Log-concave Poset Inequalities Day 3: Stanley's Poset Inequality

Swee Hong Chan

joint with Igor Pak

Partially ordered sets

A poset P is a set X with a partial order \prec on X.

We denote by $n := |X|$ the size of the poset.

Linear extension

A linear extension is a complete order of ≺.

Stanley's poset inequality (simple case) Fix $z \in \mathcal{P}$. Let

 $N_k :=$ number of linear extensions with z being k -th smallest.

Theorem (Stanley '81) For every poset P and $k \in \{2, \ldots, n-1\}$, $N_k^2 \geq N_{k+1} N_{k-1}.$

The inequality was originally proved using Aleksandrov-Fenchel inequality for mixed volumes, in a greater generality.

Stanley's poset inequality: a consequence

Weak Bruhat order on permutation group S_n is $\pi \leq \sigma$ if some reduced word of π is a left subword of some reduced word of σ . For $\sigma \in S_n$, let N_k^{σ} $\mathcal{L}_{k}^{\sigma} := \text{number of } \pi \in S_n \text{ such that}$ $\pi~\unlhd~\sigma$ and $\pi(1) = k$.

Corollary

Sequence N_1^{σ} $\frac{1}{1}, \ldots, N_n^{\sigma}$ \int_{n}^{σ} is log-concave. Stanley's poset inequality (simple case)

Fix $z \in \mathcal{P}$. Let

 $N_k :=$ number of linear extensions with z being k -th smallest.

Theorem (Stanley '81) For every poset P and $k \in \{2, \ldots, n-1\}$, $N_k^2 \geq N_{k+1} N_{k-1}.$

We will give a new proof using atlas method.

Extension matrix theorem

Linear extensions as words

Each linear extension corresponds to $\omega_1 \cdots \omega_n \in X^*$:

 ω_i is *i*-th smallest element in the extension.

abcd and acbd are the two linear extensions.

Extension matrix: Definition part 1

Let $k \in \{2, ..., n-1\}$. Let x_1, \ldots, x_ℓ be minimal elements of \mathcal{P} . Let $x_{\ell+1}, \ldots, x_m$ be maximal elements of \mathcal{P} . Extension matrix $E[P, k]$ is $m \times m$ matrix where, for $i \in [\ell], j \in [m] \setminus [\ell].$ $(\mathrm{E}[\mathcal{P},k])_{i,j}$ = no. of linear extensions ω with $z = \omega_k$ and $x_i = \omega_1$ and $x_j = \omega_n$.

Here *i* corresponds to a minimal element, and j corresponds to a maximal element, and every extension has z as k -th smallest. Extension matrix: Definition part 2

For distinct $i, j \in [\ell]$:

 $(\mathrm{E}[\mathcal{P},k])_{i,j}:=$ no. of lin. extensions ω with $z = \omega_{k+1}$ and $x_i = \omega_1$ and $x_i = \omega_2$;

 $(\mathrm{E}[\mathcal{P},k])_{i,i}:=$ no. of lin. extensions ω with $z = \omega_{k+1}$ and $x_i = \omega_1$ and $\omega_1 \prec \omega_2$ in P .

Here *i*, *j* corresponds to minimal elements of P , and every extension has z as $(k + 1)$ -th smallest.

Extension matrix: Definition part 3

For distinct $i, j \in [m] \setminus [\ell]$.

 $(\mathrm{E}[\mathcal{P},k])_{i,j}:=$ no. of lin. extensions ω with $z = \omega_{k-1}$ and $x_i = \omega_n$ and $x_i = \omega_{n-1}$;

 $(\mathrm{E}[\mathcal{P},k])_{i,i}:=$ no. of lin. extensions ω with $z = \omega_{k-1}$ and $x_i = \omega_n$ and $\omega_{n-1} \prec \omega_n$ in \mathcal{P} .

