Log-concave Poset Inequalities

Day 2: Improvement to Mason's Conjecture

Swee Hong Chan

joint with Igor Pak

Recap: Matroids

Matroid $\mathcal{M} = (X, \mathcal{I})$ is ground set X with collection of independent sets $\mathcal{I} \subseteq 2^X$.

Graphical matroids

- X = edges of a graph G,
- $\mathcal{I} = \text{ forests in } G$.

Realizable matroids

- X = finite set of vectors over field \mathbb{F} ,
- \mathcal{I} = sets of linearly independent vectors.

- Recap: Axioms of matroids
 - (Hereditary) $S \subseteq T$ and $T \in \mathcal{I}$ implies $S \in \mathcal{I}$.

• (Exchange) If $S, T \in \mathcal{I}$ and |S| < |T|, then there is $x \in T \setminus S$ such that $S \cup \{x\} \in \mathcal{I}$.

Recap: Matroids

Matroid $\mathcal{M} = (X, \mathcal{I})$ is ground set X with collection of independent sets $\mathcal{I} \subseteq 2^X$.

Graphical matroids

- X = edges of a graph G,
- $\mathcal{I} = \text{ forests in } G$.

Realizable matroids

- X = finite set of vectors over field \mathbb{F} ,
- \mathcal{I} = sets of linearly independent vectors.

Recap: Mason's Conjecture (1972)

Let $\mathcal{M} = (X, \mathcal{I})$ be a matroid, and let n = |X|.

 $a_k :=$ no. of independent sets of size k.

It was conjectured that, for 0 < k < n: (1) $a_k^2 \ge a_{k+1} a_{k-1}$; (2) $a_k^2 \ge (1 + \frac{1}{k}) a_{k+1} a_{k-1}$; (3) $a_k^2 \ge (1 + \frac{1}{k}) (1 + \frac{1}{n-k}) a_{k+1} a_{k-1}$.

We previously proved Mason (2) for graphic matroids in Day 1.

Proof of Mason (2) for all matroids

Independent words

A word $\omega = \omega_1 \cdots \omega_k \in X^*$ is a independent word if

 $\{\omega_1,\ldots,\omega_k\}$ is an independent set.

 $e_1e_3e_2$ and $e_1e_2e_3$ are independent words of \mathcal{M}_G . $e_1e_2e_4$ and $e_2e_4e_2$ are NOT independent words. Independent matrix (for Mason (2))

Let
$$X = \{x_1, ..., x_n\}$$
 and $0 < k < n$.

Independent matrix $I_2[\mathcal{M}, k]$ is $(n + 1) \times (n + 1)$ matrix where, for $i, j \in [n]$:

$$(I_2[\mathcal{M}, k])_{i,j} :=$$
 no. of ind. words of length $k + 1$
starts with x_i , ends with x_j

;

 $(I_2[\mathcal{M}, k])_{i,n+1} :=$ no. of ind. words of length kstarts with x_i ;

 $(I_2[\mathcal{M}, k])_{n+1, n+1} :=$ no. of ind. words of length k-1

Example: Independent matrix, k = 2

 $\begin{aligned} (I_2[\mathcal{M}_G,2])_{2,3} &:= |\{e_2e_1e_3, e_2e_4e_3\}| &= 2; \\ (I_2[\mathcal{M}_G,2])_{2,5} &:= |\{e_2e_1, e_2e_3, e_2e_4\}| &= 3; \\ (I_2[\mathcal{M}_G,2])_{5,5} &:= |\{e_1, e_2, e_3, e_4\}| &= 4. \end{aligned}$

Recap: Hyperbolic property

M has hyperbolic property (Hyp) if

$$\langle oldsymbol{x}, Moldsymbol{y}
angle^2 \geq \ \langle oldsymbol{x}, Moldsymbol{x}
angle \langle oldsymbol{y}, Moldsymbol{y}
angle$$

for every $\boldsymbol{x} \in \mathbb{R}^r$ and $\boldsymbol{y} \in \mathbb{R}^r_{\geq 0}$.

