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What is log-concavity?

A sequence a1, . . . , an ∈ R≥0 is log-concave if

a2k ≥ ak+1 ak−1 for all 1 < k < n.

Log-concavity (and positivity) implies unimodality:

a1 ≤ · · · ≤ am ≥ · · · ≥ an for some 1 ≤ m ≤ n.
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Example: binomial coefficients

ak =

(
n

k

)
k = 0, 1, . . . , n.

This sequence is log-concave because

a2k
ak+1 ak−1

=

(
n
k

)2(
n

k+1

) (
n

k−1

) =

(
1 +

1

k

)(
1 +

1

n − k

)
,

which is greater than 1.



Example: permutations with k inversions

ak = number of π ∈ Sn with k inversions,

where inversion of π is pair x < y s.t. π(x) > π(y).

This sequence is log-concave because∑
0≤k≤(n2)

ak q
k = [n]q! = (1+q) . . . (1+q . . .+qn−1)

is a product of log-concave polynomials.

1 4 9 15 20 22 20 15 9 4 1



Log-concavity is a widespread phenomenon

observed in numerous subjects in mathematics.

Today we focus on log-concavity for

permutations arising from posets.



Partially ordered sets (posets)

A (finite) poset P is a set {1, . . . , n}
with a given partial order ≺ on the set.
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Oder-preserving permutations (linear extension)

A permutation π : [n] → [n] is order-preserving if

x ≺ y implies π(x) ≤ π(y).
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Note that π can be viewed as completion of ≺.



Stanley inequality: simple form
Fix x ∈ P .

pk is probability that L(x) = k ,

where L is uniform random linear extension of P .

Theorem (Stanley ‘81)
For k ≥ 1,

pk
2 ≥ pk+1 pk−1.

The inequality was initially conjectured by

Chung-Fishburn-Graham, and was proved using

Aleksandrov-Fenchel inequality for mixed volumes.



Stanley inequality: generalized form

Fix d ≥ 0, x , y1, . . . , yd ∈ P and ℓ1, . . . , ℓd ∈ N .

p
(d)
k is probability L(x) = k , L(yi) = ℓi for i ∈ [d ],

where L is uniform random linear extension of P .

Theorem (Stanley ‘81)
For k ≥ 1 , (

p
(d)
k

)2 ≥ p
(d)
k+1 p

(d)
k−1.

This inequality plays a vital role in the discovery

of best known bound for 1
3 – 2

3 Conjecture.



1
3 – 2

3 Conjecture

Conjecture (Kislitsyn ’68, Fredman ’75, Linial ’84)
For incomplete partial order, there exist x , y ∈ P :

1

3
≤ P

[
L(x) < L(y)

]
≤ 2

3
,

where L is uniform random linear extension of P .

Quote (Brightwell-Felsner-Trotter ’95)
“This problem remains one of the most intriguing

problems in the combinatorial theory of posets.”



Why 1
3 and 2

3?

The upper,lower bound are achieved by this poset:

z

y

x

x y z

y x z

y z x

P
[
L(x) < L(y)

]
=

1

3
; P

[
L(y) < L(x)

]
=

2

3
.



Earliest known bound

Theorem (Kahn-Saks ’84)
For incomplete partial order, there exist x , y ∈ P :

3

11
≤ P

[
L(x) < L(y)

]
≤ 8

11
,

roughly between 0.273 and 0.727.

Proof used log-concavity as a crucial component.



Best known bound

Theorem (Brightwell-Felsner-Trotter ’95)
For incomplete partial order, there exist x , y ∈ P :

5−
√
5

10
≤ P

[
L(x) < L(y)

]
≤ 5 +

√
5

10
,

roughly between 0.276 and 0.724.

This bound cannot be improved for infinite posets.

Log-concavity also plays crucial component in this proof.



Log-concavity comes from black box

In every proof of bounds for 1
3 – 2

3 Conjecture,

log-concavity played crucial yet mysterious roles.

(Aleksandrov
Fenchel)

Log-concavityPoset

This raises the question if there is a less

mysterious explanation for this log-concavity.



Graham conjecture

Quote (Graham ‘83)
“ [Log-concavity of order-preserving permutations

and order-preserving maps] should have a

proof based on the FKG or AD inequalities.

However, such a proof has up to now

successfully eluded all attempts to find it”.



Kleitman/Harris/FKG/AD inequalities

Theorem (Kleitman ‘66)

For increasing subsets A,B ⊆ 2[n],

|A ∩ B |
2n

≥ |A|
2n

|B |
2n

.

Example
For any a, b, c , d ∈ V in Erdös–Renyi random graph,

P
[
a ↔ b, c ↔ d

]
≥ P

[
a ↔ b

]
P
[
c ↔ d

]
,

where a ↔ b is event that a and b are connected.



Application of FKG inequality

Theorem (XYZ inequality, Shepp ‘82)
For incomparable elements x , y , z ∈ P :

P[x ≺ z | x ≺ y ] ≥ P[x ≺ z ].

Intuition
A baseball team losing this week increases the

likelihood for the team to lose next week.



Application of FKG inequality

Theorem (XYZ inequality, Shepp ‘82)
For incomparable elements x , y , z ∈ P :

P[x ≺ z | x ≺ y ] ≥ P[x ≺ z ].

Intuition
A baseball team losing this week increases the

likelihood for the team to lose next week.

Recommended survey on the subject
Winkler ‘86: Correlation and Order, Contemp. Math.



