Log-concave Poset Inequalities Day 3: Stanley's Poset Inequality

Swee Hong Chan

joint with Igor Pak

Partially ordered sets

A poset \mathcal{P} is a set X with a partial order \prec on X.

We denote by n := |X| the size of the poset.

Linear extension

A linear extension is a complete order of \prec .

Stanley's poset inequality (simple case) Fix $z \in \mathcal{P}$. Let

 $N_k := \frac{\text{number of linear extensions with}}{z \text{ being } k \text{-th smallest.}}$

Theorem (Stanley '81) For every poset \mathcal{P} and $k \in \{2, ..., n-1\}$, $N_k^2 \geq N_{k+1} N_{k-1}$.

The inequality was originally proved using Aleksandrov-Fenchel inequality for mixed volumes, in a greater generality. Stanley's poset inequality: a consequence

Weak Bruhat order on permutation group S_n is $\pi \trianglelefteq \sigma$ if some reduced word of π is a left subword of some reduced word of σ . For $\sigma \in S_n$, let

$$N_k^{\sigma} := rac{ ext{number of } \pi \in S_n ext{ such that}}{\pi \trianglelefteq \sigma ext{ and } \pi(1) = k ext{.}}$$

Corollary

Sequence $N_1^{\sigma}, \ldots, N_n^{\sigma}$ is log-concave.

Stanley's poset inequality (simple case)

Fix $z \in \mathcal{P}$. Let

 $N_k := \frac{\text{number of linear extensions with}}{z \text{ being } k \text{-th smallest.}}$

Theorem (Stanley '81) For every poset \mathcal{P} and $k \in \{2, ..., n-1\}$, $N_k^2 \geq N_{k+1} N_{k-1}$.

We will give a new proof using atlas method.

Extension matrix theorem

Linear extensions as words

Each linear extension corresponds to $\omega_1 \cdots \omega_n \in X^*$:

 ω_i is *i*-th smallest element in the extension.

abcd and acbd are the two linear extensions.

Extension matrix: Definition part 1

Let $k \in \{2, ..., n-1\}$. Let x_1, \ldots, x_{ℓ} be minimal elements of \mathcal{P} . Let $x_{\ell+1}, \ldots, x_m$ be maximal elements of \mathcal{P} . Extension matrix $E[\mathcal{P}, k]$ is $m \times m$ matrix where, for $i \in [\ell], j \in [m] \setminus [\ell]$: no. of linear extensions ω with $(\mathbf{E}[\mathcal{P}, k])_{i,i} :=$ $z = \omega_k$ and $x_i = \omega_1$ and $x_j = \omega_n$.

Here *i* corresponds to a minimal element, and *j* corresponds to a maximal element, and every extension has z as k-th smallest. Extension matrix: Definition part 2

For distinct $i, j \in [\ell]$:

 $(E[\mathcal{P}, k])_{i,j} := \begin{cases} \text{no. of lin. extensions } \omega \text{ with } z = \omega_{k+1} \\ \text{and } x_i = \omega_1 \text{ and } x_j = \omega_2; \\ \text{no. of lin. extensions } \omega \text{ with } z = \omega_{k+1} \end{cases}$

 $(\mathrm{E}[\mathcal{P},k])_{i,i} := \begin{cases} \text{no. of nill extensions } \omega \text{ with } 2 = \omega_{k+1} \\ \text{and } x_i = \omega_1 \text{ and } \omega_1 \prec \omega_2 \text{ in } \mathcal{P}. \end{cases}$

Here i, j corresponds to minimal elements of \mathcal{P} , and every extension has z as (k + 1)-th smallest.

Extension matrix: Definition part 3

For distinct $i, j \in [m] \setminus [\ell]$:

 $(E[\mathcal{P}, k])_{i,j} := \begin{array}{l} \text{no. of lin. extensions } \omega \text{ with } z = \omega_{k-1} \\ \text{and } x_i = \omega_n \text{ and } x_j = \omega_{n-1}; \\ (E[\mathcal{P}, k])_{i,i} := \begin{array}{l} \text{no. of lin. extensions } \omega \text{ with } z = \omega_{k-1} \\ \text{or } z = \omega_{k-1} \\ \text{or } z = \omega_{k-1} \end{array}$

and $x_i = \omega_n$ and $\omega_{n-1} \prec \omega_n$ in \mathcal{P} .

