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Partially ordered sets

A poset P is a set X with a partial order ≺ on X .
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We denote by n := |X | the size of the poset.



Linear extension

A linear extension is a complete order of ≺.
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Stanley’s poset inequality (simple case)
Fix z ∈ P . Let

Nk :=
number of linear extensions with

z being k-th smallest.

Theorem (Stanley ‘81)
For every poset P and k ∈ {2, . . . , n − 1} ,

Nk
2 ≥ Nk+1Nk−1.

The inequality was originally proved using

Aleksandrov-Fenchel inequality for mixed volumes,

in a greater generality.



Stanley’s poset inequality: a consequence

Weak Bruhat order on permutation group Sn is

π � σ if
some reduced word of π is a left

subword of some reduced word of σ.

For σ ∈ Sn, let

Nσ
k :=

number of π ∈ Sn such that

π � σ and π(1) = k .

Corollary
Sequence Nσ

1 , . . . ,N
σ
n is log-concave.



Stanley’s poset inequality (simple case)

Fix z ∈ P . Let

Nk :=
number of linear extensions with

z being k-th smallest.

Theorem (Stanley ‘81)
For every poset P and k ∈ {2, . . . , n − 1} ,

Nk
2 ≥ Nk+1Nk−1.

We will give a new proof using atlas method.



Extension matrix theorem



Linear extensions as words

Each linear extension corresponds to ω1 · · ·ωn ∈ X ∗:

ωi is i -th smallest element in the extension.
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abcd and acbd are the two linear extensions.



Extension matrix: Definition part 1

Let k ∈ {2, . . . , n − 1} .
Let x1, . . . , xℓ be minimal elements of P .

Let xℓ+1, . . . , xm be maximal elements of P .

Extension matrix E[P , k] is m ×m matrix where,

for i ∈ [ℓ], j ∈ [m] \ [ℓ]:

(E[P , k])i ,j :=
no. of linear extensions ω with

z = ωk and xi = ω1 and xj = ωn.

Here i corresponds to a minimal element,

and j corresponds to a maximal element,

and every extension has z as k-th smallest.



Extension matrix: Definition part 2

For distinct i , j ∈ [ℓ] :

(E[P , k])i ,j :=
no. of lin. extensions ω with z = ωk+1

and xi = ω1 and xj = ω2;

(E[P , k])i ,i :=
no. of lin. extensions ω with z = ωk+1

and xi = ω1 and ω1 ≺ ω2 in P .

Here i , j corresponds to minimal elements of P , and

every extension has z as (k + 1)-th smallest.



Extension matrix: Definition part 3

For distinct i , j ∈ [m] \ [ℓ] :

(E[P , k])i ,j :=
no. of lin. extensions ω with z = ωk−1

and xi = ωn and xj = ωn−1;

(E[P , k])i ,i :=
no. of lin. extensions ω with z = ωk−1

and xi = ωn and ωn−1 ≺ ωn in P .

Here i , j corresponds to maximal elements of P , and

every extension has z as (k − 1)-th smallest.



Extension matrix: Example (k = 3)

x1 x2

x3 x4

z




1 2 1 2
2 1 1 1
1 1 0 1
2 1 1 1




E[P, 3]

(E[P , 3])1,4 := |{x1x2zx3x4, x1x3zx2x4}| = 2;

(E[P , 3])1,2 := |{x1x2x3zx4, x1x2x4zx3}| = 2;

(E[P , 3])1,1 := |{x1x3x2zx4}| = 1;

(E[P , 3])3,4 := |{x1zx2x3x4}| = 1;

(E[P , 3])4,4 := |{x1zx3x2x4}| = 1.



Recap: Hyperbolic property

M has hyperbolic property (Hyp) if

⟨x ,My⟩2 ≥ ⟨x ,Mx⟩ ⟨y ,My⟩
for every x ∈ Rr and y ∈ Rr

≥0.

M satisfies (OPE) if

M has at most one positive eigenvalue.

Lemma (Lemma 3.5 (C.–Pak 22))
M satisfies (Hyp) ⇐⇒ M satisfies (OPE).



Extension matrix theorem

Theorem
For every poset P and k ∈ {2, . . . , n − 1} ,

The matrix E[P , k] satisfies (Hyp).

This theorem implies Stanley’s inequality.



Extension matrix thm implies Stanley’s inequality

Let

M := E[P , k] x := (1ℓ, 0m−ℓ), y := (0ℓ, 1m−ℓ).

