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Recap: Matroids
Matroid M = (X, Z) is ground set X with
collection of independent sets Z C 2%,

Graphical matroids
@ X = edges of a graph G,

@ 7 = forestsin G.

Realizable matroids

@ X = finite set of vectors over field F,
sets of linearly independent vectors.

ol =



Recap: Axioms of matroids

@ (Hereditary) SC T and T € Z implies S € Z.
L —~
T s

@ (Exchange) If S, T € Z and |S| < |T]|, then
there is x € T \ S such that SU {x} € Z.
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Recap: Mason's Conjecture (1972)
Let M = (X,Z) be a matroid, and let n = |X].

ar .= no. of independent sets of size k.

It was conjectured that, for 0 < k < n:

(1) ak® > aks1 a-1;
(2) a® > (1+ 1)akss ak—1;

(3) ak2 > (1 + %) (1 -+ ﬁ) k41 Ak—1-

We previously proved Mason (2)
for graphic matroids in Day 1.



Proof of Mason (2)
for all matroids



Independent words

A word w = wy - - -wk € X* is a independent word if

{wi,...,wk} is an independent set.

el X4 |es
€2

ere36 and ejeye3 are independent words of M.

ereey and ereqer are NOT independent words.



Independent matrix (for Mason (2))
Let X ={xq,...,x,} and 0 < k < n.

Independent matrix I,[M, k] is (n+ 1) x (n+ 1)

matrix where, for i,j € [n]:

no. of ind. words of length k +1

starts with x;, ends with x;

(LM K])ij =

no. of ind. words of length k
I M, kl)in = ,
(Ta] Dinia starts with x;

no. of ind. words of length

LM, k|)pi10e1 =
(AT PR



Example: Independent matrix, k = 2

0111 3

€4 102 1 3
€1 €3 120 2 3
112 0 3

€2 3 3 3 3 4
G I, Mg, 2]

(I[Mg,2])23 = {eeres, exae} = 2;
(I[Mg,2])2s = |{eer, &3, &es}| = 3;
(IL[Mg,2])s5 == |{e1, &, €3, &a}| = 4.



Recap: Hyperbolic property

M has hyperbolic property (Hyp) if
(x,My)? > {(x,Mx) (y,My)

for every x € R" and y € R%,.

M satisfies (OPE) if

M has at most one positive eigenvalue.

Lemma (Lemma 3.5 (C.—Pak 22))
M satisfies (Hyp) <= M satisfies (OPE).




Independent matrix theorem

Theorem
For every matroid M and 0 < k < n,

The matrix 1,[M, k] satisfies (Hyp).

This theorem implies Mason (2).



Independent matrix theorem implies Mason (2)
Let
M = LV K, x = (1,...,1,0), y := (0,...,0,1).
Then
(x,My) = klax, (x,Mx) = (k+ 1)ak1,
(y,My) = (k—1)lax_;.

(x,My)* > (x,My) (y,My) (Hyp)
then implies

a, > (1+ %) a1 ak1.



Independent atlas



Recap: Atlas definition

A combinatorial atlas is a collection of d X d

nonnegative symmetric matrices and vector:
dxd d
Mo,Ml,...,MdGRZS, hEREO'
My is the parent of the atlas.

My, ..., My are the children of the atlas.

We would want My, ..., My to satisfy hyperbolic
property.



Matroid contraction

The contraction of element x € X of matroid M
is matroid M/x := (X’,Z") where

X = X\{x};, T = {SCX :Su{x}eTl}

-




Matroid: loops and parallel elements
A loop is x € X such that {x} ¢ Z.

Non-loops x,y € X are parallel if {x,y} ¢ Z.

A matroid is simple if it has

no loops and parallel elements.



Independent atlas

Fix t € (0,1) and d:=n+1 and 2 < k < n.

Independent atlas (My, ..., My, h) is given by
Mo = t LM, k] + (1 —1t) LM, k —1];
M; = LIM/x, k—1] (i € [n]);
My = LM, k—1];
h = (t,...,t,1—1t),

We will show that My, ..., M, satisfy (Hyp).



Recap: Children-to-parent principle

Theorem (Theorem 3.4 (C.-Pak 22))
Let atlas (M, ..., Mgy, h) satisfies (Inh), (T-Inv),
(Dec), (Irr), and (h-Pos). Then

My, - -, My satisfy (Hyp) = M, satisfies (Hyp)

V.

