Log-concave Poset Inequalities

Day 3: Stanley’s Poset Inequality
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Partially ordered sets

A poset P is a set X with a partial order < on X.

We denote by n:= |X]| the size of the poset.



Linear extension

A linear extension is a complete order of <.
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Stanley's poset inequality (simple case)
Fix ze P. Let

N number of linear extensions with
k = )
z being k-th smallest.

Theorem (Stanley ‘81)
For every poset P and k € {2,...,n— 1},
N > Niyr N g

The inequality was originally proved using
Aleksandrov-Fenchel inequality for mixed volumes,

in a greater generality.



Stanley's poset inequality: a consequence

Weak Bruhat order on permutation group S, is

) some reduced word of 7 is a left
T < o |
subword of some reduced word of o.

Foro € S, let

number of ™ € S, such that

N, =
7 < o and w(1l) = k.

Corollary

Sequence N{,...,N7 s log-concave.




Stanley's poset inequality (simple case)

Fix z € P. Let

N number of linear extensions with
k = .
z being k-th smallest.

Theorem (Stanley ‘81)
For every poset P and k € {2,...,n— 1},

N > Niyr N g

We will give a new proof using atlas method.



Extension matrix theorem



Linear extensions as words

Each linear extension corresponds to wy - - - w, € X*:

w; 1s i-th smallest element in the extension.

@ :@ :@ :@
@ :@ :@ :@

abcd and acbd are the two linear extensions.



Extension matrix: Definition part 1
Let ke {2,...,n—1}.
Let xq,...,x, be minimal elements of P.

Let x/y1,...,Xn be maximal elements of P.

Extension matrix E[P, k] is m x m matrix where,
for i € [€], j € [m]\ [¢]:
no. of linear extensions w with
(E[P. k)i =
z=wk and x; = wy and x; = wp.
Here i corresponds to a minimal element,
and j corresponds to a maximal element,

and every extension has z as k-th smallest.



Extension matrix: Definition part 2

For distinct 7,/ € [¢]:
no. of lin. extensions w with z = w41

(E[P, K])ij =

and x; = w1 and x; = wo;
no. of lin. extensions w with z = w41

(E[P, k])ii == B .
and x; = wy and w1 < wy in P.

Here i, j corresponds to minimal elements of P, and

every extension has z as (k 4 1)-th smallest.



Extension matrix: Definition part 3

For distinct /,j € [m] \ [¢]:
no. of lin. extensions w with z = wx_1

(E[P, K])ij =

and x; = wp and X; = wp_1;
no. of lin. extensions w with z = wi_1

(E[P, k]),’7,' =

and x; = wp, and wp_1 < wy, in P.

Here i, j corresponds to maximal elements of P, and

every extension has z as (k — 1)-th smallest.



Extension matrix: Example (k = 3)

1 2 1 2
© L0
2 1 1 1
@ © -
(E[P,3])14 = |[{xixezxsxa, xixszxoxa}| =
(E[P,3])12 = |[{xixxzzxe, xixoxazx3}| =
(E[P,3])11 = [{xixsxezxa}| = 1;
(E[P,3])34 = [{xizxaxsxa}| = 1,
(E[P,3])as = |[{xizxsxoxa}| = 1.



Recap: Hyperbolic property

M has hyperbolic property (Hyp) if
(x,My)? > {(x,Mx) (y,My)

for every x € R" and y € R%,.

M satisfies (OPE) if

M has at most one positive eigenvalue.

Lemma (Lemma 3.5 (C.—Pak 22))
M satisfies (Hyp) <= M satisfies (OPE).




Extension matrix theorem

Theorem
For every poset P and k € {2,...,n— 1},

The matrix E[P, k] satisfies (Hyp).

This theorem implies Stanley's inequality.



Extension matrix thm implies Stanley’s inequality

Let

M = E[P, k] x = (1,0, y = (0,1,
Then

(x,My) = Ng, (x,Mx) = Ngi1, (y,My) = Ni_1.

(x,My)? > (x,My) (y,My) (Hyp)
then implies

N7 > Niyg Ni_1.



Extension atlas



Recap: Atlas definition

A combinatorial atlas is a collection of d X d

nonnegative symmetric matrices and vector:
dxd d
Mo, My, ..., My € RZE , hEREO'

My is the parent of the atlas.

My, ..., My are the children of the atlas.

We would want My, ..., M, to satisfy (Hyp).



Extension atlas
Fix t €(0,1) and d:==m and ke {3,...,n—1}.
Extension atlas (My, ..., My, h) is given by

My = tE[P,k] + (1 —1t) E[P, k —1];
M; = E[P —x;, k—1] (i €[d]);

h = (t,....t,1—¢t,....1—1t);
N 7 . ~~ 7
/ m—/
where P —x := poset P with x removed.

We will show that My, ..., M, satisfy (Hyp).



