Log-concave Poset Inequalities Day 2: Improvement to Mason's **Conjecture**

Swee Hong Chan

joint with Igor Pak

Recap: Matroids

Matroid $\mathcal{M} = (X, \mathcal{I})$ is ground set X with collection of independent sets $\mathcal{I} \subseteq 2^{\mathcal{X}}$.

Graphical matroids

- \bullet X = edges of a graph G,
- \bullet \mathcal{I} = forests in G.

Realizable matroids

- $\bullet X =$ finite set of vectors over field \mathbb{F} ,
- \bullet \mathcal{I} = sets of linearly independent vectors.
- Recap: Axioms of matroids
	- (Hereditary) $S \subseteq T$ and $T \in \mathcal{I}$ implies $S \in \mathcal{I}$.

• (Exchange) If $S, T \in \mathcal{I}$ and $|S| < |T|$, then there is $x \in T \setminus S$ such that $S \cup \{x\} \in \mathcal{I}$.

Recap: Matroids

Matroid $\mathcal{M} = (X, \mathcal{I})$ is ground set X with collection of independent sets $\mathcal{I} \subseteq 2^{\mathcal{X}}$.

Graphical matroids

- \bullet X = edges of a graph G,
- \bullet \mathcal{I} = forests in G.

Realizable matroids

- $\bullet X =$ finite set of vectors over field \mathbb{F} ,
- \bullet \mathcal{I} = sets of linearly independent vectors.

Recap: Mason's Conjecture (1972)

Let $\mathcal{M} = (X, \mathcal{I})$ be a matroid, and let $n = |X|$.

 $a_k :=$ no. of independent sets of size k.

It was conjectured that, for $0 < k < n$:

 (1) $a_k^2 \geq a_{k+1} a_{k-1}$; (2) $a_k^2 \geq (1 + \frac{1}{k}) a_{k+1} a_{k-1};$ (3) $a_k^2 \geq (1 + \frac{1}{k})(1 + \frac{1}{n-k})$ $\big)$ a_{k+1} a_{k−1}.

> We previously proved Mason (2) for graphic matroids in Day 1.

Proof of Mason (2) for all matroids

Independent words

A word $\omega = \omega_1 \cdots \omega_k \in X^*$ is a independent word if

 $\{\omega_1, \ldots, \omega_k\}$ is an independent set.

 $e_1e_3e_2$ and $e_1e_2e_3$ are independent words of \mathcal{M}_G . $e_1e_2e_4$ and $e_2e_4e_2$ are NOT independent words.

Independent matrix (for Mason (2))

Let
$$
X = \{x_1, \ldots, x_n\}
$$
 and $0 < k < n$.

Independent matrix $I_2[\mathcal{M}, k]$ is $(n+1) \times (n+1)$ matrix where, for $i, j \in [n]$:

$$
(I_2[\mathcal{M}, k])_{i,j} = \text{no. of ind. words of length } k+1
$$
\n
$$
\text{starts with } x_i \text{, ends with } x_j
$$

 $(I_2[\mathcal{M}, k])_{i, n+1} =$ no. of ind. words of length k starts with x_i ;

 $(I_2[M, k])_{n+1,n+1} :=$ no. of ind. words of length $k-1$

.

Example: Independent matrix, $k = 2$

 $(I_2[\mathcal{M}_G, 2])_{2,3} = |\{e_2e_1e_3, e_2e_4e_3\}| = 2;$ $(I_2[\mathcal{M}_G, 2])_{2,5} = |\{e_2e_1, e_2e_3, e_2e_4\}| = 3;$ $(I_2[\mathcal{M}_G, 2])_{5,5} = |\{e_1, e_2, e_3, e_4\}| = 4.$

Recap: Hyperbolic property

M has hyperbolic property (Hyp) if

$$
\langle x, My \rangle^2 \geq \langle x, Mx \rangle \langle y, My \rangle
$$

for every $\boldsymbol{x} \in \mathbb{R}^r$ and $\boldsymbol{y} \in \mathbb{R}^r_\geq$ $\sum_{i=1}^r$

M satisfies (OPE) if

M has at most one positive eigenvalue.

Lemma (Lemma 3.5 (C.–Pak 22)) M satisfies $(Hyp) \iff M$ satisfies (OPE).

Independent matrix theorem

Theorem For every matroid M and $0 < k < n$,

The matrix $I_2[\mathcal{M}, k]$ satisfies (Hyp).

This theorem implies Mason (2).