Here i, j corresponds to maximal elements of \mathcal{P} , and every extension has z as (k - 1)-th smallest.

$$\begin{array}{rcl} (\mathrm{E}[\mathcal{P},3])_{1,4} &:= |\{x_1x_2z_3x_4, x_1x_3z_2x_2x_4\}| &= 2; \\ (\mathrm{E}[\mathcal{P},3])_{1,2} &:= |\{x_1x_2x_3z_4, x_1x_2x_4z_3\}| &= 2; \\ (\mathrm{E}[\mathcal{P},3])_{1,1} &:= |\{x_1x_3x_2zx_4\}| &= 1; \\ (\mathrm{E}[\mathcal{P},3])_{3,4} &:= |\{x_1zx_2x_3x_4\}| &= 1; \\ (\mathrm{E}[\mathcal{P},3])_{4,4} &:= |\{x_1zx_3x_2x_4\}| &= 1. \end{array}$$

Recap: Hyperbolic property

M has hyperbolic property (Hyp) if

$$\langle oldsymbol{x}, Moldsymbol{y}
angle^2 \geq \ \langle oldsymbol{x}, Moldsymbol{x}
angle \langle oldsymbol{y}, Moldsymbol{y}
angle$$

for every $\boldsymbol{x} \in \mathbb{R}^r$ and $\boldsymbol{y} \in \mathbb{R}^r_{\geq 0}$.

M satisfies (OPE) if

M has at most one positive eigenvalue.

Lemma (Lemma 3.5 (C.–Pak 22)) $M \text{ satisfies (Hyp)} \iff M \text{ satisfies (OPE)}.$ Extension matrix theorem

Theorem For every poset \mathcal{P} and $k \in \{2, ..., n-1\}$, The matrix $E[\mathcal{P}, k]$ satisfies (Hyp).

This theorem implies Stanley's inequality.

Extension matrix thm implies Stanley's inequality

Let

$$M := E[\mathcal{P}, k] \quad x := (\mathbf{1}^{\ell}, \mathbf{0}^{m-\ell}), \quad y := (\mathbf{0}^{\ell}, \mathbf{1}^{m-\ell}).$$

Then

$$\langle \boldsymbol{x}, \boldsymbol{M} \boldsymbol{y} \rangle = N_k, \ \langle \boldsymbol{x}, \boldsymbol{M} \boldsymbol{x} \rangle = N_{k+1}, \ \langle \boldsymbol{y}, \boldsymbol{M} \boldsymbol{y} \rangle = N_{k-1}.$$

$\langle \boldsymbol{x}, \boldsymbol{M} \boldsymbol{y} \rangle^2 \geq \langle \boldsymbol{x}, \boldsymbol{M} \boldsymbol{y} \rangle \langle \boldsymbol{y}, \boldsymbol{M} \boldsymbol{y} \rangle$ (Hyp)

then implies

$$N_k^2 \geq N_{k+1}N_{k-1}$$

Extension atlas

Recap: Atlas definition

A combinatorial atlas is a collection of $d \times d$ nonnegative symmetric matrices and vector:

$$M_0, M_1, \ldots, M_d \in \mathbb{R}_{\geq 0}^{d \times d}, \qquad \boldsymbol{h} \in \mathbb{R}_{\geq 0}^d.$$

 M_0 is the parent of the atlas.

 M_1, \ldots, M_d are the children of the atlas.

We would want M_0, \ldots, M_d to satisfy (Hyp).

Extension atlas

Fix $t \in (0, 1)$ and d := m and $k \in \{3, ..., n-1\}$. Extension atlas (M_0, \ldots, M_d, h) is given by $M_0 := t \operatorname{E}[\mathcal{P}, \mathbf{k}] + (1-t) \operatorname{E}[\mathcal{P}, \mathbf{k} - 1];$ $M_i := E[\mathcal{P} - x_i, k - 1] \quad (i \in [d]);$ h := (t, ..., t, 1 - t, ..., 1 - t); $m - \ell$

where $\mathcal{P} - x := \text{poset } \mathcal{P}$ with x removed.

We will show that M_0, \ldots, M_d satisfy (Hyp).

Recap: Children-to-parent principle

Theorem (Theorem 5.2 (C.-Pak 24)) Let atlas (M_0, \ldots, M_d, h) satisfies (Inh), (T-Inv), (Irr), (h-Pos), (Dec), and (Proj), (K-Non). Then M_1, \cdots, M_d satisfy (Hyp) $\implies M_0$ satisfies (Hyp).

