind. sets of size k, and n = |X|.

Why
$$\left(1+\frac{1}{k}\right)\left(1+\frac{1}{n-k}\right)$$
 ?

Mason (3) is equivalent to ultra log-concavity,

$$\frac{{I_k}^2}{{\binom{n}{k}}^2} \geq \frac{{I_{k+1}}}{{\binom{n}{k+1}}} \frac{{I_{k-1}}}{{\binom{n}{k-1}}}.$$

Equality occurs if every (k + 1)-subset is independent.

Theorem (Adiprasito-Huh-Katz '18) For every matroid and $k \ge 1$,

$$I_k^2 \geq I_{k+1} I_{k-1}.$$

Proof used combinatorial Hodge theory for matroids.

Solution to Mason (2)

Theorem (Huh-Schröter-Wang '18) For every matroid and $k \ge 1$, $I_k^2 \ge \left(1 + \frac{1}{k}\right) I_{k+1} I_{k-1}.$

Proof used combinatorial Hodge theory for correlation bound on matroids.

Solution to Mason (3)

Theorem (Anari-Liu-Gharan-Vinzant, Brändén-Huh '20) For every matroid and $k \ge 1$,

$${I_k}^2 \geq \left({1 + rac{1}{k}}
ight) \left({1 + rac{1}{{n - k}}}
ight) {I_{k + 1}} \, {I_{k - 1}}.$$

Proof used theory of strong log-concave polynomials / Lorentzian polynomials.

Solution to Mason (3)

Theorem (Anari-Liu-Gharan-Vinzant, Brändén-Huh '20) For every matroid and $k \ge 1$,

$${I_k}^2 \geq \left(1+rac{1}{k}\right) \left(1+rac{1}{n-k}\right) I_{k+1} I_{k-1}.$$

Theorem (Murai-Nagaoka-Yazawa '21) Equality occurs if and only if every (k + 1)-subset is independent.

Our contribution

Method: Combinatorial atlas

Results: Log-concave inequalities, and if and only if conditions for equality

- Matroids (refined);
- Morphism of matroids (refined);
- Discrete polymatroids;
- Stanley's poset inequality (refined);
- Poset antimatroids;
- Branching greedoid (log-convex).

Method: Combinatorial atlas

Results: Log-concave inequalities, and if and only if conditions for equality

- Matroids (refined);
- Morphism of matroids (refined);
- Discrete polymatroids;
- Stanley's poset inequality (refined);
- Poset antimatroids;
- Branching greedoid (log-convex).

Matroids

Warmup: graphical matroids refinement

Corollary (C.-Pak)

For graphical matroid of simple connected graph

$$G = (V, E)$$
 and $k = |V| - 2$,
 $(I_k)^2 \ge \frac{3}{2} \left(1 + \frac{1}{k}\right) I_{k+1} I_{k-1},$

with equality if and only if G is cycle graph.

Comparison with Mason (3)

Our bound gives

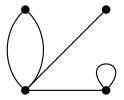
$$rac{(I_k)^2}{I_{k+1} I_{k-1}} \geq rac{3}{2}$$
 when $|E| - |V| o \infty$,

$\begin{array}{ll} \text{Meanwhile, Mason (3) bound only gives} \\ \frac{(I_k)^2}{I_{k+1} \, I_{k-1}} & \geq & 1 \qquad \text{when } |E| - |V| \rightarrow \infty. \end{array}$

Our bound is better numerically and asymptotically.

Parallel classes of matroid $\ensuremath{\mathcal{M}}$

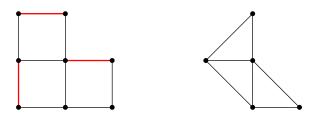
Loop is $x \in X$ such that $\{x\} \notin \mathcal{I}$. Non-loops x, y are parallel if $\{x, y\} \notin \mathcal{I}$. Parallelship equiv. relation: $x \sim y$ if $\{x, y\} \notin \mathcal{I}$. Parallel class = equivalence class of \sim .



Matroid contraction

Contraction of $S \in \mathcal{I}$ is matroid \mathcal{M}_S with

 $X_S = X \setminus S, \qquad \mathcal{I}_S = \{T \setminus S : S \subseteq T\}.$

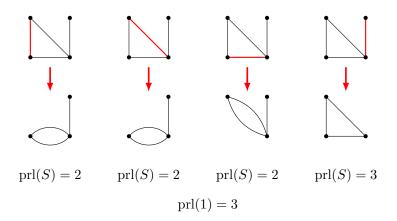


$$\mathsf{prl}(S) \ := \ \mathsf{number} \ \mathsf{of} \ \mathsf{parallel} \ \mathsf{classes} \ \mathsf{of} \ \mathfrak{M}_S$$

Parallel number

The *k*-parallel number is

 $prl(k) := max{prl(S) | S \in I with |S| = k}.$



Refinement for Mason (3)

Theorem 1 (C.-Pak)
For every matroid and
$$k \ge 1$$
,
 $I_k^2 \ge \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{\operatorname{prl}(k-1) + 1}\right) I_{k+1} I_{k-1}.$

This refines Mason (3),

$${I_k}^2 \geq \left(1+\frac{1}{k}\right) \left(1+\frac{1}{n-k}\right) I_{k+1} I_{k-1},$$

since

$$\mathsf{prl}(k-1) \leq n-k+1.$$

When is equality achieved?

