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What is log-concavity?
A sequence ai,...,a, € Ry is log-concave if

ai > ki1 k-1 forall 1 < k < n.

Log-concavity (and positivity) implies unimodality:

< ---<a,>-->a, forsome 1<m<n.
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Example: binomial coefficients

n
dy — (k) k:O,l,...,n.

This sequence is log-concave because

2
% ()

1 1
— = (1+3)(1+ ,
Akt k-1 (1) () ( k> ( n= k)

which is greater than 1.




Example: permutations with k inversions

ax = number of m € S, with k inversions,

where inversion of 7 is pair x < y s.t. 7(x) > 7(y).

This sequence is log-concave because

Z ax g = [n]y! = (1+q) ... (1+q...+q" 1)
0<k=(2)

is a product of log-concave polynomials.
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Log-concavity is a widespread phenomenon

observed in numerous subjects in mathematics.

Today we focus on log-concavity for

permutations arising from posets.



Partially ordered sets (posets)

A (finite) poset P is a set {1,...,n}

with a given partial order < on the set.




Oder-preserving permutations (linear extension)

A permutation 7 : [n] — [n] is order-preserving if

X<y implies (x) < 7(y).

D—B—@—D
D—F—@—D

Note that 7 can be viewed as completion of <.



Stanley inequality: simple form
Fix x € P.
px is probability that £(x) = k,
where L is uniform random linear extension of P.

Theorem (Stanley ‘81)
For k > 1,

PK° > Pkit Pht-

The inequality was initially conjectured by
Chung-Fishburn-Graham, and was proved using

Aleksandrov-Fenchel inequality for mixed volumes.



Stanley inequality: generalized form
Fixd >0, x,y1,...,ys € P and {1,...,/4 € N.

p\¥ is probability £(x) =k, L(y;) = (; for i € [d],
where L is uniform random linear extension of P.
Theorem (Stanley ‘81)

For k > 1,

d) 2 d d
(B2 = i P

This inequality plays a vital role in the discovery

of best known bound for z — £ ConJecture
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Conjecture

Conjecture (Kislitsyn '68, Fredman '75, Linial '84)

For incomplete partial order, there exist x,y € P:

3 < PLW<L)] < 3

where L is uniform random linear extension of P.

V.

Quote (Brightwell-Felsner-Trotter '95)
“This problem remains one of the most intriguing

problems in the combinatorial theory of posets.”




Why % and 27

The upper,lower bound are achieved by this poset:

O—O—0
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P[L(x) < L(y)] = %; P[L(y) < L(x)] =

2
3



Earliest known bound

Theorem (Kahn-Saks '84)
For incomplete partial order, there exist x,y € P:

Zo2 P <LO)] < o

roughly between 0.273 and 0.727.

Proof used log-concavity as a crucial component.



Best known bound

Theorem (Brightwell-Felsner-Trotter '95)

For incomplete partial order, there exist x,y € P:

5_10ﬁ < P[L(x) < L(y)] 5+10ﬁ

roughly between 0.276 and 0.724.

This bound cannot be improved for infinite posets.

Log-concavity also plays crucial component in this proof.



Log-concavity comes from black box

In every proof of bounds for % - % Conjecture,

log-concavity played crucial yet mysterious roles.

Poset (Aleksandrov Log-concavity

A 4

Fenchel) >

This raises the question if there is a less

mysterious explanation for this log-concavity.



Graham conjecture

Quote (Graham ‘83)

“[Log-concavity of order-preserving permutations
and order-preserving maps| should have a
proof based on the FKG or AD inequalities.
However, such a proof has up to now

successfully eluded all attempts to find it".




Kleitman /Harris/FKG/AD inequalities

Theorem (Kleitman ‘66)
For increasing subsets A, B C 2],
AnB| _ |AllE|
20 - 2n 20

Example
For any a, b, c,d € V in Erdos—Renyi random graph,

P[a<—>b,c<—>d] > P[a(—)b]P[c(—)d],

where a <> b is event that a and b are connected.

V.




Application of FKG inequality
Theorem (XYZ inequality, Shepp ‘82)

For incomparable elements x,y,z € P:

Px<z|x<y] > Plx=<z]

Intuition
A baseball team losing this week increases the

likelihood for the team to lose next week.




Application of FKG inequality
Theorem (XYZ inequality, Shepp '82)

For incomparable elements x,y,z € P:

Px<z|x<y] > Plx=<z]

Intuition
A baseball team losing this week increases the

likelihood for the team to lose next week.

Recommended survey on the subject
Winkler ‘86: Correlation and Order, Contemp. Math.




Back to Graham conjecture

Quote (Graham ‘83)

“[Log-concavity of order-preserving permutations

and order-preserving maps| should have a

proof based on the FKG or AD inequalities.”

v

We will first focus on order-preserving maps.