Thus our strategy becomes:

- Assume M_1, \ldots, M_d satisfy (Hyp) (induction);
- Verify (Inh), (T-Inv), ..., (K-Non);
- \implies M_0 satisfies (Hyp).

Proof of extension matrix theorem

Proof of extension matrix theorem, part 1

We will use induction on *n*. Base case is n = 3. Then $E[\mathcal{P}, k]$ is reduced to one of these matrices: $\begin{bmatrix} 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$.

All these matrices satisfy (OPE), and thus (Hyp).

Proof of extension matrix theorem, part 2

Assume
$$n \ge 4$$
. Let $k \in \{3, ..., n-1\}$.

Then M_1, \ldots, M_d satisfy (Hyp) by induction.

Children-parent-principle $\implies M_0$ satisfies (Hyp). $\iff t \operatorname{E}[\mathcal{P}, k] + (1 - t) \operatorname{E}[\mathcal{P}, k - 1]$ satisfies (Hyp). • $t \to 1 \implies E[\mathcal{P}, \mathbf{k}]$ satisfies (Hyp), Thus $E[\mathcal{P}, 3], \ldots, E[\mathcal{P}, n-1]$ satisfy (Hyp). • $t \to 0 \implies E[\mathcal{P}, \mathbf{k} - \mathbf{1}]$ satisfies (Hyp), Thus $E[\mathcal{P}, 2]$ also satisfies (Hyp).

What we have shown

Fix
$$z \in \mathcal{P}$$
. Let
 $N_k := \begin{array}{c} \text{number of linear extensions with} \\ z \text{ being } k \text{-th smallest.} \end{array}$

Theorem (Stanley '81) For every poset \mathcal{P} and $k \in \{2, ..., n-1\}$, $N_k^2 \geq N_{k+1} N_{k-1}$. What we have shown

Fix
$$z \in \mathcal{P}$$
. Let
 $N_k := rac{ ext{number of linear extensions with}}{z ext{ being } k ext{-th smallest.}}$

Theorem (Stanley '81) For every poset \mathcal{P} and $k \in \{2, ..., n-1\}$, $N_k^2 \geq N_{k+1} N_{k-1}$.

We will now discuss Stanley's equality problem.

Stanley's equality problem

Stanley's equality problem

Question (Stanley '81) Find equality condition for [Stanley's inequality].

Quote (Gardner '02)

If inequalities are silver currency in mathematics, those that come along with precise equality conditions are gold. Stanley's equality theorem (simple case) Theorem (Shenfeld-van Handel '23) Suppose $k \in \{2, ..., n-1\}$ and $N_k > 0$. Then $N_k^2 = N_{k+1} N_{k-1}$

if and only if

$$\begin{split} |\mathcal{P}_{<x}| > k & \text{for all } x \in \mathcal{P}_{>z}, \\ |\mathcal{P}_{>x}| > |\mathcal{P}| - k + 1 & \text{for all } x \in \mathcal{P}_{<z}, \\ \text{where } \mathcal{P}_{<x} := \text{set of } y \in \mathcal{P} \text{ with } y < x. \end{split}$$

Proof used classifications of extremals of Aleksandrov-Fenchel inequality for convex polytopes. Stanley's equality theorem (simple case) Theorem (Shenfeld-van Handel '23) Suppose $k \in \{2, ..., n-1\}$ and $N_k > 0$. Then $N_k^2 = N_{k+1} N_{k-1}$

if and only if

$$\begin{split} |\mathcal{P}_{<x}| > k & \text{for all } x \in \mathcal{P}_{>z}, \\ |\mathcal{P}_{>x}| > |\mathcal{P}| - k + 1 & \text{for all } x \in \mathcal{P}_{<z}, \\ \text{where } \mathcal{P}_{<x} := \text{set of } y \in \mathcal{P} \text{ with } y < x. \end{split}$$

This is a combinatorial condition, and can be checked in $O(n^2)$ steps. Stanley's equality theorem (simple case) Theorem (Shenfeld-van Handel '23) Suppose $k \in \{2, ..., n-1\}$ and $N_k > 0$. Then $N_k^2 = N_{k+1} N_{k-1}$

if and only if

$$\begin{split} |\mathcal{P}_{<x}| > k & \text{for all } x \in \mathcal{P}_{>z}, \\ |\mathcal{P}_{>x}| > |\mathcal{P}| - k + 1 & \text{for all } x \in \mathcal{P}_{<z}, \\ \text{where } \mathcal{P}_{<x} := \text{set of } y \in \mathcal{P} & \text{with } y < x. \end{split}$$

We will present a new proof using atlas method.