- When every (k + 1)-subset is independent, prl(k - 1) = n - k + 1.
- Graphical matroid when G is a cycle, prl(k-1) = 3.
- Full realizable matroids over finite field \mathbb{F}_q , prl $(k-1) = \frac{n}{q^{k-1}} - 1$.
- (k, m, n)-Steiner system matroid, prl $(k-1) = \frac{n-k+1}{m-k+1}$.

Equality conditions

Theorem 2 (C.-Pak) For every matroid and $k \ge 1$, $I_k^2 = \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{\operatorname{prl}(k-1) + 1}\right) I_{k+1} I_{k-1}$ if and only if

for every $S \in \mathcal{I}$ with |S| = k - 1,

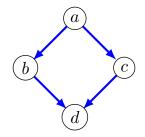
• S has prl(k-1) parallel classes; and

• Every parallel class of S has same size.

Stanley's poset inequality

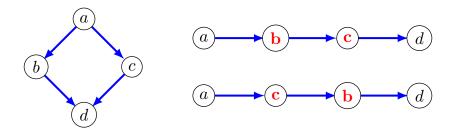
Partially ordered sets

A poset P is a set X with a partial order \prec on X.



Linear extension

A linear extension L is a complete order of \prec .



We write L(x) = k if x is k-th smallest in L.

Stanley's inequality

Fix $z \in P$.

 N_k is number of linear extensions with L(z) = k.

Theorem (Stanley '81) For every poset and $k \ge 1$, $N_k^2 \ge N_{k+1} N_{k-1}$.

Proof used Aleksandrov-Fenchel inequality for mixed volumes.

When is equality achieved?

Theorem (Shenfeld-van Handel) Suppose $N_k > 0$. Then

$$N_k^2 = N_{k+1} N_{k-1}$$

if and only if

$$N_k = N_{k+1} = N_{k-1}.$$

Proof used classifications of extremals of Aleksandrov-Fenchel inequality for convex polytopes.

Our contribution

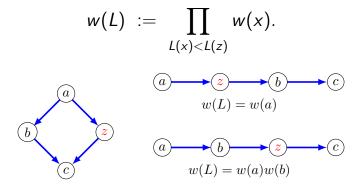
We give new combinatorial proof and extend to weighted version.

Order-reversing weight

A weight $w: X \to \mathbb{R}_{>0}$ is order-reversing if

 $w(x) \geq w(y)$ whenever $x \prec y$.

Weight of linear extension L is



Weighted Stanley's inequality

Fix $z \in P$.

 $N_{w,k}$ is w-weight of linear extensions with L(z) = k.

Theorem 3 (C. Pak) For every poset and $k \ge 1$, $N_{w,k}^2 \ge N_{w,k+1} N_{w,k-1}$. When is equality achieved?

Theorem 4 (C.-Pak) Suppose $N_{w,k} > 0$. Then

$$N_{w,k}^{2} = N_{w,k+1} N_{w,k-1}$$

if and only if

for every linear extension L with L(z) = k,

$$w(L^{-1}(k+1)) = w(L^{-1}(k-1)) =: s$$

and

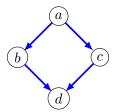
$$\frac{N_{w,k}}{s^k} = \frac{N_{w,k+1}}{s^{k+1}} = \frac{N_{w,k-1}}{s^{k-1}}.$$

Poset antimatroids

Feasible words of a poset

A word $\alpha \in X^*$ is feasible if no repeating elements, and

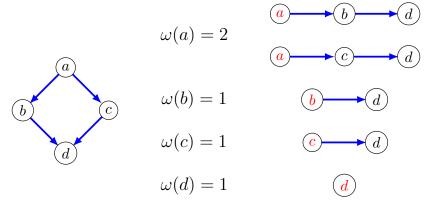
y occurs in α and $x \prec y \Rightarrow x$ occurs in α before y.



Feasible: \emptyset , a, ab, ac, abc, acb, abcd. Not feasible: aa, bc, ba.

Chain weight

For $x \in P$, chain weight is $\omega(x) =$ number of maximal chains that starts with x.

