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What is log-concavity?

A sequence a1, . . . , an ∈ R≥0 is log-concave if

a2k ≥ ak+1 ak−1 (1 < k < n).

Log-concavity (and positivity) implies unimodality:

a1 ≤ · · · ≤ am ≥ · · · ≥ an for some 1 ≤ m ≤ n.
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Example: binomial coefficients

ak =

(
n

k

)
k = 0, 1, . . . , n.

This sequence is log-concave because

a2k
ak+1 ak−1

=

(
n
k

)2(
n

k+1

) (
n

k−1

) =

(
1 +

1

k

)(
1 +

1

n − k

)
,

which is greater than 1.



Example: permutations with k inversions

ak = number of π ∈ Sn with k inversions,

where inversion of π is pair i < j s.t. πi > πj .

This sequence is log-concave because∑
0≤k≤(n2)

ak q
k = [n]q! =

n−1∏
i=1

(1 + q + q2 + . . .+ qi)

is a product of log-concave polynomials.



Examples: forests of a graph

ak = number of forests with k edges of graph G .

Forest is a subset of edges of G that has no cycles.

Log-concavity was conjectured for all matroids

(Mason ‘72), and was proved through combinatorial

Hodge theory (Huh ‘15).

G forest not forest spanning tree



Log-concavity has been proved in various areas of

mathematics in varying degrees of “complexities”.

We would like to rigorously formalize

this difference in complexities.

We will start with log-concave poset inequalities.
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Poset inequalities



Partially ordered sets

A poset P is a set X with a partial order ≺ on X .
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Linear extension

A linear extension L is a complete order of ≺.

d

cb

a

a b c d

a c b d

We write L(x) = k if x is k-th smallest in L.



Stanley (poset) inequality: simple form

Fix x ∈ P .

N(k) := number of linear extensions with L(x) = k .

Theorem (Stanley ‘81)

N(k)2 ≥ N(k + 1)N(k − 1) (k ∈ N).

The inequality was initially conjectured by

Chung-Fishburn-Graham, and was proved using

Aleksandrov-Fenchel inequality for mixed volumes.



Mixed volumes: dimension 2

For convex bodies K , L ⊆ R2 ,

Vol(aK+bL) = V (K ,K )a2+V (L, L)b2+2V (K , L)ab

is a quadratic polynomial in a, b ≥ 0.

K L K + L

Coefficients V (K ,K ), V (L, L), V (K , L)

are mixed volumes.



Mixed volumes: dimension n

Theorem (Minkowski ‘03)
For convex bodies K1, . . . ,Kn ⊆ Rn, the function

(λ1, . . . λn) 7→ Vol(λ1K1 + . . .+ λnKn)

is a homogeneous polynomial in λ1, . . . , λn ≥ 0.

Mixed volume V (K1, . . . ,Kn) is 1
n! of the

coefficient of λ1 · · ·λn in the polynomial

expansion of Vol(λ1K1 + . . .+ λnKn) .



Alexandrov-Fenchel (AF) inequality

Theorem (Alexandrov ‘37, Fenchel ‘36)
For convex bodies A,B ,K1, . . . ,Kn−2 ⊆ Rn,

V ∗(A,B)2 ≥ V ∗(A,A)V ∗(B ,B),

where V ∗(A,B) := V (A,B ,K1, . . . ,Kn−2) .

Stanley inequality N(k)2 ≥ N(k + 1)N(k − 1)

follows by substituting A,B ,K1, . . . ,Kn−2 with

slices of order polytopes.



Stanley (poset) inequality: true form

Fix d ≥ 0, x , y1, . . . , yd ∈ P and ℓ1, . . . , ℓd ∈ N .

Nd(k) :=
number of linear extensions with

L(x) = k , L(yi) = ℓi for i ∈ [d ].

Theorem (Stanley ‘81)

Nd(k)
2 ≥ Nd(k + 1)Nd(k − 1) (k ∈ N).

This form corresponds to imposing boundary

conditions in PDE/statistical physics.



When is equality achieved?

Question (Stanley ‘81)
Find equality condition for [Stanley inequality ].

Quote (Gardner ‘02)
If inequalities are silver currency in mathematics,

those that come along with precise equality

conditions are gold.



Equality condition: d = 0 (numerical)

Theorem (Shenfeld-van Handel ’23)
Suppose d = 0 and Nd(k) > 0 . Then

Nd(k)
2 === Nd(k + 1)Nd(k − 1)

if and only if

Nd(k) = Nd(k + 1) = Nd(k − 1).



Equality condition: d = 0 (combinatorial)

Theorem (Shenfeld-van Handel ’23)
Suppose d = 0 and Nd(k) > 0 . Then

Nd(k)
2 === Nd(k + 1)Nd(k − 1)

if and only if

|P<z | > k for all z ∈ P>x ,

|P>z | > |P | − k + 1 for all z ∈ P<x ,

where P<z := set of y ∈ P with y < z .

