Log-concavity for order-preserving permutations and maps

Swee Hong Chan

joint with Igor Pak and Greta Panova

What is log-concavity?

A sequence $a_1, \ldots, a_n \in \mathbb{R}_{\geq 0}$ is log-concave if

$$a_k^2 \geq a_{k+1} a_{k-1}$$
 for all $1 < k < n$.

Log-concavity (and positivity) implies unimodality:

$$a_1 \leq \cdots \leq a_m \geq \cdots \geq a_n$$
 for some $1 \leq m \leq n$.

Example: binomial coefficients

$$a_k = \binom{n}{k}$$
 $k = 0, 1, \ldots, n$

This sequence is log-concave because

$$\frac{a_k^2}{a_{k+1} a_{k-1}} = \frac{\binom{n}{k}^2}{\binom{n}{k+1}\binom{n}{k-1}} = \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{n-k}\right),$$

which is greater than 1.

Example: permutations with k inversions $a_k = \text{number of } \pi \in S_n \text{ with } k \text{ inversions},$ where inversion of π is pair $x < y \text{ s.t. } \pi(x) > \pi(y).$

This sequence is log-concave because

$$\sum_{0 \leq k \leq \binom{n}{2}} a_k \, q^k \; = \; [n]_q! \; = \; (1 \! + \! q) \, \dots \, (1 \! + \! q \, \dots \! + \! q^{n-1})$$

is a product of log-concave polynomials.

Log-concavity is a widespread phenomenon observed in numerous subjects in mathematics.

Today we focus on log-concavity for **permutations** arising from **posets**.

Partially ordered sets (posets)

A (finite) poset P is a set $\{1, \ldots, n\}$ with a given partial order \prec on the set.

Oder-preserving permutations (linear extension)

A permutation $\pi : [n] \rightarrow [n]$ is order-preserving if

 $x \prec y$ implies $\pi(x) \leq \pi(y)$.

Note that π can be viewed as completion of \prec .

Stanley inequality: simple form Fix $x \in P$.

 p_k is probability that $\mathcal{L}(x) = k$,

where \mathcal{L} is uniform random linear extension of P. Theorem (Stanley '81) For $k \ge 1$, $p_k^2 \ge p_{k+1}p_{k-1}$.

The inequality was initially conjectured by Chung-Fishburn-Graham, and was proved using Aleksandrov-Fenchel inequality for mixed volumes. Stanley inequality: generalized form

Fix
$$d \ge 0$$
, $x, y_1, \ldots, y_d \in P$ and $\ell_1, \ldots, \ell_d \in \mathbb{N}$.
 $p_k^{(d)}$ is probability $\mathcal{L}(x) = k$, $\mathcal{L}(y_i) = \ell_i$ for $i \in [d]$,

where \mathcal{L} is uniform random linear extension of P.

Theorem (Stanley '81) For $k \ge 1$, $(p_k^{(d)})^2 \ge p_{k+1}^{(d)} p_{k-1}^{(d)}$.

This inequality plays a vital role in the discovery of best known bound for $\frac{1}{3} - \frac{2}{3}$ Conjecture.

$\frac{1}{3} - \frac{2}{3}$ Conjecture

Conjecture (Kislitsyn '68, Fredman '75, Linial '84) For incomplete partial order, there exist $x, y \in P$: $\frac{1}{3} \leq \mathbb{P}[\mathcal{L}(x) < \mathcal{L}(y)] \leq \frac{2}{3},$ where \mathcal{L} is uniform random linear extension of P.

Quote (Brightwell-Felsner-Trotter '95) "This problem remains one of the most intriguing problems in the combinatorial theory of posets."

Why $\frac{1}{3}$ and $\frac{2}{3}$?

The upper, lower bound are achieved by this poset:

Theorem (Kahn-Saks '84) For incomplete partial order, there exist $x, y \in P$: $\frac{3}{11} \leq \mathbb{P}[\mathcal{L}(x) < \mathcal{L}(y)] \leq \frac{8}{11},$ roughly between 0.273 and 0.727.

Proof used log-concavity as a crucial component.

Best known bound

Theorem (Brightwell-Felsner-Trotter '95) For incomplete partial order, there exist $x, y \in P$: $\frac{5-\sqrt{5}}{10} \leq \mathbb{P}[\mathcal{L}(x) < \mathcal{L}(y)] \leq \frac{5+\sqrt{5}}{10},$ roughly between 0.276 and 0.724.