Independent matrix theorem implies Mason (2)

Let

$$
M := I_2[M, k], \; \mathbf{x} := (1, \ldots, 1, 0), \; \mathbf{y} := (0, \ldots, 0, 1).
$$

Then

$$
\langle x, My \rangle = k! a_k, \langle x, Mx \rangle = (k+1)! a_{k+1},
$$

 $\langle y, My \rangle = (k-1)! a_{k-1}.$

$$
\langle x, My \rangle^2 \geq \langle x, My \rangle \langle y, My \rangle \quad \text{(Hyp)}\text{then implies} \\ a_k^2 \geq \left(1 + \frac{1}{k}\right) a_{k+1} a_{k-1}.
$$

Independent atlas

Recap: Atlas definition

A combinatorial atlas is a collection of $d \times d$ nonnegative symmetric matrices and vector:

$$
M_0, M_1, \ldots, M_d \in \mathbb{R}_{\geq 0}^{d \times d}, \qquad h \in \mathbb{R}_{\geq 0}^d.
$$

 $M₀$ is the parent of the atlas.

 M_1, \ldots, M_d are the children of the atlas.

We would want M_0, \ldots, M_d to satisfy hyperbolic property.

Matroid contraction

The contraction of element $x \in X$ of matroid M is matroid $\mathcal{M}/x := (X', \mathcal{I}')$ where $X' \;:=\; X \setminus \{x\}; \quad \mathcal{I}' \;:=\; \{\, \mathcal{S} \subseteq X' \,:\, \mathcal{S} \cup \{x\} \in \mathcal{I}\, \}.$

Matroid: loops and parallel elements

A loop is $x \in X$ such that $\{x\} \notin \mathcal{I}$.

Non-loops $x, y \in X$ are parallel if $\{x, y\} \notin \mathcal{I}$.

A matroid is simple if it has no loops and parallel elements.

Independent atlas

Fix $t \in (0,1)$ and $d := n + 1$ and $2 \leq k < n$.

Independent atlas (M_0, \ldots, M_d, h) is given by

$$
M_0 := t \ I_2[\mathcal{M}, k] + (1-t) I_2[\mathcal{M}, k-1];
$$

\n
$$
M_i := I_2[\mathcal{M}/x_i, k-1] \quad (i \in [n]);
$$

\n
$$
M_d := I_2[\mathcal{M}, k-1];
$$

\n
$$
h := (t, ..., t, 1-t).
$$

We will show that M_0, \ldots, M_d satisfy (Hyp).

Recap: Children-to-parent principle

Theorem (Theorem 3.4 (C.-Pak 22)) Let atlas (M_0, \ldots, M_d, h) satisfies (lnh), (T-lnv), (Dec), (Irr), and (h-Pos). Then

 M_1, \cdots, M_d satisfy $(Hyp) \implies M_0$ satisfies (Hyp) .

Thus our strategy becomes:

- Assume M_1, \ldots, M_d satisfy (Hyp) (induction);
- Verify (Inh), (T-Inv), (Dec), (Irr), (h-Pos);
- $\bullet \implies M_0$ satisfies (Hyp).

We will use induction on k. Base case is $k = 1$.

W.l.o.g. M has no loops or parallel elements. Then

$$
I_2[\mathcal{M}, 1] = \begin{bmatrix} 0 & 1 & \cdots & 1 & 1 \\ 1 & 0 & \cdots & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & \cdots & 0 & 1 \\ 1 & 1 & \cdots & 1 & 1 \end{bmatrix}
$$

is $d \times d$ matrix with eigenvalues approximately

$$
d-1+\tfrac{1}{d-1}, -1, \ldots, -1, -\tfrac{1}{d-1},
$$
so I₂[M, 1] satisfies (OPE), and thus (Hyp).

Assume $k > 2$.

Then M_1, \ldots, M_d satisfy (Hyp) by induction.

Children-parent-principle $\implies M_0$ satisfies (Hyp). \iff t I₂[M, k] + (1 – t) I₂[M, k – 1] satisfies (Hyp). $t \to 1 \implies I_2[\mathcal{M}, k]$ satisfies (Hyp). L

Recap complete

Let $\mathcal{M} = (X, \mathcal{I})$ be a matroid, and let $n = |X|$.

 $a_k :=$ no. of independent sets of size k.

We have shown Mason (2):

$$
a_k^2 \geq (1+\tfrac{1}{k})a_{k+1}a_{k-1}.
$$

Recap complete

Let $\mathcal{M} = (X, \mathcal{I})$ be a matroid, and let $n = |X|$.