Recap: Children-to-parent principle

Theorem (Theorem 5.2 (C.-Pak 24))
Let atlas (M, ..., Mgy, h) satisfies (Inh), (T-Inv),
(Irr), (h-Pos), (Dec), and (Proj), (K-Non). Then

My, - -, My satisfy (Hyp) = M, satisfies (Hyp)

V.

Thus our strategy becomes:
@ Assume My, ..., My satisfy (Hyp) (induction);
@ Verify (Inh), (T-Inv), ..., (K-Non);
e —> Mj satisfies (Hyp).



Proof of extension matrix theorem



Proof of extension matrix theorem, part 1

We will use induction on n. Base case is n = 3.

Then E[P, k] is reduced to one of these matrices:

= O = O
O = O =
R O R O

All these matrices satisfy (OPE), and thus (Hyp).

o = O =



Proof of extension matrix theorem, part 2

Assume n > 4. Let k € {3,...,n—1}.

Then My, ..., My satisfy (Hyp) by induction.
Children-parent-principle = Mj satisfies (Hyp).
< tE[P, k] + (1 — t) E[P, k — 1] satisfies (Hyp).

o t -1 = E[P, k] satisfies (Hyp),
Thus E[P,3],...,E[P,n— 1] satisfy (Hyp).
et -0 = E[P, k — 1] satisfies (Hyp),
Thus E[P, 2] also satisfies (Hyp). O



What we have shown

Fix z € P. Let

N number of linear extensions with
k = )
z being k-th smallest.

Theorem (Stanley ‘81)
For every poset P and k € {2,...,n—1},

N> > Niyr Neq.




What we have shown

Fix z € P. Let

N number of linear extensions with
k = )
z being k-th smallest.

Theorem (Stanley ‘81)
For every poset P and k € {2,...,n—1},

N> > Niyr Neq.

We will now discuss Stanley's equality problem.



Stanley’s equality problem



Stanley's equality problem

Question (Stanley ‘81)
Find equality condition for [Stanley's inequality].

Quote (Gardner ‘02)
If inequalities are silver currency in mathematics,
those that come along with precise equality

conditions are gold.




Stanley's equality theorem (simple case)

Theorem (Shenfeld-van Handel '23)
Suppose k € {2,...,n—1}and N, > 0. Then

Ng = Nip1 N1
if and only if
| Pex| > k for all x € P,

| Pox| > |P|—k+1 forall xe P,
where P_,:=setof y € P with y < x.

Proof used classifications of extremals of

Aleksandrov-Fenchel inequality for convex polytopes.



Stanley's equality theorem (simple case)

Theorem (Shenfeld-van Handel '23)
Suppose k € {2,...,n—1}and N, > 0. Then

Ng = Nip1 N1
if and only if
| Pex| > k for all x € P,

| Pox| > |P|—k+1 forall xe P,
where P_,:=setof y € P with y < x.

This is a combinatorial condition, and

can be checked in O(n?) steps.



Stanley's equality theorem (simple case)

Theorem (Shenfeld-van Handel '23)
Suppose k € {2,...,n—1}and N, > 0. Then

Ng = Nip1 N1
if and only if
| Pex| > k for all x € P,

| Pox| > |P|—k+1 forall xe P,
where P_,:=setof y € P with y < x.

We will present a new proof using atlas method.



Proving equality conditions using atlas



Hyperbolic equality property

Triplet (M, x,y) € R™" x R" x R" satisfies (H-Equ) if

(x,My)* = (x,Mx) (y,My).



Stanley’s equality and (H-Equ)
Let
M = E[P,k], x =(1°0"", y :=(0°1"").
Then
(x,My) = N, (x;Mx) = Niz1, (y,My) = Ni_1.

N2 = N1 Ny if and only if
<X7M.y>2 = <X7M.y> <y7My> (H-EqU)

Stanley's equality theorem thus reduces

to understanding (H-Equ).



Parent-to-children principle

Theorem (Theorem 7.1 (C.-Pak 24))
Let atlas (M, ..., My, h) satisfies (Inh), (T-Inv),
(Irr), (Proj), (K-Non), and (Hyp). Then
(Mo, x, y) satisfies (H-Equ)
—> (M, x, y) satisfies (H-Equ) if h; > 0.

We will use (H-Equ) for children matrices

to get combinatorial equality condition.



Proof of Stanley’s equality theorem



Stanley's equality theorem (simple case)

Theorem
Suppose k € {2,...,n—1}and N, > 0. Then

N7 = Nyy1 N
if and only if
|Pex| > k for all x € P~,,

| Pox| > |P|l—k+1 forall xe P,
where P, :=setof y € P with y < x.

We will only prove = direction,

as <= direction is straightforward.



Proof of Stanley's equality theorem, part 1

We will use induction on n. Base case is n = 3.
Then there are eleven possibilities for (P, k, z).

Validity of theorem is confirmed for all of them.

For n > 4, we proceed with atlas method.



Proof of Stanley's equality theorem, part 2

Let n>4 and d:=m and k€ {3,...,n—1}.