Here *i, j* corresponds to maximal elements of P , and every extension has z as $(k-1)$ -th smallest.

$$
(\mathrm{E}[\mathcal{P},3])_{1,4} := |\{x_1x_2x_3x_4, x_1x_3zx_2x_4\}| = 2;
$$

\n
$$
(\mathrm{E}[\mathcal{P},3])_{1,2} := |\{x_1x_2x_3zx_4, x_1x_2x_4zx_3\}| = 2;
$$

\n
$$
(\mathrm{E}[\mathcal{P},3])_{1,1} := |\{x_1x_3x_2zx_4\}| = 1;
$$

\n
$$
(\mathrm{E}[\mathcal{P},3])_{3,4} := |\{x_1zx_2x_3x_4\}| = 1;
$$

\n
$$
(\mathrm{E}[\mathcal{P},3])_{4,4} := |\{x_1zx_3x_2x_4\}| = 1.
$$

Recap: Hyperbolic property

M has hyperbolic property (Hyp) if

$$
\langle x, My \rangle^2 \geq \langle x, Mx \rangle \langle y, My \rangle
$$

for every $\boldsymbol{x} \in \mathbb{R}^r$ and $\boldsymbol{y} \in \mathbb{R}^r_\geq$ $\sum_{i=1}^r$

M satisfies (OPE) if

M has at most one positive eigenvalue.

Lemma (Lemma 3.5 (C.–Pak 22)) M satisfies $(Hyp) \iff M$ satisfies (OPE). Extension matrix theorem

Theorem For every poset P and $k \in \{2, \ldots, n-1\}$, The matrix $E[P, k]$ satisfies (Hyp).

This theorem implies Stanley's inequality.

Extension matrix thm implies Stanley's inequality

Let

$$
M := \mathbb{E}[\mathcal{P}, k] \quad \mathbf{x} := (\mathbf{1}^{\ell}, \mathbf{0}^{m-\ell}), \quad \mathbf{y} := (\mathbf{0}^{\ell}, \mathbf{1}^{m-\ell}).
$$

Then

$$
\langle \mathbf{x}, M\mathbf{y} \rangle = N_k, \ \langle \mathbf{x}, M\mathbf{x} \rangle = N_{k+1}, \ \langle \mathbf{y}, M\mathbf{y} \rangle = N_{k-1}.
$$

$\langle x, My \rangle^2 \geq \langle x, My \rangle \langle y, My \rangle$ (Hyp)

then implies

$$
N_k^2 \geq N_{k+1} N_{k-1}.
$$

Extension atlas

Recap: Atlas definition

A combinatorial atlas is a collection of $d \times d$ nonnegative symmetric matrices and vector:

$$
M_0, M_1, \ldots, M_d \in \mathbb{R}_{\geq 0}^{d \times d}, \qquad h \in \mathbb{R}_{\geq 0}^d.
$$

 M_0 is the parent of the atlas.

 M_1, \ldots, M_d are the children of the atlas.

We would want M_0, \ldots, M_d to satisfy (Hyp).

Extension atlas

Fix $t \in (0,1)$ and $d := m$ and $k \in \{3, ..., n-1\}$. Extension atlas (M_0, \ldots, M_d, h) is given by $M_0 = t E[P, k] + (1 - t) E[P, k - 1];$ $M_i := E[P - x_i, k - 1]$ $(i \in [d])$; \bm{h} := (t, \ldots, t) \rightarrow ℓ $, 1-t, \ldots, 1-t$ ${m-\ell}$ $m-\ell$);

where $\mathcal{P} - x :=$ poset \mathcal{P} with x removed.

We will show that M_0, \ldots, M_d satisfy (Hyp).

Recap: Children-to-parent principle

Theorem (Theorem 5.2 (C.-Pak 24)) Let atlas (M_0, \ldots, M_d, h) satisfies (lnh), (T-lnv), (Irr), (h-Pos), *(Dec)*, and (Proj), (K-Non). Then M_1, \cdots, M_d satisfy $(Hyp) \implies M_0$ satisfies (Hyp) .