Proving equality conditions using atlas

Hyperbolic equality property

Triplet $(M, \mathbf{x}, \mathbf{y}) \in \mathbb{R}^{r \times r} \times \mathbb{R}^r \times \mathbb{R}^r$ satisfies (H-Equ) if $\langle \mathbf{x}, M \mathbf{y} \rangle^2 = \langle \mathbf{x}, M \mathbf{x} \rangle \langle \mathbf{y}, M \mathbf{y} \rangle.$

Stanley's equality and (H-Equ)

Let

$$M := E[\mathcal{P}, k], \quad x := (\mathbf{1}^{\ell}, \mathbf{0}^{m-\ell}), \quad y := (\mathbf{0}^{\ell}, \mathbf{1}^{m-\ell}).$$

Then

$$\langle \boldsymbol{x}, \boldsymbol{M} \boldsymbol{y} \rangle = \boldsymbol{N}_k, \ \langle \boldsymbol{x}, \boldsymbol{M} \boldsymbol{x} \rangle = \boldsymbol{N}_{k+1}, \ \langle \boldsymbol{y}, \boldsymbol{M} \boldsymbol{y} \rangle = \boldsymbol{N}_{k-1}.$$

$$N_k^2 = N_{k+1} N_{k-1}$$
 if and only if
 $\langle \mathbf{x}, M \mathbf{y} \rangle^2 = \langle \mathbf{x}, M \mathbf{y} \rangle \langle \mathbf{y}, M \mathbf{y} \rangle$ (H-Equ).

Stanley's equality theorem thus reduces to understanding (H-Equ).

Parent-to-children principle

Theorem (Theorem 7.1 (C.-Pak 24)) Let atlas (M_0, \ldots, M_d, h) satisfies (Inh), (T-Inv), (Irr), (Proj), (K-Non), and (Hyp). Then $(M_0, \mathbf{x}, \mathbf{y})$ satisfies (H-Equ) $\implies (M_i, \mathbf{x}, \mathbf{y})$ satisfies (H-Equ) if $h_i > 0$.

> We will use (H-Equ) for children matrices to get combinatorial equality condition.

Stanley's equality theorem (simple case) Theorem Suppose $k \in \{2, ..., n-1\}$ and $N_k > 0$. Then $N_k^2 = N_{k+1} N_{k-1}$

if and only if

$$\begin{split} |\mathcal{P}_{<x}| &> k & \text{for all } x \in \mathcal{P}_{>z}, \\ |\mathcal{P}_{>x}| &> |\mathcal{P}| - k + 1 & \text{for all } x \in \mathcal{P}_{<z}, \\ \text{where } \mathcal{P}_{<x} &:= \text{set of } y \in \mathcal{P} \text{ with } y < x. \end{split}$$

We will only prove \implies direction, as \iff direction is straightforward.

We will use induction on *n*. Base case is n = 3. Then there are eleven possibilities for (\mathcal{P}, k, z) . Validity of theorem is confirmed for all of them.

For $n \ge 4$, we proceed with atlas method.

Let
$$n \geq 4$$
 and $d := m$ and $k \in \{3, \ldots, n-1\}$.

Our atlas (M_0, \ldots, M_d, h) is given by $M_0 := E[\mathcal{P}, k];$ $M_i := E[\mathcal{P} - x_i, k - 1] \quad (i \in [d]);$ $h := (\underbrace{1, \ldots, 1}_{\ell}, \underbrace{0, \ldots, 0}_{m-\ell}).$

This is extension atlas with t = 1.

Let
$$\mathbf{x} := (\mathbf{1}^{\ell}, \mathbf{0}^{m-\ell}), \quad \mathbf{y} := (\mathbf{0}^{\ell}, \mathbf{1}^{m-\ell}).$$

Then

$$egin{aligned} &\mathcal{N}_k^2 = \ \mathcal{N}_{k+1} \, \mathcal{N}_{k-1} & ext{implies} \ &\langle oldsymbol{x}, \mathcal{M}_0 oldsymbol{y}
angle^2 = \langle oldsymbol{x}, \mathcal{M}_0 oldsymbol{y}
angle \, oldsymbol{\langle y, \mathcal{M}_0 oldsymbol{y}
angle} & (ext{H-Equ}). \end{aligned}$$

Parent-children principle then implies,

$$\langle \boldsymbol{x}, \boldsymbol{M}_{i} \boldsymbol{y} \rangle^{2} = \langle \boldsymbol{x}, \boldsymbol{M}_{i} \boldsymbol{y} \rangle \langle \boldsymbol{y}, \boldsymbol{M}_{i} \boldsymbol{y} \rangle$$
 (H-Equ)

for all $i \in [\ell]$.