Thus our strategy becomes:
@ Assume My, ..., My satisfy (Hyp) (induction);
@ Verify (Inh), (T-Inv), (Dec), (Irr), (h-Pos);
e —> Mj satisfies (Hyp).



Proof of independent matrix theorem



Proof of independent matrix theorem

We will use induction on k. Base case is k = 1.

W.l.o.g. M has no loops or parallel elements. Then

0 1 a
10 - 1
IZ[Mv 1] - D
11 1
- 1 ’ -

is d x d matrix with eigenvalues approximately

d—1+4 44, —-1,...,-1, —-4,

so Ip[M, 1] satisfies (OPE), and thus (Hyp).



Proof of independent matrix theorem

Assume k > 2.

Then My, ..., My satisfy (Hyp) by induction.
Children-parent-principle = Mj satisfies (Hyp).
< t [L[M, k] + (1 — t) Io[M, k — 1] satisfies (Hyp).

t -1 = DL[M, k] satisfies (Hyp). O



Recap complete

Let M = (X,Z) be a matroid, and let n = |X].
ax = no. of independent sets of size k.
We have shown Mason (2):

a’ > (1 + %)akﬂ ak—1.



Recap complete

Let M = (X,Z) be a matroid, and let n = |X].
ax = no. of independent sets of size k.
We have shown Mason (2):

a’ > (1 + %)akﬂ ak—1.

We now show how to improve to Mason (3):

ak2 > (1 + %) (1 + ﬁ)ak_Fl ak_1.



Which part of proof can be improved?



Looking back to our proof

Recall the d x d matrix:

0 1 |
10 |
LM, 1] = :
11 1 1]

satisfies (OPE) with eigenvalues approximately:

d—1+4 2, —1,...,-1, —-,

There are rooms for improvements here!



Room for improvement

Changing I;[M, 1] to d x d matrix:

o1 .-~ 1 1

1 0 --- 1 1
-0 1

| 1 1+€_

has eigenvalues approximately
d—1+4 25 —-0(e),-1,...,-1, -2 + O(e),
still satisfies (OPE) for small € and implies

a’ > (1 + %) (1 + e)ak+1 ak1 (k=1).



Independent matrix (3)

Independent matrix I3[M, k] is (n+ 1) x (n+ 1)
matrix where, for i,j € [n]:
no. of ind. words of
(I[M, k])ij == (n— k —1)! length k + 1, starts
with x;, ends with x;;
no. of ind. words of

I M, k i,n = (n—k)!
( 3[ ])’ +1 ( ) Iength k, starts with x;:

no. of ind. words
I3[M, k) ps1ne1 = (n— k+1)!
(L [M Kras 2= ( +1) of length k — 1.



Independent matrix theorem (3)

Theorem
For every matroid M and 0 < k < n,

The new matrix 15[M, k] satisfies (Hyp).

This improved theorem implies Mason (3).



Independent matrix theorem (3) implies Mason (3)
M = LMK, x = (1,...,1,0), y = (0,...,0,1).
Then

(x,My) = k!'(n— k)!a;
,Mx) = (k+ 1)1 (n—k —1)!api1;
(yMy) = (k—1)!.(n—k+1)la .

(x,My)* > (x,My) (y,My) (Hyp)

then implies

ap > (14+1) (14 -2) a1 a1



Proof of Mason (3)

independent matrix theorem



Proof of independent matrix theorem (3)

Let k =1. W.l.o.g. M is simple matroid.
Then L;[M, 1] is (n+1) x (n+ 1) matrix:

[ o (n=2)1 - n—2) (n—1)]
(n—2)! 0 (n—=2)1 (n—1)!
Ig[M,l] = :
n—2) (n—2)! 0 (n—1)!
[ (n—=1)! (n—=1)! - (n—1) nt |

The eigenvalues are
(n+1)(n—1)10,—(n—=2),..., —(n—2)!.
so I3[M, 1] satisfies (OPE), and thus (Hyp).




Proof of independent matrix theorem (3)

Assume k > 2.