Back to Graham conjecture

Quote (Graham ‘83)
“ [Log-concavity of order-preserving permutations

and order-preserving maps] should have a

proof based on the FKG or AD inequalities.”

We will first focus on order-preserving maps.



Order-preserving maps

Fix a poset P .

A map f : P → {1, . . . , n} is order-preserving if

x ≺ y implies f (x) ≤ f (y).
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Linear extensions are order-preserving

maps that are also bijections.



Log-concavity for order-preserving maps

Fix x ∈ P .

qk is probability that M(x) = k ,

where M is uniform random order-preserving map.

Conjecture (Graham ‘83)
For k ≥ 1,

q2k ≥ qk+1 qk−1.

This is the analogue of Stanley inequality for

order-preserving maps.



Log-concavity for order-preserving maps

Theorem (Daykin–Daykin–Paterson ‘84)
For every k ≥ 1,

q2k ≥ qk+1 qk−1.

Proof used an explicit injective argument,

not based on FKG/AD inequality.

Quote (Daykin–Daykin–Paterson ‘84)
“ [Proof using FKG or Ahlswede–Daykin inequality ]

have as yet eluded discovery”.



Answer to second part of Graham conjecture

Theorem 1 (C.–Pak–Panova ‘23, C.–Pak ‘23)
New proof of Daykin–Daykin–Paterson inequality

based on Ahlswede–Daykin inequality, which

generalizes to multi-weighted version.

This validates Graham’s prediction for

order-preserving maps.

Question
Can we do the same thing for linear extensions?
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Progress on first part of Graham conjecture

Theorem 2 (C.–Pak ‘23+)
Generalized Stanley inequality for linear extensions,(

p
(d)
k

)2 − p
(d)
k+1 p

(d)
k−1 ≥ 0

does not belong to complexity class #P if d ≥ 2,

unless polynomial hierarchy collapses.

On the other hand, it is known that Kleitman

inequality belongs to complexity class #P.



Conclusion

Quote (Graham ‘83)
“ [Log-concavity of order-preserving permutations

and order-preserving maps] should have a

proof based on the FKG or AD inequalities.

YES for order-preserving maps.

Unknown for order-preserving permutations,

but Kleitman inequality is probably not enough.



THANK YOU!

Webpage: www.math.rutgers.edu/~sc2518/

Email: sweehong.chan@rutgers.edu

www.math.rutgers.edu/~sc2518/


FKG or FGK?

Credit: Noga Alon, 2023



Stanley (poset) inequality: consequence

Weak Bruhat order on permutation group Sn is

π � σ if
some reduced word of π is a left

subword of some reduced word of σ.

For σ ∈ Sn, let

Nσ(k) :=
number of π ∈ Sn such that

π � σ and π(1) = k .

Corollary
Sequence Nσ(1), . . . ,Nσ(n) is log-concave.



Making changes to 1
3 – 2

3 Conjecture

Conjecture (Kislitsyn ’68, Fredman ’75, Linial ’84)
For incomplete partial order, there exist x , y ∈ P :

1

3
≤ P

[
L(x) < L(y)

]
≤ 2

3
,

where L is uniform random linear extension of P .

1
3–

2
3 bound might be relevant only to “small” posets.

For “large” posets both sides should converge to 1
2 .



Kahn-Saks Conjecture

δ(P) is largest number so that there are x , y ∈ P :

δ(P) ≤ P
[
L(x) < L(y)

]
≤ 1− δ(P).

1
3 – 2

3 Conjecture is equivalent to

δ(P) ≥ 1
3 for P not completely ordered.



Kahn-Saks Conjecture

Conjecture (Kahn-Saks ’84)

δ(P) → 1

2
as width(P) → ∞.

width(P) is maximum cardinality of a subset

of incomparable elements.

Komlós ’90 proved Conjecture for posets

with Ω( n
log log log n) minimal elements.

C.-Pak-Panova ’21 proved Conjecture for

Young diagram posets with fixed width.



Ahlswede–Daykin inequality

L is a finite distributive lattice.

f1, f2, f3, f4 : L → R≥0 are nonnegative functions.

Theorem (Ahlswede–Daykin ‘78)
Suppose that

f1(x) f2(y) ≤ f3(x ∨ y) f4(x ∧ y) ∀x , y ∈ L.

Then

f1(L) f2(L) ≤ f3(L) f4(L).



Proof of Daykin–Daykin–Paterson inequality

Let L be the distributive lattice consisting of

order-preserving functions g : P → {0, 1, . . . , n}.

The join and meet operation are

(g1 ∧ g2)(z) := max{g1(z), g2(z)},
(g1 ∨ g2)(z) := min{g1(z), g2(z)},

for g1, g2 ∈ L and z ∈ P .



Proof of Daykin–Daykin–Paterson inequality

The four functions f1, f2, f3, f4 : L → R≥0 are

f1(g) := 1{g(x) = k − 1 and g(z) ≥ 1 ∀z ∈ P},
f2(g) := 1{g(x) = k and g(z) ≤ n − 1 ∀z ∈ P},
f3(g) := 1{g(x) = k and g(z) ≥ 1 ∀z ∈ P},
f4(g) := 1{g(x) = k − 1 and g(z) ≤ n − 1 ∀z ∈ P}.

By using translation invariance,

f1(L) = qk−1, f2(L) = qk+1,

f3(L) = qk , f4(L) = qk .

Conclusion now follows from AD inequality.