Recall x_1, \ldots, x_ℓ are minimal elements of \mathcal{P} .

Let
$$\mathcal{P}^{(i)} := \mathcal{P} - x_i$$
. Previous slide implies
 $(N_{k-1}^{(i)})^2 = N_k^{(i)} N_{k-2}^{(i)}$ for all $i \in [\ell]$,

where $N_k^{(i)}$:= number of linear extensions of $\mathcal{P}^{(i)}$ with *z* being *k*-th smallest.

Induction then implies

$$|\mathcal{P}_{>x}^{(i)}| > |\mathcal{P}^{(i)}| - (k-1) + 1$$
 for all $x \in \mathcal{P}_{.$

Thus, for $x \in \mathcal{P}_{\langle z}$, $|\mathcal{P}_{\rangle x}| = |\mathcal{P}_{\rangle x}^{(i)}|$ (minimality of x_i) $> |\mathcal{P}^{(i)}| - (k - 1) + 1$ (previous slide) $= |\mathcal{P}| - k + 1.$ (as $\mathcal{P}^{(i)} := \mathcal{P} - x_i$)

Hence we conclude

$$|\mathcal{P}_{>x}| > |\mathcal{P}| - k + 1$$
 for all $x \in \mathcal{P}_{.$

Applying analogous dual argument,

 $|\mathcal{P}_{< x}| > k$ for all $x \in \mathcal{P}_{> z}$.

What we have shown

Theorem Suppose $k \in \{2, ..., n-1\}$ and $N_k > 0$. Then $N_k^2 = N_{k+1} N_{k-1}$

if and only if

$$\begin{split} |\mathcal{P}_{ k & \text{for all } x \in \mathcal{P}_{>z}, \\ |\mathcal{P}_{>x}| &> |\mathcal{P}| - k + 1 & \text{for all } x \in \mathcal{P}_{$$

Approximate independence

Approximate independence for matchings

For graph G, let

m(G) := number of matchings of G.

Theorem (Kahn '00) For distinct vertices x, y of G, $\frac{1}{2} \leq \frac{m(G) \ m(G - x - y)}{m(G - x) \ m(G - y)} \leq 2.$

Quote (Kahn '00)

While we cannot expect exact independence, we do have considerable approximate independence.

Approximate independence for matroids

For matroid \mathcal{M} , let

$$B(\mathcal{M}) \ := \ \mathsf{number} \ \mathsf{of} \ \mathsf{bases} \ \mathsf{of} \ \mathcal{M}.$$

Theorem (Huh–Schröter–Wang '22) For distinct elements x, y of \mathcal{M} , $\frac{B(\mathcal{M}) B(\mathcal{M} - x - y)}{B(\mathcal{M} - x) B(\mathcal{M} - y)} \leq 2(1 - \frac{1}{d}).$

> None of the known matroids have ratios larger than $\frac{8}{7}$.

Approximate independence for extensions

For poset \mathcal{P} with *n* elements, let

 $e(\mathcal{P}) :=$ number of linear extensions of \mathcal{P} .

Theorem (Fishburn '84, C.-Pak '22) For distinct minimal elements x, y of \mathcal{P} , $\frac{n}{n-1} \leq \frac{e(\mathcal{P}) e(\mathcal{P} - x - y)}{e(\mathcal{P} - x) e(\mathcal{P} - y)} \leq 2.$

Lower bound was proved by FKG inequality, and is tight for antichains. Approximate independence for extensions

For poset \mathcal{P} with *n* elements, let

 $e(\mathcal{P}) :=$ number of linear extensions of \mathcal{P} .

Theorem (Fishburn '84, C.-Pak '22) For distinct minimal elements x, y of \mathcal{P} , $\frac{n}{n-1} \leq \frac{e(\mathcal{P}) e(\mathcal{P} - x - y)}{e(\mathcal{P} - x) e(\mathcal{P} - y)} \leq 2.$

Upper bound was proved by atlas method, and is tight for antichains of two elements.