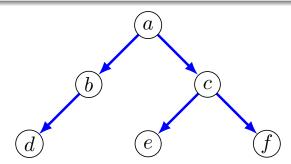


Weight of word α is $\omega(\alpha) := \omega(\alpha_1) \dots \omega(\alpha_\ell)$.

Log-concave inequality for poset antimatroids

$F_{\omega,k}$ is sum of ω -weight of feasible words of length k.

Theorem 5 (C.-Pak) For every poset and $k \ge 1$, $F_{\omega,k}^2 \ge F_{\omega,k+1}F_{\omega,k-1}$. When is equality achieved? Theorem 6 (C.-Pak) Equality occurs for k = 1, ..., height(P) - 1if and only if Hasse diagram of P is a forest where every leaf is of the same level.



Method: Combinatorial atlas

Results: Log-concave inequalities, and if and only if conditions for equality

- Matroids (refined);
- Morphism of matroids (refined);
- Discrete polymatroids;
- Stanley's poset inequality (refined);
- Poset antimatroids;
- Branching greedoid (log-convex).

Method: Combinatorial atlas

Results: Log-concave inequalities, and if and only if conditions for equality

- Matroids (refined);
- Morphism of matroids (refined);
- Discrete polymatroids;
- Stanley's poset inequality (refined);
- Poset antimatroids;
- Branching greedoid (log-convex).

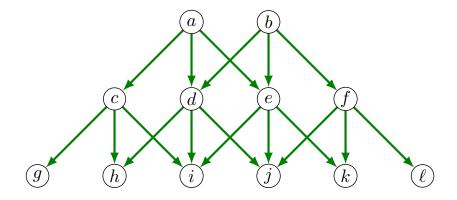
Combinatorial atlas

The strategy

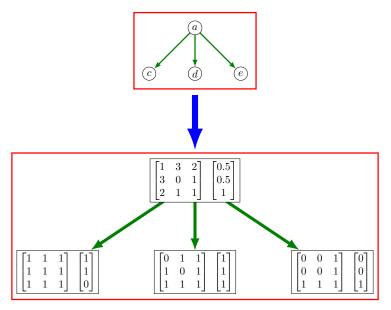
Input: Acyclic digraph \mathcal{A} , where each vertex v is associated with

- $r \times r$ nonnegative symmetric matrix M;
- nonnegative *r*-vector *h*.

Combinatorial atlas: example



Combinatorial atlas: example (zoomed in)



The strategy

Input: Acyclic digraph \mathcal{A} , where each vertex v is associated with

- $r \times r$ nonnegative symmetric matrix M;
- A nonnegative *r*-vector *h*.
- **Goal**: Show every *M* has hyperbolic inequality.

Hyperbolic inequality

M has hyperbolic inequality property if

$$\langle \boldsymbol{x}, \boldsymbol{M} \boldsymbol{y} \rangle^2 \geq \langle \boldsymbol{x}, \boldsymbol{M} \boldsymbol{x} \rangle \langle \boldsymbol{y}, \boldsymbol{M} \boldsymbol{y} \rangle,$$

for every $\boldsymbol{x} \in \mathbb{R}^r$, $\boldsymbol{y} \in \mathbb{R}^r_{\geq 0}$.

Note: This property already known to be important in Lorentzian polynomials and Bochner's method proof of Aleksandrov-Fenchel inequality. How to get log-concave inequalities?

Assume a_{k-1}, a_k, a_{k+1} can be computed by

$$m{a}_k \ = \ \langle m{g}, m{M}m{h}
angle, \ m{a}_{k+1} \ = \ \langle m{g}, m{M}m{g}
angle, \ m{a}_{k-1} \ = \ \langle m{h}, m{M}m{h}
angle,$$

for specific $\boldsymbol{M}, \boldsymbol{g}, \boldsymbol{h}$ in the atlas.

 $\langle \boldsymbol{g}, \boldsymbol{M} \boldsymbol{h} \rangle^2 \geq \langle \boldsymbol{g}, \boldsymbol{M} \boldsymbol{g} \rangle \langle \boldsymbol{h}, \boldsymbol{M} \boldsymbol{h} \rangle$ (hyperbolic ineq.)

then implies

$$a_k^2 \geq a_{k+1}a_{k-1}$$
 (log-concave ineq.)

The strategy

Input: Acyclic digraph \mathcal{A} , where each vertex v is associated with

- $r \times r$ nonnegative symmetric matrix M,
- A nonnegative *r*-vector *h*.

Goal: Show every M has hyperbolic inequality.

Method: Verify three conditions:

- Irreducibility condition;
- Inheritance condition;
- Subdivergence condition.

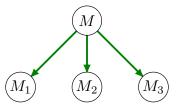
Irreducibility condition

- Matrix *M* associated to *v* is irreducible when restricted to its support;
- Vector **h** is associated to v is a positive vector.