Thus our strategy becomes:

- Assume M_1, \ldots, M_d satisfy (Hyp) (induction);
- Verify (Inh), $(T-Inv)$, ..., $(K-Non)$;
- $\bullet \implies M_0$ satisfies (Hyp).

Proof of extension matrix theorem

Proof of extension matrix theorem, part 1

We will use induction on n. Base case is $n = 3$. Then $E[P, k]$ is reduced to one of these matrices: $\left[1\right],$ $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$ 1 0 0 $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$, $\sqrt{ }$ $\left| \right|$ \mathbf{I} 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 ׀ $\vert \cdot$

All these matrices satisfy (OPE) , and thus (Hyp) .

Proof of extension matrix theorem, part 2

Assume
$$
n \geq 4
$$
. Let $k \in \{3, \ldots, n-1\}$.

Then M_1, \ldots, M_d satisfy (Hyp) by induction.

Children-parent-principle $\implies M_0$ satisfies (Hyp). $\iff t \to F[P, k] + (1 - t) \to F[P, k - 1]$ satisfies (Hyp). • $t \to 1 \implies E[P, k]$ satisfies (Hyp) , Thus $E[P, 3], \ldots, E[P, n-1]$ satisfy (Hyp) . • $t \to 0 \implies E[P, k-1]$ satisfies (Hyp), Thus $E[P, 2]$ also satisfies (Hyp).

What we have shown

Fix
$$
z \in \mathcal{P}
$$
. Let
\n
$$
N_k := \frac{\text{number of linear extensions with}}{z \text{ being } k\text{-th smallest.}}
$$

Theorem (Stanley '81) For every poset P and $k \in \{2, ..., n-1\}$, $N_k^2 \geq N_{k+1} N_{k-1}.$

What we have shown

Fix
$$
z \in \mathcal{P}
$$
. Let
\n
$$
N_k := \frac{\text{number of linear extensions with}}{z \text{ being } k\text{-th smallest.}}
$$

Theorem (Stanley '81) For every poset P and $k \in \{2, ..., n-1\}$, $N_k^2 \geq N_{k+1} N_{k-1}.$

We will now discuss Stanley's equality problem.

Stanley's equality problem

Stanley's equality problem

Question (Stanley '81) Find equality condition for [Stanley's inequality].

Quote (Gardner '02)

If inequalities are silver currency in mathematics, those that come along with precise equality conditions are gold.

Stanley's equality theorem (simple case) Theorem (Shenfeld-van Handel '23) Suppose $k \in \{2, \ldots, n-1\}$ and $N_k > 0$. Then $N_k^2 = N_{k+1} N_{k-1}$

if and only if

 $|\mathcal{P}_{\leq x}| > k$ for all $x \in \mathcal{P}_{\leq z}$, $|\mathcal{P}_{>}| > |\mathcal{P}| - k + 1$ for all $x \in \mathcal{P}_{<}$, where $P_{\leq x} :=$ set of $y \in P$ with $y \leq x$.

Proof used classifications of extremals of Aleksandrov-Fenchel inequality for convex polytopes. Stanley's equality theorem (simple case) Theorem (Shenfeld-van Handel '23) Suppose $k \in \{2, \ldots, n-1\}$ and $N_k > 0$. Then $N_k^2 = N_{k+1} N_{k-1}$

if and only if

 $|\mathcal{P}_{\leq x}| > k$ for all $x \in \mathcal{P}_{\leq z}$, $|\mathcal{P}_{>}| > |\mathcal{P}| - k + 1$ for all $x \in \mathcal{P}_{<}$, where $P_{\leq x} :=$ set of $y \in P$ with $y \leq x$.

This is a combinatorial condition, and can be checked in $O(n^2)$ steps.

Stanley's equality theorem (simple case) Theorem (Shenfeld-van Handel '23) Suppose $k \in \{2, \ldots, n-1\}$ and $N_k > 0$. Then $N_k^2 = N_{k+1} N_{k-1}$

if and only if

 $|\mathcal{P}_{\leq x}| > k$ for all $x \in \mathcal{P}_{\leq z}$, $|\mathcal{P}_{>x}| > |\mathcal{P}| - k + 1$ for all $x \in \mathcal{P}_{\leq z}$, where $P_{\leq x} :=$ set of $y \in P$ with $y \leq x$.