Our atlas (M, ..., My, h) is given by
Mo = E[P,k];
M, == E[P—x;,k—1] (i €[d]);
h = (1,...,1,0,...,0).
i aaianong

This is extension atlas with t = 1.



Proof of Stanley's equality theorem, part 3

Let x = (1°,0™), y = (0" 1™
Then

N,f = Nij1 Ne_1 implies

(x,Moy)® = (x,Moy) {y.Moy)  (H-Equ).

Parent-children principle then implies,

(x,Miy)*> = (x,Myy) (y,Miy)  (H-Equ)
for all i € [(].



Proof of Stanley's equality theorem, part 4
Recall xi,...,x, are minimal elements of P.
Let PU) := P —x;. Previous slide implies
(N,(('zl)2 = N,((") N,((ilz for all i € [/],
where N,Ei) := number of linear extensions of PU)

with z being k-th smallest.

Induction then implies

PO > PO = (k—1)+1 forall xe P



Proof of Stanley's equality theorem, part 5
Thus, for x € P_,,

| Poxl| = |73(>'2< | (minimality of x;)
> [P —(k—=1)+1 (previous slide)
= |P|-k+1 (as P .= P —x))

Hence we conclude
| Pox| >|P|—k+1 forall xeP_,.
Applying analogous dual argument,

| Pex | > k forall xeP.,. O



What we have shown

Theorem
Suppose k € {2,...,n—1}and Ny > 0. Then

N7 = Niy1 Ni_y
if and only if
| Px | > k for all x € P,

| Pox| > |P|—k+1 forall xe Py,
where P, :=setof y € P with y < x.




Approximate independence



Approximate independence for matchings

For graph G, let

m(G) := number of matchings of G.

Theorem (Kahn '00)

For distinct vertices x,y of G,

1 m(G) m(G—x—y)
2 S mG_x)mG_y) = *

Quote (Kahn ‘00)

While we cannot expect exact independence, we do

have considerable approximate independence.




Approximate independence for matroids

For matroid M, let

B(M) := number of bases of M.

Theorem (Huh—Schroter-Wang ‘22)

For distinct elements x,y of M,
BOW) B —x—y)
B(M —x) B(M —y) —

None of the known matroids have

i 8
ratios larger than =.



Approximate independence for extensions

For poset P with n elements, let
e(P) := number of linear extensions of P.

Theorem (Fishburn ‘84, C.-Pak ‘22)

For distinct minimal elements x,y of P,

n e(P) e(P—x—y)
n—1 = e(P —x) e(P —y) s 2

Lower bound was proved by FKG inequality,

and is tight for antichains.



Approximate independence for extensions

For poset P with n elements, let
e(P) := number of linear extensions of P.

Theorem (Fishburn ‘84, C.-Pak ‘22)

For distinct minimal elements x,y of P,

n e(P) e(P—x—y)
n—1 = e(P —x) e(P —y) s 2

Upper bound was proved by atlas method,

and is tight for antichains of two elements.



Proof of approximate independence
for extensions (upper bound)



A consequence of (Hyp)

Lemma (Lemma 5.5, C.-Pak ‘22)
Let M be a matrix that satisfies (Hyp). Then, for

all nonnegative vectors v, X, y,

(v.Mv){x,My) < 2(v.Mx)(v,My). (2-Ind)




Proof of approximate independence theorem, part 1
Let P’ :=P + z, where z is incomparable
to all other elements of P.
Let x1,...,Xx; be minimal elements of P’

W.log x=x and y=x and ke {2,...,n—1}.

Set
M = E[P k], v = (0,1,
x = (1,0,...,0), y = (0,1,0...,0).



Proof of approximate independence theorem, part 2
Then

number of extensions w of P’

<V7MV> — .
with wy_1=z.

= e(P).

(v,Mx) = number of extensions w of P’
) - Wlth W =2Z and W1 = X

= e(P — x)
(v,My) number of extensions w of P’
v.My) =

with wy =z and w; =y

= e(P—vy).



Proof of approximate independence theorem, part 3

And
number of extensions of P’ with

<X7My> = .
with wx 1 =z and wy = x and wy, =y

= e(P—x—y).

(v,.Mv)(x,My) < 2(v,Mx)(v,My) (2-Ind)
then implies

e(P)e(P—x—y) < 2e(P—x)e(P—-y). O



What we have done

For poset P with n elements, let

e(P) := number of linear extensions of P.

Theorem (Fishburn ‘84, C.-Pak ‘22)

For distinct minimal elements x,y of P,

n e(P) e(P—x—y)
n—1 = e(P —x) e(P —y) = 2




Next episode preview



What we did today

Theorem (Stanley's inequality, simple form)
Suppose k € {2,...,n—1}and Ny > 0. Then

Ng > Nisx N,
with equality if and only if
| Pex| > k for all x € P,

| Pox| > |P|—k+1 forall xe P,
where P_y:=setof y € P with y < x.

The complexity aspect of full version of Stanley’s

inequality will be discussed in Day 4.



SEE YOU NEXT CLASS!
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