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Inheritance condition

The *i*-th edge $e = (v, v_i)$ of v is associated with linear map $T_i: \mathbb{R}^r \to \mathbb{R}^r$ such that, for every $\mathbf{x} \in \mathbb{R}^r$, *i*-th coordinate of $Mx = \langle T_i x, M_i T_i h \rangle$, where **M** and **h** are associated to v, while M_i is associated to v_i .



Subdivergence condition

For every
$$\boldsymbol{x} \in \mathbb{R}^r$$
,

$$\sum_{i=1}^r h_i \langle T_i \boldsymbol{x}, \boldsymbol{M}_i T_i \boldsymbol{x} \rangle \geq \langle \boldsymbol{x}, \boldsymbol{M} \boldsymbol{x} \rangle,$$

where $h_i = i$ -th coordinate of h.

Note: Often hardest condition to check, usually done through injective arguments.

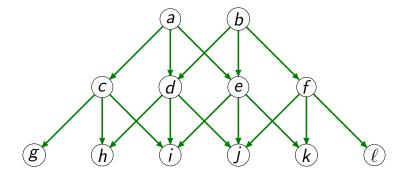
Note: Equality occurs for matroids.

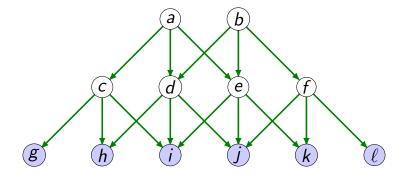
Bottom-to-top principle for inequalities

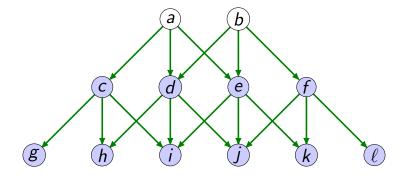
Proposition

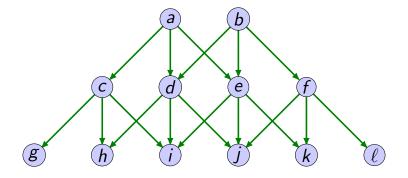
Assume irreducibility, inheritance, subdivergence. If M_1, \ldots, M_r has hyperbolic inequality property, then so does M.

Bottom-to-top principle reduces **Goal** to checking hyperbolic inequality only for sink vertices, which are usually easy to check.









How about equalities?

The strategy

Input:

 An acyclic digraph A := (V, E) satisfying previous conditions;

• Vectors
$$oldsymbol{g},oldsymbol{h}\in\mathbb{R}_{\geq0}$$
;

Goal: Show "every" *M* has hyperbolic equality,

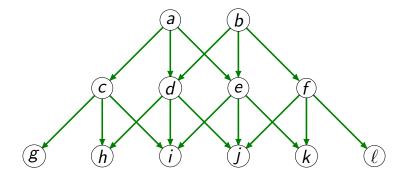
 $\langle \boldsymbol{g}, \boldsymbol{M}\boldsymbol{h} \rangle^2 = \langle \boldsymbol{g}, \boldsymbol{M}\boldsymbol{g} \rangle \langle \boldsymbol{h}, \boldsymbol{M}\boldsymbol{h} \rangle.$

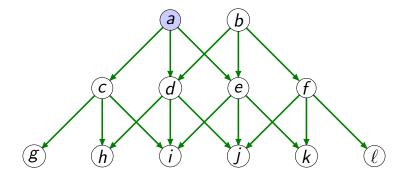
Top-to-bottom principle for equalities

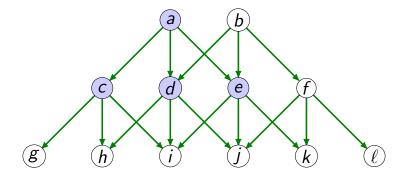
Proposition

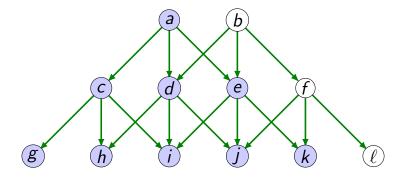
Assume regularity condition. If M has hyperbolic equality property, then so do M_1, \ldots, M_r .

Top-to-bottom principle expands hyperbolic equality to sink vertices, which usually gives combinatorial characterizations.









Conclusion

Problem: Log-concave inequalities and equalities. **Strategy**:

- Build a combinatorial atlas;
- Verify the required conditions;
- Use hyperbolic inequality property to derive log-concave inequalities;
- Use hyperbolic equality to derive log-concave equalities.

THANK YOU!

Preprint to appear soon in your nearest arXiv server. Webpage: http://math.ucla.edu/~sweehong/ Email: sweehong@math.ucla.edu