In between random walk and rotor walk

Swee Hong Chan Cornell University Joint work with Lila Greco, Lionel Levine, Boyao Li

Simple random walk on \mathbb{Z}^2

Simple random walk on \mathbb{Z}^2

Simple random walk on \mathbb{Z}^2

- Visits every site infinitely often? Yes!
- Scaling limit? The standard 2-D Brownian motion, i.e.

$$\frac{1}{\sqrt{n}}\underbrace{X_{[nt]}}_{\substack{\text{Location of the walker at time } [nt]}} \xrightarrow{n \to \infty} \frac{1}{\sqrt{2}} \underbrace{(B_1(t), B_2(t))}_{\substack{\text{Independent standard Brownian motions}}} t \ge 0.$$

Rotor walk on \mathbb{Z}^2

Rotor walk on \mathbb{Z}^2

Put a signpost at each site.

Rotor walk on \mathbb{Z}^2

Turn the signpost 90° counterclockwise, then follow the signpost.

The signpost says:

"This is the way you went the last time you were here", (assuming you ever were!)

Conjectures for a rotor walk on \mathbb{Z}^2

If the initial signposts are i.i.d uniform among the four directions, then

- (PDDK '96) Visits every site infinitely often?
- (Kapri-Dhar '09) Scaling limit? The asymptotic shape of $\{X_1, \ldots, X_n\}$ is a disc (!)

More randomness please!

Deterministic

More randomness please!

p,q-rotor walk on \mathbb{Z}^2

p,q-rotor walk on \mathbb{Z}^2

Scaling limit for p,q-rotor walk on \mathbb{Z}

(Huss, Levine, Sava-Huss 16+) The scaling limit for p,q-rotor walk on \mathbb{Z} is a perturbed Brownian motion $(Y(t))_{t>0}$, i.e.

$$Y(t) = \underbrace{B(t)}_{\substack{\text{Standard} \\ \text{Brownian}}} + a \sup_{\substack{0 \le s \le t \\ \text{Perturbation when} \\ \text{hitting maximum}}} Y(s) + b \inf_{\substack{0 \le s \le t \\ \text{Perturbation when} \\ \text{hitting minimum}}} Y(s), \qquad t \ge 0$$

Scaling limit for p,q-rotor walk on \mathbb{Z}^2

- Conjecture: the scaling limit for *p*,*q*-rotor walk on Z² is a "2-D perturbed Brownian motion (?)".
- Problem: What is "2-D perturbed Brownian motion(?)".
- Weaker conjecture: the scaling limit for p,q-rotor walk on \mathbb{Z}^2 when $p = \frac{1}{2}$ is the standard 2-D Brownian motion.

Scaling limit for p,q-rotor walk on \mathbb{Z}^2

Theorem (C., Greco, Levine, Li '17+)

Let $p = \frac{1}{2}$, $q \in (0, 1)$, and let the uniform spanning tree plus one edge be the initial signpost. Then with probability 1 the p,q-rotor walk on \mathbb{Z}^2 scales to the standard 2-D Brownian motion, i.e.

$$\frac{1}{\sqrt{n}}\underbrace{X_{[nt]}}_{\substack{\text{Location of the} \\ \text{walker at time [nt]}}} \stackrel{n \to \infty}{\Longrightarrow} \frac{1}{\sqrt{2}} \underbrace{(\underbrace{B_1(t), B_2(t)}_{\substack{\text{Independent} \\ \text{Brownian motions}}}) \quad t \ge 0.$$

The tools that we use include Martingale central limit theorem and pointwise ergodic theorem.

What is next?

- Scaling limit for when $p \neq \frac{1}{2}$?
 - Need to define the "2-D perturbed Brownian motion (?)".
- Scaling limit for higher dimensional lattice \mathbb{Z}^d ?
 - Yes for $d \in \{3, 4\}$.
 - Open for $d \ge 5$.
- Rotor walks with USTP as initial signposts?
 - Does NOT visit every site infinitely often (Florescu, Levine, Peres '16).
 - Scaling limit?

THANK YOU!

Email: sc2637@cornell.edu