Then

⟨x ,My⟩ = Nk , ⟨x ,Mx⟩ = Nk+1, ⟨y ,My⟩ = Nk−1.

⟨x ,My⟩2 ≥ ⟨x ,My⟩ ⟨y ,My⟩ (Hyp)

then implies

N2
k ≥ Nk+1Nk−1.



Extension atlas



Recap: Atlas definition

A combinatorial atlas is a collection of d × d

nonnegative symmetric matrices and vector:

M0,M1, . . . ,Md ∈ Rd×d
≥0 , h ∈ Rd

≥0.

M0 is the parent of the atlas.

M1, . . . ,Md are the children of the atlas.

We would want M0, . . . ,Md to satisfy (Hyp).



Extension atlas

Fix t ∈ (0, 1) and d := m and k ∈ {3, . . . , n − 1} .

Extension atlas (M0, . . . ,Md ,h) is given by

M0 := t E[P , k] + (1− t) E[P , k − 1];

Mi := E[P −xi , k − 1] (i ∈ [d ]);

h := (t, . . . , t︸ ︷︷ ︸
ℓ

, 1− t, . . . , 1− t︸ ︷︷ ︸
m−ℓ

);

where P −x := poset P with x removed.

We will show that M0, . . . ,Md satisfy (Hyp).



Recap: Children-to-parent principle

Theorem (Theorem 5.2 (C.-Pak 24))
Let atlas (M0, . . . ,Md ,h) satisfies (Inh), (T-Inv),

(Irr), (h-Pos),
�
���H
HHH

(Dec), and (Proj), (K-Non). Then

M1, · · · ,Md satisfy (Hyp) =⇒ M0 satisfies (Hyp).

Thus our strategy becomes:

Assume M1, . . . ,Md satisfy (Hyp) (induction);

Verify (Inh), (T-Inv), . . . , (K-Non);

=⇒ M0 satisfies (Hyp).



Proof of extension matrix theorem



Proof of extension matrix theorem, part 1

We will use induction on n. Base case is n = 3.

Then E[P , k] is reduced to one of these matrices:

[1] ,

[
0 1

1 0

]
,

[
1 1

1 0

]
,

[
1 1

1 1

]
,

[
0 1 1

1 0 0

1 0 0

]
,



0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0


 .

All these matrices satisfy (OPE), and thus (Hyp).



Proof of extension matrix theorem, part 2

Assume n ≥ 4. Let k ∈ {3, . . . , n − 1} .

Then M1, . . . ,Md satisfy (Hyp) by induction.

Children-parent-principle =⇒ M0 satisfies (Hyp).

⇐⇒ t E[P , k] + (1− t)E[P , k − 1] satisfies (Hyp).

t → 1 =⇒ E[P , k] satisfies (Hyp),

Thus E[P , 3], . . . ,E[P , n − 1] satisfy (Hyp).

t → 0 =⇒ E[P , k − 1] satisfies (Hyp),

Thus E[P , 2] also satisfies (Hyp).



What we have shown

Fix z ∈ P . Let

Nk :=
number of linear extensions with

z being k-th smallest.

Theorem (Stanley ‘81)
For every poset P and k ∈ {2, . . . , n − 1} ,

Nk
2 ≥ Nk+1Nk−1.

We will now discuss Stanley’s equality problem.



What we have shown

Fix z ∈ P . Let

Nk :=
number of linear extensions with

z being k-th smallest.

Theorem (Stanley ‘81)
For every poset P and k ∈ {2, . . . , n − 1} ,

Nk
2 ≥ Nk+1Nk−1.

We will now discuss Stanley’s equality problem.



Stanley’s equality problem



Stanley’s equality problem

Question (Stanley ‘81)
Find equality condition for [Stanley’s inequality ].

Quote (Gardner ‘02)
If inequalities are silver currency in mathematics,

those that come along with precise equality

conditions are gold.



Stanley’s equality theorem (simple case)

Theorem (Shenfeld-van Handel ’23)
Suppose k ∈ {2, . . . , n − 1}and Nk > 0 . Then

N2
k === Nk+1Nk−1

if and only if

| P<x | > k for all x ∈ P>z ,

| P>x | > | P | − k + 1 for all x ∈ P<z ,

where P<x := set of y ∈ P with y < x .

Proof used classifications of extremals of

Aleksandrov-Fenchel inequality for convex polytopes.



