Log-concavity for order-preserving permutations and maps

Swee Hong Chan

joint with Igor Pak and Greta Panova

What is log-concavity?

A sequence $a_{1}, \ldots, a_{n} \in \mathbb{R}_{\geq 0}$ is log-concave if

$$
a_{k}^{2} \geq a_{k+1} a_{k-1} \quad \text { for all } 1<k<n
$$

Log-concavity (and positivity) implies unimodality:
$a_{1} \leq \cdots \leq a_{m} \geq \cdots \geq a_{n}$ for some $1 \leq m \leq n$.

Example: binomial coefficients

$$
a_{k}=\binom{n}{k} \quad k=0,1, \ldots, n .
$$

This sequence is log-concave because
$\frac{a_{k}^{2}}{a_{k+1} a_{k-1}}=\frac{\binom{n}{k}^{2}}{\binom{n}{k+1}\binom{n}{k-1}}=\left(1+\frac{1}{k}\right)\left(1+\frac{1}{n-k}\right)$,
which is greater than 1 .

Example: permutations with k inversions

$$
a_{k}=\text { number of } \pi \in S_{n} \text { with } k \text { inversions, }
$$

where inversion of π is pair $x<y$ s.t. $\pi(x)>\pi(y)$.
This sequence is log-concave because

$$
\sum_{0 \leq k \leq\binom{ n}{2}} a_{k} q^{k}=[n]_{q}!=(1+q) \ldots\left(1+q \ldots+q^{n-1}\right)
$$

is a product of log-concave polynomials.

Log-concavity is a widespread phenomenon observed in numerous subjects in mathematics.

Today we focus on log-concavity for permutations arising from posets.

Partially ordered sets (posets)

A (finite) poset P is a set $\{1, \ldots, n\}$ with a given partial order \prec on the set.

Oder-preserving permutations (linear extension)

A permutation $\pi:[n] \rightarrow[n]$ is order-preserving if

$$
x \prec y \quad \text { implies } \quad \pi(x) \leq \pi(y) .
$$

Note that π can be viewed as completion of \prec.

Stanley inequality: simple form

Fix $x \in P$.
p_{k} is probability that $\mathcal{L}(x)=k$,
where \mathcal{L} is uniform random linear extension of P.
Theorem (Stanley '81)
For $k \geq 1$,

$$
p_{k}{ }^{2} \geq p_{k+1} p_{k-1}
$$

The inequality was initially conjectured by
Chung-Fishburn-Graham, and was proved using Aleksandrov-Fenchel inequality for mixed volumes.

Stanley inequality: generalized form

Fix $d \geq 0, x, y_{1}, \ldots, y_{d} \in P$ and $\ell_{1}, \ldots, \ell_{d} \in \mathbb{N}$.
$p_{k}^{(d)}$ is probability $\mathcal{L}(x)=k, \mathcal{L}\left(y_{i}\right)=\ell_{i}$ for $i \in[d]$,
where \mathcal{L} is uniform random linear extension of P.
Theorem (Stanley '81)
For $k \geq 1$,

$$
\left(p_{k}^{(d)}\right)^{2} \geq p_{k+1}^{(d)} p_{k-1}^{(d)}
$$

This inequality plays a vital role in the discovery of best known bound for $\frac{1}{3}-\frac{2}{3}$ Conjecture.
$\frac{1}{3}-\frac{2}{3}$ Conjecture
Conjecture (Kislitsyn '68, Fredman '75, Linial '84)
For incomplete partial order, there exist $x, y \in P$:

$$
\frac{1}{3} \leq \mathbb{P}[\mathcal{L}(x)<\mathcal{L}(y)] \leq \frac{2}{3}
$$

where \mathcal{L} is uniform random linear extension of P.

Quote (Brightwell-Felsner-Trotter '95)
"This problem remains one of the most intriguing problems in the combinatorial theory of posets."

Why $\frac{1}{3}$ and $\frac{2}{3}$?

The upper,lower bound are achieved by this poset:

$$
\begin{aligned}
& \mathbb{P}[\mathcal{L}(x)<\mathcal{L}(y)]=\frac{1}{3} ; \quad \mathbb{P}[\mathcal{L}(y)<\mathcal{L}(x)]=\frac{2}{3} .
\end{aligned}
$$

Earliest known bound

Theorem (Kahn-Saks '84)
For incomplete partial order, there exist $x, y \in P$:

$$
\frac{3}{11} \leq \mathbb{P}[\mathcal{L}(x)<\mathcal{L}(y)] \leq \frac{8}{11}
$$

roughly between 0.273 and 0.727 .

Proof used log-concavity as a crucial component.

Best known bound

Theorem (Brightwell-Felsner-Trotter '95)
For incomplete partial order, there exist $x, y \in P$:

$$
\frac{5-\sqrt{5}}{10} \leq \mathbb{P}[\mathcal{L}(x)<\mathcal{L}(y)] \leq \frac{5+\sqrt{5}}{10}
$$

roughly between 0.276 and 0.724 .