Fix t € (0,1) and d:=n+1 and 2 < k < n.
Independent atlas (M, ..., My, h) is given by
My = t LM, k] + (1—1t) I[M, k—1];
M = Ls[M/x, k —1] (i € [n]);
My = LM, k—1];
h = (t,...,t,1—1t),

The definition of this atlas does not change.



Proof of independent matrix theorem (3)

Then My, ..., My satisfy (Hyp) by induction.
Children-parent principle = Mj satisfies (Hyp).
< t3[M, k] + (1 — t) I3[, k — 1] satisfies (Hyp).

t -1 = I3[M, k| satisfies (Hyp). O

This part of the proof does not change.



What we have shown

Let M = (X,Z) be a matroid, and let n = |X].

ax = no. of independent sets of size k.

Theorem (Mason (3))

ak2 > (1 + %) (1 + ﬁ)akﬂ dk—1.




What we have shown

Let M = (X,Z) be a matroid, and let n = |X].

ax = no. of independent sets of size k.

Theorem (Mason (3))

ak2 > (1 + %) (1 + ﬁ)akﬂ dk—1.

Next we show that this inequality can be

improved even further.



Mason (4) for graphical matroids



Mason (4) for graphical matroids

Theorem (C.-Pak)

For graphical matroid of connected graph
G=(V,E), and k= |V|-2,

3 1
(a/@)2 > 5 (1 =+ E) dy+1dr—1-

Numerically better than Mason (3), because

S T T !
2 = n—k |E| — V] +2

for G that is not tree.




Comparison with Mason (3)

Mason (4) gives

2
(@) > 3 when |E| — |V| — oo,
di+1 dr—1 2

Meanwhile, Mason (3) only gives

—(a“)z > 1

when |E| — |V| — 0.
di+1 dr—1

New bound is better numerically and asymptotically.

We will prove Mason (4) today using atlas method.



Which part of proof can be further improved?



Room for further improvement

Recall (n+1) x (n+ 1) matrix:

0 (n=2)1 -+ (n—2) (n—1)!
(n—2)! 0 oo (n=2)1 (n=1)!
I3[M, 1] = : : : :
n—2) (n—2)! 0 (n—1)!
[ (n—1)! (n—1)! (n—=1)! nl
has eigenvalues
(n+1)(n—=1)10,—(n—=2),..., —(n—2)!.

No room for improvement for general matroids.

But such matrix never occurs for graphic matroids.



Independent matrix for graphic Mason (4)
Let E={e1,...,e,} and K = |V]| —2.

Independent matrix I;[Mg, ] is (n+ 1) x (n+ 1)

matrix where, for i,j € [n]:

no. of ind. words of length x + 1
(LM, K])ij = . . s ;
starts with e;, ends with ¢;

no. of ind. words of length
I, M ,Kl)in = ;
(LM, m)ins starts with ¢;

3 no. of ind. words of

LMe, k) ns1ne1 = = X
N 2 length x — 1



Independent matrix theorem (4)

Theorem
For every graph G = (V,E) and k = |V| — 2,

The new matrix 1,[Mg, k| satisfies (Hyp).

This improved theorem implies graphic Mason (4).



Ind. matrix theorem (4) implies graphic Mason (4)
M = L[M¢, ], x:=(1,...,1,0), y:=(0,...,0,1).
Then

(x,My) = kla,; (y,My) = (k—1)a,_1;
(x,Mx) = 3(k+ 1) ax1.

(x,My)?> > (x,My) (y,My) (Hyp)
then implies

ap > % (1 + %) ak+13k-1-



Proof of independent matrix theorem (4)



Proof of independent matrix theorem (4)
We prove by induction on |V/|. Let |V| = 3.
W.lo.g G = (V,E) is simple graph.

Then n = |E| < 3, and L[Mg, K] is

01 1 1

011 1 01 1
either |1 0 1| or

s 110 1

113 3

111 3

The eigenvalues are
(2.69,—1,-0.19) or (£,0,—1,-1)
so 14[Mg, ] satisfies (OPE), and thus (Hyp).



Proof of independent matrix theorem (4)

Assume |V| > 4.