 $a_k :=$ no. of independent sets of size k.

We have shown Mason (2):

$$
a_k^2 \geq (1+\tfrac{1}{k}) a_{k+1} a_{k-1}.
$$

We now show how to improve to Mason (3):

$$
a_k^2 \geq (1+\tfrac{1}{k})(1+\tfrac{1}{n-k})a_{k+1}a_{k-1}.
$$

Which part of proof can be improved?

Looking back to our proof

Recall the $d \times d$ matrix:

$$
I_2[\mathcal{M},1] = \begin{bmatrix} 0 & 1 & \cdots & 1 & 1 \\ 1 & 0 & \cdots & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & \cdots & 0 & 1 \\ 1 & 1 & \cdots & 1 & 1 \end{bmatrix}
$$

satisfies (OPE) with eigenvalues approximately:

$$
d-1+\tfrac{1}{d-1},-1,\ldots,-1,-\tfrac{1}{d-1},
$$

There are rooms for improvements here!

Room for improvement

Changing $I_2[M, 1]$ to $d \times d$ matrix:

 $\sqrt{ }$ $\overline{1}$ $\overline{1}$ $\overline{1}$ $\overline{1}$ $0 \quad 1 \quad \cdots \quad 1 \qquad 1$ $\begin{array}{ccccccccc}\n1 & 0 & \cdots & 1 & & 1 \\
\vdots & \vdots & \ddots & \vdots & & \vdots\n\end{array}$ $1 \quad 1 \quad \cdots \quad 0 \quad 1$ $1 \quad 1 \quad \cdots \quad 1 \quad 1+\varepsilon$ ׀ \perp \perp \perp \perp

has eigenvalues approximately

$$
d-1+\tfrac{1}{d-1}-O(\varepsilon),-1,\ldots,-1,-\tfrac{1}{d-1}+O(\varepsilon),
$$

still satisfies (OPE) for small ε and implies

$$
{a_k}^2 \ \geq \ \left(1 + \frac{1}{k}\right)\left(1 + \varepsilon\right) a_{k+1} \, a_{k-1} \quad (k=1).
$$

Independent matrix (3)

Independent matrix $I_3[\mathcal{M}, k]$ is $(n+1) \times (n+1)$ matrix where, for $i, j \in [n]$:

 $({\rm I}_3[\mathcal{M},k])_{i,j}\;:=\;$ $(\textit{\textbf{n}} - \textit{\textbf{k}} - 1) !$ length $k+1$, starts no. of ind. words of with x_i , ends with x_j ; $(I_3[\mathcal{M}, k])_{i,n+1}$:= $(n-k)!$ no. of ind. words of length k , starts with x_i ;

 $(I_3[\mathcal{M}, k])_{n+1,n+1}$:= $(n - k + 1)!$ no. of ind. words of length $k-1$.

Independent matrix theorem (3)

Theorem For every matroid M and $0 < k < n$,

The new matrix $I_3[\mathcal{M}, k]$ satisfies (Hyp).

This improved theorem implies Mason (3).

Independent matrix theorem (3) implies Mason (3)

$$
M := I_3[\mathcal{M}, k], \; \mathbf{x} := (1, \ldots, 1, 0), \; \mathbf{y} := (0, \ldots, 0, 1).
$$

Then

$$
\langle x, My \rangle = k! (n-k)! a_k;
$$

$$
\langle x, Mx \rangle = (k+1)! (n-k-1)! a_{k+1};
$$

$$
\langle y, My \rangle = (k-1)! (n-k+1)! a_{k-1}.
$$

$$
\langle x, My \rangle^2 \geq \langle x, My \rangle \langle y, My \rangle \quad \text{(Hyp)}
$$
\nthen implies\n
$$
a_k^2 \geq \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{n-k}\right) a_{k+1} a_{k-1}.
$$

Proof of Mason (3) independent matrix theorem

Let $k = 1$. W.l.o.g. M is simple matroid.

Then $I_3[\mathcal{M}, 1]$ is $(n+1) \times (n+1)$ matrix:

$$
I_3[\mathcal{M}, 1] = \begin{bmatrix} 0 & (n-2)! & (n-2)! & (n-1)! \\ (n-2)! & 0 & (n-2)! & (n-1)! \\ \vdots & \vdots & \ddots & \vdots \\ (n-2)! & (n-2)! & 0 & (n-1)! \\ (n-1)! & (n-1)! & (n-1)! & n! \end{bmatrix}
$$

.