This bound cannot be improved for infinite posets.

Log-concavity also plays crucial component in this proof.

Log-concavity comes from black box

In every proof of bounds for $\frac{1}{3} - \frac{2}{3}$ Conjecture, log-concavity played crucial yet **mysterious** roles.

This raises the question if there is a **less mysterious** explanation for this log-concavity. Quote (Graham '83) "[Log-concavity of order-preserving permutations and order-preserving maps] should have a proof based on the FKG or AD inequalities. However, such a proof has up to now successfully eluded all attempts to find it". Kleitman/Harris/FKG/AD inequalities

Theorem (Kleitman '66) For increasing subsets $A, B \subseteq 2^{[n]},$ $\frac{|A \cap B|}{2^n} \geq \frac{|A|}{2^n} \frac{|B|}{2^n}.$

Example

For any $a, b, c, d \in V$ in Erdös–Renyi random graph,

$$\mathbb{P}\big[a \leftrightarrow b, c \leftrightarrow d\big] \geq \mathbb{P}\big[a \leftrightarrow b\big] \mathbb{P}\big[c \leftrightarrow d\big],$$

where $a \leftrightarrow b$ is event that a and b are connected.

Application of FKG inequality

Theorem (XYZ inequality, Shepp '82) For incomparable elements $x, y, z \in P$:

$$\mathbb{P}[x \prec z \,|\, x \prec y] \geq \mathbb{P}[x \prec z].$$

Intuition

A baseball team losing this week increases the likelihood for the team to lose next week.

Application of FKG inequality

Theorem (XYZ inequality, Shepp '82) For incomparable elements $x, y, z \in P$:

$$\mathbb{P}[x \prec z \,|\, x \prec y] \geq \mathbb{P}[x \prec z].$$

Intuition

A baseball team losing this week increases the likelihood for the team to lose next week.

Recommended survey on the subject Winkler '86: Correlation and Order, *Contemp. Math.*

Back to Graham conjecture

Quote (Graham '83) "[Log-concavity of order-preserving permutations and order-preserving maps] should have a proof based on the FKG or AD inequalities."

We will first focus on order-preserving maps.

Order-preserving maps

Linear extensions are order-preserving maps that are also bijections.

Log-concavity for order-preserving maps Fix $x \in P$. q_k is probability that $\mathcal{M}(x) = k$,

where \mathcal{M} is uniform random order-preserving map.

Conjecture (Graham '83) For $k \ge 1$, $q_k^2 \ge q_{k+1} q_{k-1}$.

This is the analogue of Stanley inequality for order-preserving maps.

Log-concavity for order-preserving maps

Theorem (Daykin–Daykin–Paterson '84) For every $k \ge 1$,

$$q_k^2 \ \geq \ q_{k+1} \, q_{k-1}.$$

Proof used an explicit injective argument, not based on FKG/AD inequality.

Quote (Daykin–Daykin–Paterson '84) "[Proof using FKG or Ahlswede–Daykin inequality] have as yet eluded discovery". Answer to second part of Graham conjecture

Theorem 1 (C.–Pak–Panova '23, C.–Pak '23) New proof of Daykin–Daykin–Paterson inequality based on Ahlswede–Daykin inequality, which generalizes to multi-weighted version.

This validates Graham's prediction for order-preserving maps.

Answer to second part of Graham conjecture

Theorem 1 (C.–Pak–Panova '23, C.–Pak '23) New proof of Daykin–Daykin–Paterson inequality based on Ahlswede–Daykin inequality, which generalizes to multi-weighted version.

This validates Graham's prediction for order-preserving maps.

Question

Can we do the same thing for linear extensions?

Progress on first part of Graham conjecture

Theorem 2 (C.–Pak '23+)

Generalized Stanley inequality for linear extensions,

$$\left(p_{k}^{(d)}
ight)^{2}\,-\,p_{k+1}^{(d)}\,p_{k-1}^{(d)}\,\geq\,0$$

does not belong to complexity class **#P** if $d \ge 2$, unless polynomial hierarchy collapses.

On the other hand, it is known that Kleitman inequality **belongs** to complexity class **#P**.