Proof of approximate independence for extensions (upper bound)

A consequence of (Hyp)

Lemma (Lemma 5.5, C.-Pak '22) Let M be a matrix that satisfies (Hyp). Then, for all nonnegative vectors $\mathbf{v}, \mathbf{x}, \mathbf{y}$,

 $\langle \boldsymbol{v}, \boldsymbol{M} \boldsymbol{v} \rangle \langle \boldsymbol{x}, \boldsymbol{M} \boldsymbol{y} \rangle \leq 2 \langle \boldsymbol{v}, \boldsymbol{M} \boldsymbol{x} \rangle \langle \boldsymbol{v}, \boldsymbol{M} \boldsymbol{y} \rangle.$ (2-Ind)

Proof of approximate independence theorem, part 1

Let $\mathcal{P}' := \mathcal{P} + z$, where z is incomparable to all other elements of \mathcal{P} .

Let x_1, \ldots, x_ℓ be minimal elements of \mathcal{P}' . W.l.o.g. $x = x_1$ and $y = x_2$ and $k \in \{2, \ldots, n-1\}$.

Set

$$M := E[\mathcal{P}', k], \quad \mathbf{v} := (\mathbf{0}^{\ell}, \mathbf{1}^{m-\ell}),$$

$$\mathbf{x} := (1, 0, \dots, 0), \quad \mathbf{y} := (0, 1, 0, \dots, 0).$$

Proof of approximate independence theorem, part 2 Then

$$\langle \mathbf{v}, M \mathbf{v} \rangle = rac{\mathsf{number of extensions } \omega \text{ of } \mathcal{P}'}{\mathsf{with } \omega_{k-1} = \mathsf{z}.}$$

= $e(\mathcal{P}).$

 $\langle \mathbf{v}, \mathbf{M} \mathbf{x} \rangle =$ number of extensions ω of \mathcal{P}' with $\omega_k = \mathbf{z}$ and $\omega_1 = \mathbf{x}$ $= e(\mathcal{P} - \mathbf{x})$

 $\langle \mathbf{v}, M\mathbf{y} \rangle =$ number of extensions ω of \mathcal{P}' with $\omega_k = z$ and $\omega_1 = \mathbf{y}$ $= e(\mathcal{P} - \mathbf{y}).$ Proof of approximate independence theorem, part 3 And

 $\langle \boldsymbol{x}, \boldsymbol{M} \boldsymbol{y} \rangle =$ number of extensions of \mathcal{P}' with with $\omega_{k+1} = z$ and $\omega_1 = x$ and $\omega_2 = y$ $= e(\mathcal{P} - x - y).$

 $\langle \boldsymbol{v}, \boldsymbol{M} \boldsymbol{v} \rangle \langle \boldsymbol{x}, \boldsymbol{M} \boldsymbol{y} \rangle \leq 2 \langle \boldsymbol{v}, \boldsymbol{M} \boldsymbol{x} \rangle \langle \boldsymbol{v}, \boldsymbol{M} \boldsymbol{y} \rangle$ (2-Ind)

then implies

 $e(\mathcal{P})e(\mathcal{P}-x-y) \leq 2e(\mathcal{P}-x)e(\mathcal{P}-y).$

What we have done

For poset \mathcal{P} with *n* elements, let

$$e(\mathcal{P}) :=$$
 number of linear extensions of \mathcal{P} .

Theorem (Fishburn '84, C.-Pak '22) For distinct minimal elements x, y of \mathcal{P} ,

$$\frac{n}{n-1} \leq \frac{e(\mathcal{P}) e(\mathcal{P}-x-y)}{e(\mathcal{P}-x) e(\mathcal{P}-y)} \leq 2$$

Next episode preview

What we did today

Theorem (Stanley's inequality, simple form) Suppose $k \in \{2, ..., n-1\}$ and $N_k > 0$. Then

$$N_k^2 \geq N_{k+1} N_{k-1},$$

with equality if and only if

$$\begin{split} |\mathcal{P}_{<x}| > k & \text{for all } x \in \mathcal{P}_{>z}, \\ |\mathcal{P}_{>x}| > |\mathcal{P}| - k + 1 & \text{for all } x \in \mathcal{P}_{<z}, \\ \text{where } \mathcal{P}_{<x} := \text{set of } y \in \mathcal{P} & \text{with } y < x. \end{split}$$

The complexity aspect of full version of Stanley's inequality will be discussed in **Day 4**.

SEE YOU NEXT CLASS!

References: www.arxiv.org/abs/2203.01533 www.arxiv.org/abs/2211.16637 Webpage: www.math.rutgers.edu/~sc2518/ Email: sweehong.chan@rutgers.edu