This is a combinatorial condition, and

can be checked in O(|P|2) steps.



Equality condition: d ≥ 1 (numerical)

Theorem (Ma–Shenfeld ‘24)
Suppose d ≥ 1 and Nd(k) > 0 . Then

Nd(k)
2 === Nd(k + 1)Nd(k − 1)

if and only if

Nd(k) = Nd(k + 1) = Nd(k − 1).

However, combinatorial equality condition

was not extended to d ≥ 1.



Main result

Consider the decision problem for

checking equality in Stanley inequality:

Nd(k)
2 =?=?=? Nd(k + 1)Nd(k − 1).

Theorem 1 (C.–Pak ‘23+)
d ≤ 1: combinatorial equality condition that is

checkable in poly(|P|) steps.
d ≥ 2: not part of polynomial hierarchy,

unless polynomial hierarchy collapses.



Polynomial hierarchy



Decision vs counting

Decision problem: answer is either ‘Yes’ or ‘No’.

Counting problem: answer is a nonnegative integer.

Example (3-colorings of graph G )
Decision problem: Check if there exists

a proper 3-coloring of G .

Counting problem: Find the number of

proper 3-colorings of G .

Polynomial hierarchy is a subclass of decision problems.



Complexity class P

P :=

{
Decision problems solvable by deterministic

Turing machine in polynomial time

}

Example
Check if a given 3-coloring of a graph G is proper.

This can be solved in O(n2) time by checking

the color of endpoints of every edge.

YES NO



Complexity class NP

NP :=

{
Decision problems solvable by nondetermi-

nistic Turing machine in polynomial time

}
.

Can split into many parallel branches;

Output ‘YES’ if one of the branches said ‘YES’;

Output ‘NO’ if all branches said ‘NO’.



Complexity class NP: example

Problem: Check if graph G has a proper 3-coloring.

Each branch corresponds to checking if

a particular 3-coloring of G is proper.

YES NO

· · ·

NO

Output to this example is ‘YES’.



Turing machine with an oracle

At each step, this machine can either:

Perform usual nondeterministic Turing

machine operation; or

Ask an oracle that is able to answer any

instance of a given computational problem.



Turing machine with an oracle: example

Problem: Check if there is an induced subgraph of

G of size ⌈n/2⌉ that is not 3-colorable.

Oracle: Can check if a graph is 3-colorable.

Each branch of the machine corresponds to

an induced subgraph of G of size ⌈n/2⌉ .

· · ·

For every branch, oracle checks

if subgraph is 3-colorable.
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Complexity class ΣP
i

The first two classes are

ΣP
0 := P; ΣP

1 := NP.

For i ≥ 1, the class ΣP
i := NPΣP

i−1 is
Decision problems solvable by nondetermi-

nistic Turing machine in polynomial time

with an oracle for problem from ΣP
i−1.

 .

Note that

ΣP
0 ⊆ ΣP

1 ⊆ ΣP
2 ⊆ ΣP

3 ⊆ · · ·



Complexity class ΣP
i : example

Problem A: Check if a 3-coloring of G is proper.

Problem A is in ΣP
0 = P.

Problem B: Check if G has a proper 3-coloring.

Problem B is in ΣP
1 = NP.

Problem C: Check if there is an induced subgraph of

G of size ⌈n/2⌉ that is not 3-colorable.

Problem C is in ΣP
2 = NPNP.



Polynomial hierarchy (PH)

Polynomial hierarchy is the union of all ΣP
i ’s,

PH :=
∞⋃
i=0

ΣP
i .

Conjecture
Polynomial hierarchy does not collapse,

ΣP
0 ⊊ ΣP

1 ⊊ ΣP
2 ⊊ ΣP

3 ⊊ · · ·

ΣP
0 = ΣP

1 is equivalent to P = NP.

ΣP
1 = ΣP

2 is equivalent to NP = coNP.



Back to main result

Consider the decision problem for

checking equality in Stanley inequality:

Nd(k)
2 =?=?=? Nd(k + 1)Nd(k − 1).

Theorem (C.–Pak ‘23+)
d ≤ 1: Problem is in P.

d ≥ 2: Problem is not in PHPHPH, unless PH

collapses.



Alexandrov–Fenchel equality condition

Consider the decision problem for checking equality

in AF inequality for unimodular polytopes:

V ∗(A,B)2 =?=?=? V ∗(A,A)V ∗(B ,B).

Theorem 2 (C.–Pak ‘23+)
Problem is not in PHPHPH, unless PH collapses.

Shenfeld–van Handel (‘23) obtained complete

geometric description of AF equality, but those

conditions are computationally intractable.



Recall our goal ...

Log-concavity has been proved in various aspects of

mathematics in varying degrees of complexities.

We would like to rigorously formalize

this difference in complexities.