The eigenvalues are

$$
(n+1)(n-1)!, \mathbf{0}, -(n-2)!, \ldots, -(n-2)!
$$

so I₃[M, 1] satisfies (OPE), and thus (Hyp).

Assume $k > 2$.

Fix $t \in (0, 1)$ and $d := n + 1$ and $2 \le k < n$. Independent atlas (M_0, \ldots, M_d, h) is given by

$$
M_0 := t \ I_3[\mathcal{M}, k] + (1-t) \ I_3[\mathcal{M}, k-1];
$$

\n
$$
M_i := I_3[\mathcal{M}/x_i, k-1] \quad (i \in [n]);
$$

\n
$$
M_d := I_3[\mathcal{M}, k-1];
$$

\n
$$
h := (t, ..., t, 1-t).
$$

The definition of this atlas does not change.

Then M_1, \ldots, M_d satisfy (Hyp) by induction.

Children-parent principle $\implies M_0$ satisfies (Hyp).

 $\iff t \operatorname{I}_3[\mathcal{M}, k] + (1 - t) \operatorname{I}_3[\mathcal{M}, k - 1]$ satisfies (Hyp).

 \mathbf{I}

 $t \to 1 \implies I_3[\mathcal{M}, k]$ satisfies (Hyp).

This part of the proof does not change.

What we have shown

Let
$$
\mathcal{M} = (X, \mathcal{I})
$$
 be a matroid, and let $n = |X|$.

 $a_k :=$ no. of independent sets of size k.

Theorem (Mason (3)) $a_k^2 \ge (1 + \frac{1}{k}) (1 + \frac{1}{n-k})$ $\big)$ a_{k+1} a_{k−1}.

What we have shown

Let
$$
\mathcal{M} = (X, \mathcal{I})
$$
 be a matroid, and let $n = |X|$.

 $a_k :=$ no. of independent sets of size k.

Theorem (Mason (3)) $a_k^2 \ge (1 + \frac{1}{k}) (1 + \frac{1}{n-k})$ $\big)$ a_{k+1} a_{k−1}.

Next we show that this inequality can be improved even further.

Mason (4) for graphical matroids

Mason (4) for graphical matroids

Theorem (C.-Pak) For graphical matroid of connected graph $G = (V, E)$, and $\kappa = |V| - 2$, $(a_{\kappa})^2 \geq \frac{3}{2}$ 2 $\sqrt{ }$ $1 +$ 1 κ \setminus $a_{\kappa+1} a_{\kappa-1}$.

Numerically better than Mason (3), because

$$
\frac{3}{2} \geq 1 + \frac{1}{n - \kappa} = 1 + \frac{1}{|E| - |V| + 2}
$$

for G that is not tree.

Comparison with Mason (3)

Mason (4) gives

\n
$$
\frac{(a_{\kappa})^2}{a_{\kappa+1} a_{\kappa-1}} \geq \frac{3}{2} \quad \text{when} \quad |E| - |V| \to \infty,
$$

Meanwhile, Mason (3) only gives
\n
$$
\frac{(a_{\kappa})^2}{a_{\kappa+1} a_{\kappa-1}} \ge 1 \quad \text{when} \quad |E| - |V| \to \infty.
$$

New bound is better numerically and asymptotically. We will prove Mason (4) today using atlas method.

Which part of proof can be further improved?

Room for further improvement

Recall
$$
(n + 1) \times (n + 1)
$$
 matrix:
\n
$$
I_3[\mathcal{M}, 1] = \begin{bmatrix}\n0 & (n-2)! & \cdots & (n-2)! & (n-1)! \\
(n-2)! & 0 & \cdots & (n-2)! & (n-1)! \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
(n-2)! & (n-2)! & \cdots & 0 & (n-1)! \\
(n-1)! & (n-1)! & \cdots & (n-1)! & n!\n\end{bmatrix}
$$

has eigenvalues

$$
(n+1)(n-1)!,\,0,-(n-2)!,\ldots,-(n-2)!
$$

No room for improvement for general matroids. But such matrix never occurs for **graphic matroids**. Independent matrix for graphic Mason (4)

Let
$$
E = \{e_1, \ldots, e_n\}
$$
 and $\kappa = |V| - 2$.

Independent matrix $I_4[\mathcal{M}_G, \kappa]$ is $(n+1) \times (n+1)$ matrix where, for $i, j \in [n]$:

$$
(I_4[\mathcal{M}_G, \kappa])_{i,j} := \text{no. of ind. words of length } \kappa + 1
$$

starts with e_i , ends with e_j

$$
(I_4[\mathcal{M}_G, \kappa])_{i,n+1} := \text{no. of ind. words of length } \kappa
$$

starts with e_j

;

.