Fix t € (0,1) and d:=|E|+ 1 and k:=|V|—2.
Independent atlas (My, ..., My, h) is given by
My = t L[Meg, k] + (1 —1t) Io[Mg, x —1];
M; = L[Mge, s —1] (1 <i < |EJ);
My = L[Mg,r —1];
h = (¢t,...,t,1—1t),



Proof of independent matrix theorem (4)

Then My, ..., My satisfy (Hyp) by induction.
Children-parent principle = Mj satisfies (Hyp).
< t1I[Mg, k] + (1 — t) L[Mg, k — 1] satisfies (Hyp).

t -1 = L[Mg, k] satisfies (Hyp). O

This part of the proof does not change.



What we have shown

Theorem (C.-Pak ‘24)

For graphical matroid of simple connected graph
G=(V,E), and k= |V|-2,

3 1
(aK)2 > 5 <]- + ;) dy+1dx—1,

with equality if and only if G is a cycle graph.

Naturally, this improvement can be generalized

to all matroids (next slide).



Mason (4) for all matroids



Parallel classes
A loop is x € X such that {x} ¢ Z.
Non-loops x,y € X are parallel if {x,y} ¢ Z.

Parallel equivalence relation: x ~y if {x,y} ¢ Z.

Parallel class = equivalence class of ~.



Parallel number
Contraction of S € Z is matroid Ms := (Xs, Zs):
Xs = X\ S, IZs = {T\S:SCT}.
For S € Z, the parallel number is

prl(S) := number of parallel classes of Ms

= no. of elements of M not counting multiplicity.

prl(S) =5



Parallel constant

The k-th parallel constant is
p[M, k] = max{prl(S) | S € T with |S| = k}.

NN N K
&&NB

p[M, 1] =



Mason (4)

Theorem (Thm 1.10, C.-Pak ‘24)
For matroid M and 0 < k < n,

1 1
2> (1+2) (1 1.
o > (145) (4 ey —) oo

This refines Mason (3),

1 1
a’ > (1 + E) (1 + m) Ak+1 k-1,

since

v

pIM, k—1] < n—k+1.



Improvement for different matroids

@ For all matroids,
a’ > (1 + %) (1 + ﬁ) A+l Ak—_1-
@ Graphical matroids and k = |V| — 2,
a®> > (1+ %) 2 ake1 a1
@ Realizable matroids over [,
a? > (1+ %) (1+ m) Ak+13k—1-
@ (k, m, n)-Steiner system matroid,

a® > (14 7) =5 arig a1




Mason (4)

Theorem (Thm 1.10, C.-Pak ‘24)
For matroid M and 0 < k < n,

1 1
2> (1+2)(1 1.
aK- 2> ( +k)( +p[M)k_1]_1)ak+lak 1

v

Naturally, we have matching equality conditions

for this inequality.



When is equality achieved?

@ When M is free matroid, i.e. every subset of X

is independent;

@ When M is graphical matroid, with
G = cycle graph and k = |V| — 2;

@ When M is realizable matroid, with

X = {every m-dimensional vector over [}
@ When M is Steiner system matroid,;

@ - (running out of space) - -----



Equality conditions for Mason (4)
Theorem (Thm 1.10, C.-Pak ‘24)

For matroid M and 0 < k < n,
a’ = (1 + ) (1 + p[Mk—l_l]_l) Aki1 dk-1
if and only if for all S € T with |S| =k — 1,
@ Ms has p[M, k — 1] parallel classes; and

@ Every parallel class of Ms has same size.




Equality conditions for Mason (4)
Theorem (Thm 1.10, C.-Pak ‘24)

For matroid M and 0 < k < n,
a’ = (1 + ) (1 + p[Mk—l—l]—l) Aki1 dk-1
if and only if for all S € T with |S| =k — 1,
@ Ms has p[M, k — 1] parallel classes; and

@ Every parallel class of Ms has same size.

Quote (Dr. Strangelove '64)
How | Learned to Stop Worrying and Love
[Convoluted Equality Conditions].




Other applications of combinatorial atlas

We get log-concave inequalities and

matching equality conditions for:

@ Mason's inequality (refined) Day 1-2;

@ Morphism of matroids (refined);

@ Discrete polymatroids;

@ Stanley's poset inequality (refined) Day 3—4;
@ Poset antimatroids;

@ Branching greedoid (log-convex);

@ Interval greedoids;

@ Stanley—Yan matroid basis inequality Day 4.



SEE YOU NEXT CLASS!
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