We will present a new proof using atlas method.

Proving equality conditions using atlas

Hyperbolic equality property

Triplet $(M,\mathsf{x},\mathsf{y})\in\mathbb{R}^{r\times r}\times\mathbb{R}^r\times\mathbb{R}^r$ satisfies $(\mathsf{H}\text{-}\mathsf{Equ})$ if $\langle x, My \rangle^2 = \langle x, Mx \rangle \langle y, My \rangle.$

Stanley's equality and (H-Equ)

Let

$$
M := \mathbb{E}[\mathcal{P}, k], \quad \mathbf{x} := (\mathbf{1}^{\ell}, \mathbf{0}^{m-\ell}), \quad \mathbf{y} := (\mathbf{0}^{\ell}, \mathbf{1}^{m-\ell}).
$$

Then

$$
\langle \mathbf{x}, M\mathbf{y} \rangle = N_k, \ \langle \mathbf{x}, M\mathbf{x} \rangle = N_{k+1}, \ \langle \mathbf{y}, M\mathbf{y} \rangle = N_{k-1}.
$$

$$
N_k^2 = N_{k+1} N_{k-1}
$$
 if and only if

$$
\langle x, My \rangle^2 = \langle x, My \rangle \langle y, My \rangle
$$
 (H-Equ).

Stanley's equality theorem thus reduces to understanding (H-Equ).

Parent-to-children principle

Theorem (Theorem 7.1 (C.-Pak 24)) Let atlas (M_0, \ldots, M_d, h) satisfies (lnh), (T-lnv), (Irr), (Proj), (K-Non), and (Hyp). Then (M_0, x, y) satisfies (H-Equ) \implies (M_i, x, y) satisfies $(H-Equ)$ if $h_i > 0$.

> We will use (H-Equ) for children matrices to get combinatorial equality condition.

Stanley's equality theorem (simple case) Theorem Suppose $k \in \{2, \ldots, n-1\}$ and $N_k > 0$. Then $N_k^2 = N_{k+1} N_{k-1}$

if and only if

 $|\mathcal{P}_{\leq x}| > k$ for all $x \in \mathcal{P}_{\leq z}$, $|\mathcal{P}_{>x}| > |\mathcal{P}| - k + 1$ for all $x \in \mathcal{P}_{\leq z}$, where $P_{\leq x} :=$ set of $y \in P$ with $y \leq x$.

We will only prove \implies direction, as \Leftarrow direction is straightforward.

We will use induction on n. Base case is $n = 3$. Then there are eleven possibilities for (\mathcal{P}, k, z) . Validity of theorem is confirmed for all of them.

For $n > 4$, we proceed with atlas method.

Let
$$
n \ge 4
$$
 and $d := m$ and $k \in \{3, \ldots, n-1\}$.

Our atlas (M_0, \ldots, M_d, h) is given by $M_0 = E[P, k]$; $M_i := \text{E}[\mathcal{P} - x_i, k-1] \quad (i \in [d]);$ $h := (1, \ldots, 1)$ \rightarrow ℓ $, 0, \ldots, 0$ $\sum_{m-\ell}$ $m-\ell$).

This is extension at as with $t = 1$.

Let
$$
\mathbf{x} := (\mathbf{1}^{\ell}, \mathbf{0}^{m-\ell}), \quad \mathbf{y} := (\mathbf{0}^{\ell}, \mathbf{1}^{m-\ell}).
$$

Then

$$
N_k^2 = N_{k+1} N_{k-1}
$$
 implies

$$
\langle x, M_0 y \rangle^2 = \langle x, M_0 y \rangle \langle y, M_0 y \rangle
$$
 (H-Equ).