Complexity class #P#P#P



Complexity class #P

#P :=


Counting problems realizable as number

of ‘YES’ branches in some nondetermi-

nistic Turing machine.

 .

Example
Count number of proper 3-colorings of graph G .

Example
Count number of linear extensions Nd(k) of poset P .



Main result

Theorem 3 (C.–Pak ‘23+)
For d ≥ 2, the defect of Stanley inequality

Nd(k)
2 − Nd(k + 1)Nd(k − 1)

is not in #P , unless PH collapses.

Note: Nd(k)
2 and Nd(k + 1)Nd(k − 1) are in #P .

Theorem is a consequence of previous main result.



Example: defect of binomial inequalities(
n

k

)2

≥
(

n

k + 1

)(
n

k − 1

)
(1 < k < n).

This inequality has a lattice path interpretation:

K (a → c , b → d) :=
no. of pairs of north-east lattice

paths from a to c and b to d ,

for a, b, c , d ∈ Z2.

•b

• d

•a

• c



Example: defect of binomial inequalities
Let

a = (0, 1), c = (k , n − k + 1),

b = (1, 0), d = (k + 1, n − k).

Then

K (a → c , b → d) =

(
n

k

)2

,

K (a → d , b → c) =

(
n

k − 1

)(
n

k + 1

)
.

•a
•b

• c
• d

•a
•b

• c
• d



Example: defect of binomial inequalities
Note K (a → c , b → d) ≥ K (a → d , b → c) by

path-swapping injections.

•a
•b

• c
• d

•a
•b

• c
• d

K (a → c , b → d)− K (a → d , b → c) is

number of pairs of north-east lattice paths

from a to c , b to d , that do not intersect.

This number is thus in #P .



Example: Edge correlation for spanning trees

Let G be a graph, let e, f be distinct edges of G .

T := no. of spanning trees of G ,

Te := no. of spanning trees of G containing e,

Te,f := no. of spanning trees of G containing e and f .

Theorem

Te Tf ≥ T Te,f .

Defect can be computed in polynomial time by

matrix tree theorem. This number is thus in #P .



Back to main result

Theorem (C.–Pak ‘23+)
For d ≥ 2, the defect of Stanley inequality

Nd(k)
2 − Nd(k + 1)Nd(k − 1)

is not in #P , unless PH collapses.

This differentiates Stanley inequality from binomial

inequality and edge correlation inequality.

In particular, a combinatorial interpretation for

defect of Stanley inequality is unlikely to exist.



Matroids



Object: matroids

Matroid M = (X , I) is ground set X with

collection of independent sets I ⊆ 2X .

Graphical matroids

X = edges of a graph G ,

I = forests in G .

Realizable matroids

X = finite set of vectors over field F,

I = sets of linearly independent vectors.



Matroids: conditions

S ⊆ T and T ∈ I implies S ∈ I.

T S

If S ,T ∈ I and |S | < |T |, then there is

x ∈ T \ S such that S ∪ {x} ∈ I.

S T S ∪ {x}

A basis is a maximal independent set.

Rank r of matroid is the size of the bases.



Stanley–Yan inequality

Fix d ≥ 0 , disjoint subsets S , S1, . . . , Sd of X ,

and ℓ1, . . . , ℓd ∈ N .

Bd(k) :=
number of bases B of M such that

|B ∩ S | = k , |B ∩ Si | = ℓi for i ∈ [d ],

divided by
(

r
k ,ℓ1,...,ℓd

)
.

Theorem (Stanley ‘81, Yan ‘23)

Bd(k)
2 ≥ Bd(k + 1)Bd(k − 1) (k ∈ N).

Proved for regular matroids by (Stanley ‘81), and

for all matroids by (Yan ‘23).



Stanley–Yan implies Mason

I(k) := no. of independents sets with k elements.

I(k) is no. of forest with k edges for graphic matroids.

Theorem (Mason inequality)

I(k)2 ≥ I(k + 1) I(k − 1).

Proof.
M = given matroid with ground set X .

M′ = direct sum of M with the free matroid.

Set d = 0 and S = X . Then

I(k) for M = Bd(k) for M′.



Main result

Theorem 4 (C.–Pak)
For d ≥ 1, defect of Stanley–Yan inequality

for binary matroids

Bd(k)
2 − Bd(k + 1)Bd(k − 1)

is not in #P , unless PH collapses.

This differentiates Stanley–Yan inequality from

binomial inequality and edge correlation inequality.



What is next?

Conjecture
For d = 0, defect of Stanley inequality

N(k)2 − N(k + 1)N(k − 1) /∈ #P .

For d = 0, defect of Stanley–Yan inequality

B(k)2 − B(k + 1)B(k − 1) /∈ #P .

For d = 0, defect of Mason inequality

I(k)2 − I(k + 1) I(k − 1) /∈ #P .



THANK YOU!

Preprint: www.arxiv.org/abs/2309.05764
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