Conclusion

Quote (Graham '83) "[Log-concavity of order-preserving permutations and order-preserving maps] should have a proof based on the FKG or AD inequalities.

- YES for order-preserving maps.
- Unknown for order-preserving permutations, but Kleitman inequality is probably not enough.

THANK YOU!

Webpage: www.math.rutgers.edu/~sc2518/ Email: sweehong.chan@rutgers.edu

FKG or FGK?

Commun. math. Phys. 22, 89-103 (1971) © by Springer-Verlag 1971

Correlation Inequalities on Some Partially Ordered Sets

C. M. FORTUIN and P. W. KASTELEYN Instituut-Lorentz, Rijksuniversiteit te Leiden, Leiden, Nederland

J. GINIBRE

Laboratoire de Physique Théorique et Hautes Energies, Université de Paris-Sud Orsay, France (Laboratoire associé au Centre National de la Recherche Scientifique)

Received March 2, 1971

Credit: Noga Alon, 2023

Stanley (poset) inequality: consequence

Weak Bruhat order on permutation group S_n is some reduced word of π is a left $\pi \trianglelefteq \sigma$ if subword of some reduced word of σ . For $\sigma \in S_n$, let $N^{\sigma}(k) :=$ number of $\pi \in S_n$ such that $\pi \trianglelefteq \sigma$ and $\pi(1) = k$.

Corollary

Sequence $N^{\sigma}(1), \ldots, N^{\sigma}(n)$ is log-concave.

Making changes to $\frac{1}{3} - \frac{2}{3}$ Conjecture

Conjecture (Kislitsyn '68, Fredman '75, Linial '84) For incomplete partial order, there exist $x, y \in P$: $\frac{1}{3} \leq \mathbb{P}[\mathcal{L}(x) < \mathcal{L}(y)] \leq \frac{2}{3}$, where \mathcal{L} is uniform random linear extension of P.

 $\frac{1}{3}-\frac{2}{3}$ bound might be relevant only to "small" posets. For "large" posets both sides should converge to $\frac{1}{2}$.

Kahn-Saks Conjecture

$\delta(P)$ is largest number so that there are $x, y \in P$: $\delta(P) \leq \mathbb{P} [\mathcal{L}(x) < \mathcal{L}(y)] \leq 1 - \delta(P).$

 $\frac{1}{3} - \frac{2}{3}$ Conjecture is equivalent to $\delta(P) \ge \frac{1}{3}$ for P not completely ordered.

Kahn-Saks Conjecture

Conjecture (Kahn-Saks '84)
$$\delta(P) \rightarrow \frac{1}{2}$$
 as width $(P) \rightarrow \infty$.

width(P) is maximum cardinality of a subset of incomparable elements.

> Komlós '90 proved Conjecture for posets with $\Omega(\frac{n}{\log \log \log n})$ minimal elements. C.-Pak-Panova '21 proved Conjecture for

Young diagram posets with fixed width.

Ahlswede–Daykin inequality

L is a finite distributive lattice.

 $f_1, f_2, f_3, f_4: L \rightarrow \mathbb{R}_{\geq 0}$ are nonnegative functions.

Theorem (Ahlswede–Daykin '78) Suppose that

 $f_1(x) f_2(y) \leq f_3(x \lor y) f_4(x \land y) \quad \forall x, y \in L.$

Then

$$f_1(L) f_2(L) \leq f_3(L) f_4(L).$$

Proof of Daykin–Daykin–Paterson inequality

Let *L* be the distributive lattice consisting of order-preserving functions $g: P \rightarrow \{0, 1, ..., n\}$.

The join and meet operation are

$$(g_1 \wedge g_2)(z) := \max\{g_1(z), g_2(z)\},\ (g_1 \vee g_2)(z) := \min\{g_1(z), g_2(z)\},$$

for $g_1, g_2 \in L$ and $z \in P$.

Proof of Daykin–Daykin–Paterson inequality

The four functions $f_1, f_2, f_3, f_4 : L \to \mathbb{R}_{\geq 0}$ are

By using translation invariance,

$$egin{array}{rll} f_1(L) &=& q_{k-1}, & f_2(L) &=& q_{k+1}, \ f_3(L) &=& q_k, & f_4(L) &=& q_k. \end{array}$$

Conclusion now follows from AD inequality.