Parent-children principle then implies,

$$
\langle \mathbf{x}, M_i \mathbf{y} \rangle^2 = \langle \mathbf{x}, M_i \mathbf{y} \rangle \langle \mathbf{y}, M_i \mathbf{y} \rangle \qquad \text{(H-Equ)}
$$

for all $i \in [\ell]$.

Recall x_1, \ldots, x_ℓ are minimal elements of \mathcal{P} .

Let
$$
\mathcal{P}^{(i)} := \mathcal{P} - x_i
$$
. Previous slide implies
\n
$$
(N_{k-1}^{(i)})^2 = N_k^{(i)} N_{k-2}^{(i)}
$$
 for all $i \in [\ell],$

where $N_k^{(i)}$ $\mathcal{P}_{k}^{(i)} := \mathsf{number}$ of linear extensions of $\mathcal{P}^{(i)}$ with z being k -th smallest.

Induction then implies

$$
|\mathcal{P}_{>x}^{(i)}| > |\mathcal{P}^{(i)}| - (k-1) + 1
$$
 for all $x \in \mathcal{P}_{< z}^{(i)}$.

Thus, for $x \in \mathcal{P}_{\leq x}$. $| \mathcal{P}_{>x} | = | \mathcal{P}_{>x}^{(i)} |$ (minimality of x_i) $>$ $|\mathcal{P}^{(i)}|$ $(\bm{k}-\bm{1})+1$ (previous slide) $= |\mathcal{P}| - k + 1.$ $(i) := \mathcal{P} - x_i$

Hence we conclude

$$
|\mathcal{P}_{>x}| > |\mathcal{P}| - k + 1 \quad \text{for all} \quad x \in \mathcal{P}_{< z}.
$$

Applying analogous dual argument,

 $|P_{\leq x}| > k$ for all $x \in P_{\leq x}$.

What we have shown

Theorem Suppose $k \in \{2, \ldots, n-1\}$ and $N_k > 0$. Then $N_k^2 = N_{k+1} N_{k-1}$

if and only if

$$
|\mathcal{P}_{< x}| > k \qquad \text{for all } x \in \mathcal{P}_{> z},
$$
\n
$$
|\mathcal{P}_{> x}| > |\mathcal{P}| - k + 1 \quad \text{for all } x \in \mathcal{P}_{< z},
$$
\n
$$
\text{where } \mathcal{P}_{< x} := \text{set of } y \in \mathcal{P} \text{ with } y < x.
$$

Approximate independence

Approximate independence for matchings

For graph G, let

 $m(G) :=$ number of matchings of G.

Theorem (Kahn '00) For distinct vertices x, y of G , 1 $\frac{1}{2}$ \leq $m(G) m(G - x - y)$ $m(G - x) m(G - y)$ \leq 2.

Quote (Kahn '00)

While we cannot expect exact independence, we do have considerable approximate independence.

Approximate independence for matroids

For matroid M, let

$$
B(\mathcal{M}) \ := \ \text{number of bases of } \mathcal{M}.
$$

Theorem (Huh–Schröter–Wang '22) For distinct elements x, y of M , $B(\mathcal{M}) B(\mathcal{M} - x - y)$ $B(\mathcal{M} - x) B(\mathcal{M} - y)$ $\leq 2(1 - \frac{1}{d})$ $\frac{1}{d}$.

> None of the known matroids have ratios larger than $\frac{8}{7}$.

Approximate independence for extensions

For poset P with *n* elements, let

 $e(\mathcal{P}) :=$ number of linear extensions of \mathcal{P} .

Theorem (Fishburn '84, C.-Pak '22) For distinct minimal elements x, y of P , n $\frac{n-1}{n-1}$ $e(\mathcal{P}) e(\mathcal{P}-x-y)$ $e(\mathcal{P}-x) e(\mathcal{P}-y)$ \leq 2.

Lower bound was proved by FKG inequality, and is tight for antichains.

Approximate independence for extensions

For poset P with *n* elements, let

 $e(\mathcal{P}) :=$ number of linear extensions of \mathcal{P} .