This bound cannot be improved for infinite posets.
Log-concavity also plays crucial component in this proof.

Log-concavity comes from black box

In every proof of bounds for $\frac{1}{3}-\frac{2}{3}$ Conjecture, log-concavity played crucial yet mysterious roles.

This raises the question if there is a less mysterious explanation for this log-concavity.

Graham conjecture

Quote (Graham '83)
"[Log-concavity of order-preserving permutations and order-preserving maps] should have a proof based on the FKG or AD inequalities.

However, such a proof has up to now successfully eluded all attempts to find it".

Kleitman/Harris/FKG/AD inequalities

Theorem (Kleitman '66)
For increasing subsets $A, B \subseteq 2^{[n]}$,

$$
\frac{|A \cap B|}{2^{n}} \geq \frac{|A|}{2^{n}} \frac{|B|}{2^{n}} .
$$

Example
For any a, b, c, d $\in V$ in Erdös-Renyi random graph,

$$
\mathbb{P}[a \leftrightarrow b, c \leftrightarrow d] \geq \mathbb{P}[a \leftrightarrow b] \mathbb{P}[c \leftrightarrow d],
$$

where $a \leftrightarrow b$ is event that a and b are connected.

Application of FKG inequality

Theorem (XYZ inequality, Shepp '82)
For incomparable elements $x, y, z \in P$:

$$
\mathbb{P}[x \prec z \mid x \prec y] \quad \geq \mathbb{P}[x \prec z] .
$$

Intuition

A baseball team losing this week increases the likelihood for the team to lose next week.

Application of FKG inequality

Theorem (XYZ inequality, Shepp '82)
For incomparable elements $x, y, z \in P$:

$$
\mathbb{P}[x \prec z \mid x \prec y] \quad \geq \mathbb{P}[x \prec z] .
$$

Intuition
A baseball team losing this week increases the likelihood for the team to lose next week.

Recommended survey on the subject Winkler '86: Correlation and Order, Contemp. Math.

Back to Graham conjecture

Quote (Graham '83)
"[Log-concavity of order-preserving permutations and order-preserving maps] should have a proof based on the FKG or AD inequalities."

We will first focus on order-preserving maps.

Order-preserving maps

Fix a poset P.
A map $f: P \rightarrow\{1, \ldots, n\}$ is order-preserving if

$$
x \prec y \quad \text { implies } \quad f(x) \leq f(y)
$$

	1	2	3	4
f	1	2	1	2

	1	2	3	4
f	2	1	3	4

Linear extensions are order-preserving maps that are also bijections.

Log-concavity for order-preserving maps

Fix $x \in P$.
q_{k} is probability that $\mathcal{M}(x)=k$, where \mathcal{M} is uniform random order-preserving map.

Conjecture (Graham '83)
For $k \geq 1$,

$$
q_{k}^{2} \geq q_{k+1} q_{k-1}
$$

This is the analogue of Stanley inequality for order-preserving maps.

Log-concavity for order-preserving maps

Theorem (Daykin-Daykin-Paterson '84)
For every $k \geq 1$,

$$
q_{k}^{2} \geq q_{k+1} q_{k-1}
$$

Proof used an explicit injective argument, not based on FKG/AD inequality.

Quote (Daykin-Daykin-Paterson '84) "[Proof using FKG or Ahlswede-Daykin inequality] have as yet eluded discovery".

Answer to second part of Graham conjecture

Theorem 1 (C.-Pak-Panova '23, C.-Pak '23) New proof of Daykin-Daykin-Paterson inequality based on Ahlswede-Daykin inequality, which generalizes to multi-weighted version.

This validates Graham's prediction for order-preserving maps.

Answer to second part of Graham conjecture

Theorem 1 (C.-Pak-Panova '23, C.-Pak '23) New proof of Daykin-Daykin-Paterson inequality based on Ahlswede-Daykin inequality, which generalizes to multi-weighted version.

This validates Graham's prediction for order-preserving maps.

Question
Can we do the same thing for linear extensions?

Progress on first part of Graham conjecture

Theorem 2 (C.-Pak '23+)
Generalized Stanley inequality for linear extensions,

$$
\left(p_{k}^{(d)}\right)^{2}-p_{k+1}^{(d)} p_{k-1}^{(d)} \geq 0
$$

does not belong to complexity class \#P if $d \geq 2$, unless polynomial hierarchy collapses.

On the other hand, it is known that Kleitman inequality belongs to complexity class \#P.

Conclusion

Quote (Graham '83)
"[Log-concavity of order-preserving permutations and order-preserving maps] should have a proof based on the FKG or AD inequalities.

- YES for order-preserving maps.
- Unknown for order-preserving permutations, but Kleitman inequality is probably not enough.

THANK YOU!

Webpage: www.math.rutgers.edu/~sc2518/ Email: sweehong.chan@rutgers.edu

FKG or FGK?