Stanley’s equality theorem (simple case)

Theorem (Shenfeld-van Handel ’23)
Suppose k ∈ {2, . . . , n − 1}and Nk > 0 . Then

N2
k === Nk+1Nk−1

if and only if

| P<x | > k for all x ∈ P>z ,

| P>x | > | P | − k + 1 for all x ∈ P<z ,

where P<x := set of y ∈ P with y < x .

This is a combinatorial condition, and

can be checked in O(n2) steps.



Stanley’s equality theorem (simple case)

Theorem (Shenfeld-van Handel ’23)
Suppose k ∈ {2, . . . , n − 1}and Nk > 0 . Then

N2
k === Nk+1Nk−1

if and only if

| P<x | > k for all x ∈ P>z ,

| P>x | > | P | − k + 1 for all x ∈ P<z ,

where P<x := set of y ∈ P with y < x .

We will present a new proof using atlas method.



Proving equality conditions using atlas



Hyperbolic equality property

Triplet (M , x , y) ∈ Rr×r × Rr × Rr satisfies (H-Equ) if

⟨x ,My⟩2 = ⟨x ,Mx⟩ ⟨y ,My⟩.



Stanley’s equality and (H-Equ)

Let

M := E[P , k], x := (1ℓ, 0m−ℓ), y := (0ℓ, 1m−ℓ).

Then

⟨x ,My⟩ = Nk , ⟨x ,Mx⟩ = Nk+1, ⟨y ,My⟩ = Nk−1.

N2
k = Nk+1Nk−1 if and only if

⟨x ,My⟩2 = ⟨x ,My⟩ ⟨y ,My⟩ (H-Equ).

Stanley’s equality theorem thus reduces

to understanding (H-Equ).



Parent-to-children principle

Theorem (Theorem 7.1 (C.-Pak 24))
Let atlas (M0, . . . ,Md ,h) satisfies (Inh), (T-Inv),

(Irr), (Proj), (K-Non), and (Hyp). Then

(M0, x , y) satisfies (H-Equ)

=⇒ (Mi , x , y) satisfies (H-Equ) if hi > 0.

We will use (H-Equ) for children matrices

to get combinatorial equality condition.



Proof of Stanley’s equality theorem



Stanley’s equality theorem (simple case)

Theorem
Suppose k ∈ {2, . . . , n − 1}and Nk > 0 . Then

N2
k === Nk+1Nk−1

if and only if

| P<x | > k for all x ∈ P>z ,

| P>x | > | P | − k + 1 for all x ∈ P<z ,

where P<x := set of y ∈ P with y < x .

We will only prove =⇒ direction,

as ⇐= direction is straightforward.



Proof of Stanley’s equality theorem, part 1

We will use induction on n. Base case is n = 3.

Then there are eleven possibilities for (P , k , z).

Validity of theorem is confirmed for all of them.

For n ≥ 4, we proceed with atlas method.



Proof of Stanley’s equality theorem, part 2

Let n ≥ 4 and d := m and k ∈ {3, . . . , n − 1} .

Our atlas (M0, . . . ,Md ,h) is given by

M0 := E[P , k];

Mi := E[P −xi , k − 1] (i ∈ [d ]);

h := (1, . . . , 1︸ ︷︷ ︸
ℓ

, 0, . . . , 0︸ ︷︷ ︸
m−ℓ

).

This is extension atlas with t = 1.



Proof of Stanley’s equality theorem, part 3

Let x := (1ℓ, 0m−ℓ), y := (0ℓ, 1m−ℓ).

Then

N2
k = Nk+1Nk−1 implies

⟨x ,M0y⟩2 = ⟨x ,M0y⟩ ⟨y ,M0y⟩ (H-Equ).

Parent-children principle then implies,

⟨x ,Miy⟩2 = ⟨x ,Miy⟩ ⟨y ,Miy⟩ (H-Equ)

for all i ∈ [ℓ] .



Proof of Stanley’s equality theorem, part 4

Recall x1, . . . , xℓ are minimal elements of P .

Let P (i) := P −xi . Previous slide implies

(N
(i)
k−1)

2 = N
(i)
k N

(i)
k−2 for all i ∈ [ℓ],

where N
(i)
k := number of linear extensions of P (i)

with z being k-th smallest.

Induction then implies

| P (i)
>x | > | P (i) | − (k − 1) + 1 for all x ∈ P (i)

<z .



Proof of Stanley’s equality theorem, part 5

Thus, for x ∈ P<z ,

| P>x | = | P (i)
>x | (minimality of xi)

> | P (i) | − (k − 1) + 1 (previous slide)

= | P | − k + 1. (as P (i) := P −xi)

Hence we conclude

| P>x | > | P | − k + 1 for all x ∈ P<z .