Theorem (Fishburn '84, C.-Pak '22) For distinct minimal elements x, y of P , n $\frac{n-1}{n-1}$ $e(\mathcal{P}) e(\mathcal{P}-x-y)$ $e(\mathcal{P}-x) e(\mathcal{P}-y)$ \leq 2.

> Upper bound was proved by atlas method, and is tight for antichains of two elements.

Proof of approximate independence for extensions (upper bound)

A consequence of (Hyp)

Lemma (Lemma 5.5, C.-Pak '22) Let M be a matrix that satisfies (Hyp) . Then, for all nonnegative vectors v, x, y ,

 $\langle v, Mv \rangle \langle x, My \rangle \leq 2 \langle v, Mx \rangle \langle v, My \rangle$. (2-Ind)

Proof of approximate independence theorem, part 1

Let $\mathcal{P}' := \mathcal{P} + z$, where z is incomparable to all other elements of P .

Let x_1, \ldots, x_ℓ be minimal elements of \mathcal{P}' . W.l.o.g. $x = x_1$ and $y = x_2$ and $k \in \{2, ..., n-1\}$.

Set

$$
M := E[P', k], \quad \mathbf{v} := (\mathbf{0}^{\ell}, \mathbf{1}^{m-\ell}), \n\mathbf{x} := (1, 0, \ldots, 0), \quad \mathbf{y} := (0, 1, 0 \ldots, 0).
$$

Proof of approximate independence theorem, part 2 Then

$$
\langle \mathbf{v}, M\mathbf{v} \rangle = \begin{array}{l} \text{number of extensions } \omega \text{ of } \mathcal{P}' \\ \text{with } \omega_{k-1} = z. \\ = e(\mathcal{P}). \end{array}
$$

 \langle v,Mx \rangle = number of extensions ω of \mathcal{P}' with $\omega_k = z$ and $\omega_1 = x$ $= e(\mathcal{P} - x)$

 \langle v $,My \rangle$ = number of extensions ω of \mathcal{P}' with $\omega_k = z$ and $\omega_1 = y$ $= e(\mathcal{P} - v).$

Proof of approximate independence theorem, part 3 And

 $\langle x, My \rangle =$ number of extensions of \mathcal{P}' with with $\omega_{k+1} = z$ and $\omega_1 = x$ and $\omega_2 = y$ $= e(\mathcal{P} - x - y).$

 $\langle v, Mv \rangle \langle x, Mv \rangle \langle 2 \langle v, Mx \rangle \langle v, Mv \rangle$ (2-ind)

then implies

 $e(\mathcal{P})e(\mathcal{P} - x - y) < 2e(\mathcal{P} - x)e(\mathcal{P} - y)$.

What we have done

For poset P with *n* elements, let

$$
e(\mathcal{P}) :=
$$
 number of linear extensions of \mathcal{P} .

Theorem (Fishburn '84, C.-Pak '22) For distinct minimal elements x, y of P ,

$$
\frac{n}{n-1} \ \leq \ \frac{e(\mathcal{P}) \ e(\mathcal{P}-x-y)}{e(\mathcal{P}-x) \ e(\mathcal{P}-y)} \ \leq \ 2.
$$

Next episode preview

What we did today

Theorem (Stanley's inequality, simple form) Suppose $k \in \{2, \ldots, n-1\}$ and $N_k > 0$. Then $N_k^2 \geq N_{k+1} N_{k-1},$

with equality if and only if

 $|P_{\leq x}| > k$ for all $x \in P_{\leq x}$, $|\mathcal{P}_{>}| > |\mathcal{P}| - k + 1$ for all $x \in \mathcal{P}_{<}$, where $P_{< x} := \text{set of } y \in \mathcal{P}$ with $y < x$.

The complexity aspect of full version of Stanley's inequality will be discussed in Day 4.

SEE YOU NEXT CLASS!

References: <www.arxiv.org/abs/2203.01533> <www.arxiv.org/abs/2211.16637> Webpage: <www.math.rutgers.edu/~sc2518/> Email: sweehong.chan@rutgers.edu