Commun. math. Phys. 22, 89-103(1971)
(C) by Springer-Verlag 1971

Correlation Inequalities on Some Partially Ordered Sets

C. M. Fortuin and P. W. Kasteleyn

Instituut-Lorentz, Rijksuniversiteit te Leiden, Leiden, Nederland

J. Ginibre

Laboratoire de Physique Théorique et Hautes Energies, Université de Paris-Sud Orsay, France (Laboratoire associé au Centre National de la Recherche Scientifique)

Credit: Noga Alon, 2023

Stanley (poset) inequality: consequence

Weak Bruhat order on permutation group S_{n} is some reduced word of π is a left subword of some reduced word of σ.

For $\sigma \in S_{n}$, let

$$
N^{\sigma}(k):=\begin{aligned}
& \text { number of } \pi \in S_{n} \text { such that } \\
& \pi \unlhd \sigma \text { and } \pi(1)=k .
\end{aligned}
$$

Corollary

Sequence $N^{\sigma}(1), \ldots, N^{\sigma}(n)$ is log-concave.

Making changes to $\frac{1}{3}-\frac{2}{3}$ Conjecture

Conjecture (Kislitsyn '68, Fredman '75, Linial '84)
For incomplete partial order, there exist $x, y \in P$:

$$
\frac{1}{3} \leq \mathbb{P}[\mathcal{L}(x)<\mathcal{L}(y)] \leq \frac{2}{3},
$$

where \mathcal{L} is uniform random linear extension of P.
$\frac{1}{3}-\frac{2}{3}$ bound might be relevant only to "small" posets.
For "large" posets both sides should converge to $\frac{1}{2}$.

Kahn-Saks Conjecture

$\delta(P)$ is largest number so that there are $x, y \in P:$

$$
\delta(P) \leq \mathbb{P}[\mathcal{L}(x)<\mathcal{L}(y)] \leq 1-\delta(P)
$$

$$
\begin{aligned}
& \frac{1}{3}-\frac{2}{3} \text { Conjecture is equivalent to } \\
& \delta(P) \geq \frac{1}{3} \text { for } P \text { not completely ordered. }
\end{aligned}
$$

Kahn-Saks Conjecture

Conjecture (Kahn-Saks '84)

$$
\delta(P) \rightarrow \frac{1}{2} \quad \text { as } \quad \text { width }(P) \rightarrow \infty .
$$

width (P) is maximum cardinality of a subset of incomparable elements.

Komlós '90 proved Conjecture for posets with $\Omega\left(\frac{n}{\log \log \log n}\right)$ minimal elements.
C.-Pak-Panova '21 proved Conjecture for Young diagram posets with fixed width.

Ahlswede-Daykin inequality

L is a finite distributive lattice.
$f_{1}, f_{2}, f_{3}, f_{4}: L \rightarrow \mathbb{R}_{\geq 0}$ are nonnegative functions.

Theorem (Ahlswede-Daykin '78)
Suppose that

$$
f_{1}(x) f_{2}(y) \leq f_{3}(x \vee y) f_{4}(x \wedge y) \quad \forall x, y \in L
$$

Then

$$
f_{1}(L) f_{2}(L) \leq f_{3}(L) f_{4}(L)
$$

Proof of Daykin-Daykin-Paterson inequality

Let L be the distributive lattice consisting of order-preserving functions $g: P \rightarrow\{0,1, \ldots, n\}$.

The join and meet operation are

$$
\begin{aligned}
\left(g_{1} \wedge g_{2}\right)(z) & :=\max \left\{g_{1}(z), g_{2}(z)\right\} \\
\left(g_{1} \vee g_{2}\right)(z) & :=\min \left\{g_{1}(z), g_{2}(z)\right\}
\end{aligned}
$$

for $g_{1}, g_{2} \in L$ and $z \in P$.

Proof of Daykin-Daykin-Paterson inequality

The four functions $f_{1}, f_{2}, f_{3}, f_{4}: L \rightarrow \mathbb{R}_{\geq 0}$ are $f_{1}(g):=\mathbb{1}\{g(x)=k-1$ and $g(z) \geq 1 \quad \forall z \in P\}$, $f_{2}(g):=\mathbb{1}\{g(x)=k$ and $g(z) \leq n-1 \quad \forall z \in P\}$, $f_{3}(g):=\mathbb{1}\{g(x)=k$ and $g(z) \geq 1 \quad \forall z \in P\}$,
$f_{4}(g):=\mathbb{1}\{g(x)=k-1$ and $g(z) \leq n-1 \quad \forall z \in P\}$
By using translation invariance,

$$
\begin{array}{ll}
f_{1}(L)=q_{k-1}, & f_{2}(L)=q_{k+1}, \\
f_{3}(L)=q_{k}, & \\
f_{4}(L)=q_{k} .
\end{array}
$$

Conclusion now follows from AD inequality.