Applying analogous dual argument,

| P<x | > k for all x ∈ P>z .



What we have shown

Theorem
Suppose k ∈ {2, . . . , n − 1}and Nk > 0 . Then

N2
k === Nk+1Nk−1

if and only if

| P<x | > k for all x ∈ P>z ,

| P>x | > | P | − k + 1 for all x ∈ P<z ,

where P<x := set of y ∈ P with y < x .



Approximate independence



Approximate independence for matchings

For graph G , let

m(G ) := number of matchings of G .

Theorem (Kahn ‘00)
For distinct vertices x , y of G ,

1

2
≤ m(G ) m(G − x − y)

m(G − x) m(G − y)
≤ 2.

Quote (Kahn ‘00)
While we cannot expect exact independence, we do

have considerable approximate independence.



Approximate independence for matroids

For matroid M, let

B(M) := number of bases of M.

Theorem (Huh–Schröter–Wang ‘22)
For distinct elements x , y of M ,

B(M) B(M− x − y)

B(M− x) B(M− y)
≤ 2

(
1− 1

d

)
.

None of the known matroids have

ratios larger than 8
7 .



Approximate independence for extensions

For poset P with n elements, let

e(P) := number of linear extensions of P .

Theorem (Fishburn ‘84, C.-Pak ‘22)
For distinct minimal elements x , y of P ,

n

n − 1
≤ e(P) e(P −x − y)

e(P −x) e(P −y)
≤ 2.

Lower bound was proved by FKG inequality,

and is tight for antichains.



Approximate independence for extensions

For poset P with n elements, let

e(P) := number of linear extensions of P .

Theorem (Fishburn ‘84, C.-Pak ‘22)
For distinct minimal elements x , y of P ,

n

n − 1
≤ e(P) e(P −x − y)

e(P −x) e(P −y)
≤ 2.

Upper bound was proved by atlas method,

and is tight for antichains of two elements.



Proof of approximate independence

for extensions (upper bound)



A consequence of (Hyp)

Lemma (Lemma 5.5, C.-Pak ‘22)
Let M be a matrix that satisfies (Hyp). Then, for

all nonnegative vectors v , x , y ,

⟨v ,Mv⟩⟨x ,My⟩ ≤ 2 ⟨v ,Mx⟩ ⟨v ,My⟩. (2-Ind)



Proof of approximate independence theorem, part 1

Let P ′ := P + z , where z is incomparable

to all other elements of P .

Let x1, . . . , xℓ be minimal elements of P ′.

W.l.o.g. x = x1 and y = x2 and k ∈ {2, . . . , n − 1}.

Set

M := E[P ′, k], v := (0ℓ, 1m−ℓ),

x := (1, 0, . . . , 0), y := (0, 1, 0 . . . , 0).



Proof of approximate independence theorem, part 2
Then

⟨v ,Mv⟩ =
number of extensions ω of P ′

with ωk−1=z.

= e(P).

⟨v ,Mx⟩ =
number of extensions ω of P ′

with ωk = z and ω1 = x

= e(P − x)

⟨v ,My⟩ =
number of extensions ω of P ′

with ωk = z and ω1 = y

= e(P − y).



Proof of approximate independence theorem, part 3

And

⟨x ,My⟩ =
number of extensions of P ′ with

with ωk+1 = z and ω1 = x and ω2 = y

= e(P − x − y).

⟨v ,Mv⟩⟨x ,My⟩ ≤ 2 ⟨v ,Mx⟩ ⟨v ,My⟩ (2-Ind)

then implies

e(P)e(P − x − y) ≤ 2e(P − x)e(P − y).



What we have done

For poset P with n elements, let

e(P) := number of linear extensions of P .

Theorem (Fishburn ‘84, C.-Pak ‘22)
For distinct minimal elements x , y of P ,

n

n − 1
≤ e(P) e(P −x − y)

e(P −x) e(P −y)
≤ 2.



Next episode preview



What we did today

Theorem (Stanley’s inequality, simple form)
Suppose k ∈ {2, . . . , n − 1}and Nk > 0 . Then

N2
k ≥ Nk+1Nk−1,

with equality if and only if

| P<x | > k for all x ∈ P>z ,

| P>x | > | P | − k + 1 for all x ∈ P<z ,

where P<x := set of y ∈ P with y < x .

The complexity aspect of full version of Stanley’s

inequality will be discussed in Day 4.



SEE YOU NEXT CLASS!
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