 $({\rm I}_4[{\rm M}_G,\kappa])_{n+1,n+1}$:= 3 $\overline{2}$ \times no. of ind. words of length $\kappa - 1$

Independent matrix theorem (4)

Theorem For every graph $G = (V, E)$ and $\kappa = |V| - 2$, The new matrix $I_4[\mathcal{M}_G, \kappa]$ satisfies (Hyp).

This improved theorem implies graphic Mason (4).

Ind. matrix theorem (4) implies graphic Mason (4)

$$
M := I_4[\mathcal{M}_G, \kappa], \ \mathbf{x} := (1, \ldots, 1, 0), \ \mathbf{y} := (0, \ldots, 0, 1).
$$

Then

$$
\langle \mathbf{x}, M\mathbf{y} \rangle = \kappa! a_{\kappa}; \quad \langle \mathbf{y}, M\mathbf{y} \rangle = (\kappa - 1)! a_{\kappa - 1};
$$

$$
\langle \mathbf{x}, M\mathbf{x} \rangle = \frac{3}{2} (\kappa + 1)! a_{\kappa + 1}.
$$

$$
\langle x, My \rangle^2 \geq \langle x, My \rangle \langle y, My \rangle \quad (Hyp)
$$

then implies

$$
a_k^2 \ \geq \ \frac{3}{2} \left(1 + \frac{1}{k} \right) a_{k+1} a_{k-1}.
$$

We prove by induction on $|V|$. Let $|V| = 3$. W.l.o.g $G = (V, E)$ is simple graph. Then $n = |E| \leq 3$, and $I_4[\mathcal{M}_G, \kappa]$ is either $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$ 1 0 1 1 1 $\frac{3}{2}$ 1 or $\sqrt{ }$ $\left| \right|$ \mathbf{I} 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 $\frac{3}{2}$ 2 1 $\frac{1}{2}$ \mathbf{I}

The eigenvalues are

 $(2.6\overline{9}, -1, -0.1\overline{9})$ or $(\frac{7}{2}, 0, -1, -1)$ so $I_4[\mathcal{M}_G, \kappa]$ satisfies (OPE), and thus (Hyp).

Assume $|V| > 4$.

Fix $t \in (0,1)$ and $d := |E| + 1$ and $\kappa := |V| - 2$. Independent atlas (M_0, \ldots, M_d, h) is given by $M_0 := t \, I_4[\mathcal{M}_G, \kappa] + (1-t) \, I_2[\mathcal{M}_G, \kappa - 1];$ $M_i := I_4[\mathcal{M}_{G/e_i}, \kappa - 1] \quad (1 \leq i \leq |E|);$ $M_d := I_2[\mathcal{M}_G, \kappa - 1];$

 $h := (t, \ldots, t, 1-t).$

Then M_1, \ldots, M_d satisfy (Hyp) by induction.

Children-parent principle $\implies M_0$ satisfies (Hyp).

$$
\iff t \operatorname{I}_4[\mathcal{M}_G, \kappa] + (1-t) \operatorname{I}_2[\mathcal{M}_G, \kappa - 1] \text{ satisfies (Hyp)}.
$$

 $t \to 1 \implies I_4[\mathcal{M}_G, \kappa]$ satisfies (Hyp).

This part of the proof does not change.

What we have shown

Theorem (C.-Pak '24) For graphical matroid of simple connected graph $G = (V, E)$, and $\kappa = |V| - 2$, $(a_{\kappa})^2 \geq \frac{3}{2}$ 2 $\sqrt{ }$ $1 +$ 1 κ \setminus $a_{\kappa+1} a_{\kappa-1}$ with equality if and only if G is a cycle graph.

Naturally, this improvement can be generalized to all matroids (next slide).

Mason (4) for all matroids

Parallel classes

A loop is $x \in X$ such that $\{x\} \notin \mathcal{I}$. Non-loops $x, y \in X$ are parallel if $\{x, y\} \notin \mathcal{I}$. Parallel equivalence relation: $x \sim y$ if $\{x, y\} \notin \mathcal{I}$. Parallel class = equivalence class of \sim .

Parallel number

Contraction of $S \in \mathcal{I}$ is matroid $\mathcal{M}_S := (X_S, \mathcal{I}_S)$:

$$
X_S := X \setminus S, \quad \mathcal{I}_S := \{ T \setminus S : S \subseteq T \}.
$$

For $S \in \mathcal{I}$, the parallel number is

prl(S) := number of parallel classes of \mathcal{M}_S

= no. of elements of M_S not counting multiplicity.