Order-preserving maps

Fix a poset P.
A map f: P —{1,...,n} is order-preserving if

X<y implies f(x) <f(y).

112 |3]4 /
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Linear extensions are order-preserving

maps that are also bijections.



Log-concavity for order-preserving maps
Fix x € P.
gk is probability that M(x) = k,

where M is uniform random order-preserving map.

Conjecture (Graham ‘83)
For k > 1,

q;% > Qk+1 Gr—1-

This is the analogue of Stanley inequality for

order-preserving maps.



Log-concavity for order-preserving maps

Theorem (Daykin—Daykin—Paterson ‘84)
For every k > 1,

9r > Gri1Qko1

Proof used an explicit injective argument,
not based on FKG/AD inequality.

Quote (Daykin—Daykin—Paterson ‘34)
“[Proof using FKG or Ahlswede—Daykin inequality]|

have as yet eluded discovery”.




Answer to second part of Graham conjecture

Theorem 1 (C.—Pak—Panova ‘23, C.—Pak ‘23)
New proof of Daykin—Daykin—Paterson inequality
based on Ahlswede—Daykin inequality, which

generalizes to multi-weighted version. []

This validates Graham's prediction for

order-preserving maps.




Answer to second part of Graham conjecture

Theorem 1 (C.—Pak—Panova ‘23, C.—Pak ‘23)
New proof of Daykin—Daykin—Paterson inequality
based on Ahlswede—Daykin inequality, which

generalizes to multi-weighted version. []

This validates Graham's prediction for

order-preserving maps.

Question
Can we do the same thing for linear extensions? J




Progress on first part of Graham conjecture

Theorem 2 (C.—Pak ‘23+)

Generalized Stanley inequality for linear extensions,

d)h 2 d d
(B = P2, > 0

does not belong to complexity class #P if d > 2,

unless polynomial hierarchy collapses.

On the other hand, it is known that Kleitman
inequality belongs to complexity class #P.



Conclusion

Quote (Graham ‘383)

“[Log-concavity of order-preserving permutations
and order-preserving maps| should have a

proof based on the FKG or AD inequalities.

@ YES for order-preserving maps.

@ Unknown for order-preserving permutations,

but Kleitman inequality is probably not enough.
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Stanley (poset) inequality: consequence

Weak Bruhat order on permutation group S, is

) some reduced word of 7 is a left
™ < o |
subword of some reduced word of o.

For o € 5, let

number of ™ € S, such that

N (k) =
() m < o and 7(1l) = k.

Corollary

Sequence N°(1),...,N°(n) is log-concave.




Making changes to % - % Conjecture

Conjecture (Kislitsyn '68, Fredman '75, Linial '84)

For incomplete partial order, there exist x,y € P:

1 2
s < Pl<Ly)] < 5
where L is uniform random linear extension of P.

v

%—% bound might be relevant only to “small” posets.

For “large” posets both sides should converge to %



Kahn-Saks Conjecture

d(P) is largest number so that there are x,y € P:
5(P) < P[L(x) < L(y)] < 1-5(P).

Conjecture is equivalent to

1 _
3
for P not completely ordered.

o(P) =

Wl WIN



Kahn-Saks Conjecture

Conjecture (Kahn-Saks '84)
5(P) —>% a5 width(P) — oo,

width(P) is maximum cardinality of a subset

of incomparable elements.

Komlés "90 proved Conjecture for posets

with Q( minimal elements.

Togloglogn)
log log log n

C.-Pak-Panova '21 proved Conjecture for

Young diagram posets with fixed width.



Ahlswede—Daykin inequality

L is a finite distributive lattice.

fi, f, f5,f; : L — R>o are nonnegative functions.

Theorem (Ahlswede-Daykin '78)
Suppose that

fi(x) h(y) < AB(xVy)fa(xAy) Vx,y € L.

Then
A(L) K(L) < A(L)f(L).




Proof of Daykin—Daykin—Paterson inequality

Let L be the distributive lattice consisting of
order-preserving functions g: P — {0,1,...,n}.

The join and meet operation are
(g1 N &)(2) = max{gi(z), &(2)},
(81 V &2)(z) = min{gi(z), &2(2)},
for g1, @€ L and z€ P.



Proof of Daykin—Daykin—Paterson inequality

The four functions fi, f, 3,12 : L — R>q are

filg) = 1{g(x)=k—1 and g(z) > 1 Vz e P},
f(g) = 1{g(x) =k and g(z) <n—1 Vze P},
f3(g) = 1{g(x) =k and g(z) =1 Vz € P},

fa(g) = l{g(x)=k—1 and g(z) <n-—1 Vze P}

By using translation invariance,

(L) = qk-1, H(L) = qra,
(L) = qx, fa(L) = g«

Conclusion now follows from AD inequality. ]