Parallel constant

The k -th parallel constant is

 $p[\mathcal{M}, k] := \max\{prI(S) | S \in \mathcal{I} \text{ with } |S| = k\}.$

Mason (4)

Theorem (Thm 1.10, C.-Pak '24) For matroid M and $0 < k < n$.

$$
{a_k}^2 \ \geq \ \left(1+\frac{1}{k}\right)\left(1+\frac{1}{\mathsf{p}[\mathcal{M},k-1]-1}\right) a_{k+1} \, a_{k-1}.
$$

This refines Mason (3),

$$
a_k^2 \ \ge \ \left(1+\frac{1}{k}\right)\left(1+\frac{1}{n-k}\right) a_{k+1} a_{k-1},
$$

since

$$
p[\mathcal{M}, k-1] \leq n-k+1.
$$

Improvement for different matroids

• For all matroids.

$$
a_k^2 \geq (1+\tfrac{1}{k})(1+\tfrac{1}{n-k}) a_{k+1} a_{k-1}.
$$

• Graphical matroids and $k = |V| - 2$,

$$
a_k^2 \geq (1+\tfrac{1}{k})\tfrac{3}{2}a_{k+1}a_{k-1}.
$$

• Realizable matroids over \mathbb{F}_q ,

$$
a_k^2 \geq (1+\tfrac{1}{k})(1+\tfrac{1}{q^{m-k+1}-2}) a_{k+1} a_{k-1}.
$$

 \bullet (k, m, n) -Steiner system matroid, $a_k^2 \geq (1 + \frac{1}{k}) \frac{n - k + 1}{n - m}$ $\frac{-k+1}{n-m} a_{k+1} a_{k-1}.$

Mason (4)

Theorem (Thm 1.10, C.-Pak '24)

\nFor matroid M and
$$
0 < k < n
$$
,

\n
$$
a_k^2 \geq \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{p[M, k-1]-1}\right) a_{k+1} a_{k-1}.
$$

Naturally, we have matching equality conditions for this inequality.

When is equality achieved?

- When M is free matroid, i.e. every subset of X is independent;
- \bullet When M is graphical matroid, with

$$
G = \text{cycle graph and } k = |V| - 2;
$$

 \bullet When M is realizable matroid, with

 $X = \{every \ m\text{-dimensional vector over } \mathbb{F}_q\};$

• When M is Steiner system matroid;

 \bullet \cdots (running out of space) \cdots

Equality conditions for Mason (4)

Theorem (Thm 1.10, C.-Pak '24) For matroid M and $0 < k < n$.

$$
a_k^2 = \left(1 + \frac{1}{k}\right)\left(1 + \frac{1}{p[M,k-1]-1}\right)a_{k+1}a_{k-1}
$$

if and only if for all $S \in \mathcal{I}$ with $|S| = k - 1$,
• \mathcal{M}_S has $p[\mathcal{M}, k-1]$ parallel classes; and

• Every parallel class of M_S has same size.

Equality conditions for Mason (4)

Theorem (Thm 1.10, C.-Pak '24) For matroid M and $0 < k < n$.

$$
{a_k}^2 = \left(1+\tfrac{1}{k}\right)\left(1+\tfrac{1}{\mathsf{p}[\mathbb{M},k-1]-1}\right) a_{k+1} a_{k-1}
$$

if and only if for all $S \in \mathcal{I}$ with $|S| = k - 1$,

- M_S has p[$M, k 1$] parallel classes; and
- Every parallel class of \mathcal{M}_S has same size.

Quote (Dr. Strangelove '64) How I Learned to Stop Worrying and Love [Convoluted Equality Conditions].

Other applications of combinatorial atlas We get log-concave inequalities and matching equality conditions for:

- Mason's inequality (refined) Day $1-2$;
- Morphism of matroids (refined);
- Discrete polymatroids;
- Stanley's poset inequality (refined) Day 3-4;
- Poset antimatroids:
- Branching greedoid (log-convex);
- Interval greedoids;
- Stanley–Yan matroid basis inequality Day 4

SEE YOU NEXT CLASS!

References: <www.arxiv.org/abs/2110.10740> <www.arxiv.org/abs/2203.01533> Webpage: <www.math.rutgers.edu/~sc2518/> Email: sweehong.chan@rutgers.edu