M satisfies (OPE) if

M has at most one positive eigenvalue.

Lemma (Lemma 3.5 (C.–Pak 22)) $M \text{ satisfies (Hyp)} \iff M \text{ satisfies (OPE)}.$

Independent matrix theorem

Theorem For every matroid \mathcal{M} and 0 < k < n, The matrix $I_2[\mathcal{M}, k]$ satisfies (Hyp).

This theorem implies Mason (2).

Independent matrix theorem implies Mason (2)

Let

$$M := I_2[\mathcal{M}, k], \ m{x} := (1, \dots, 1, 0), \ m{y} := (0, \dots, 0, 1).$$

Then

$$egin{aligned} &\langle m{x},m{M}m{y}
angle^2 \geq \ &\langle m{x},m{M}m{y}
angle &\langle m{y},m{M}m{y}
angle & (\mathsf{Hyp}) \ & ext{then implies} \ & a_k^2 \ \geq \ & \left(1+rac{1}{k}\right)a_{k+1}a_{k-1}. \end{aligned}$$

Independent atlas

Recap: Atlas definition

A combinatorial atlas is a collection of $d \times d$ nonnegative symmetric matrices and vector:

$$M_0, M_1, \ldots, M_d \in \mathbb{R}_{\geq 0}^{d \times d}, \qquad \boldsymbol{h} \in \mathbb{R}_{\geq 0}^d.$$

 M_0 is the parent of the atlas.

 M_1, \ldots, M_d are the children of the atlas.

We would want M_0, \ldots, M_d to satisfy hyperbolic property.

Matroid contraction

The contraction of element $x \in X$ of matroid \mathcal{M} is matroid $\mathcal{M}/x := (X', \mathcal{I}')$ where $X' := X \setminus \{x\}; \quad \mathcal{I}' := \{S \subseteq X' : S \cup \{x\} \in \mathcal{I}\}.$

Matroid: loops and parallel elements

A loop is $x \in X$ such that $\{x\} \notin \mathcal{I}$.

Non-loops $x, y \in X$ are parallel if $\{x, y\} \notin \mathcal{I}$.

A matroid is simple if it has no loops and parallel elements.

Independent atlas

Fix $t \in (0, 1)$ and d := n + 1 and $2 \le k < n$.

Independent atlas (M_0, \ldots, M_d, h) is given by

$$\begin{split} M_0 &:= t \ I_2[\mathcal{M}, k] + (1-t) \ I_2[\mathcal{M}, k-1]; \\ M_i &:= I_2[\mathcal{M}/x_i, k-1] \quad (i \in [n]); \\ M_d &:= I_2[\mathcal{M}, k-1]; \\ h &:= (t, \dots, t, 1-t). \end{split}$$

We will show that M_0, \ldots, M_d satisfy (Hyp).

Recap: Children-to-parent principle

Theorem (Theorem 3.4 (C.-Pak 22)) Let atlas (M_0, \ldots, M_d, h) satisfies (Inh), (T-Inv), (Dec), (Irr), and (h-Pos). Then

 M_1, \cdots, M_d satisfy (Hyp) $\implies M_0$ satisfies (Hyp).

Thus our strategy becomes:

- Assume M_1, \ldots, M_d satisfy (Hyp) (induction);
- Verify (Inh), (T-Inv), (Dec), (Irr), (h-Pos);
- \implies M_0 satisfies (Hyp).

We will use induction on k. Base case is k = 1. W.I.o.g. \mathcal{M} has no loops or parallel elements. Then

$$\mathrm{I}_2[\mathcal{M},1] \ = \ \begin{bmatrix} 0 & 1 & \cdots & 1 & 1 \\ 1 & 0 & \cdots & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & \cdots & 0 & 1 \\ 1 & 1 & \cdots & 1 & 1 \end{bmatrix}$$

is $d \times d$ matrix with eigenvalues approximately

$$d - 1 + \frac{1}{d-1}, -1, \dots, -1, -\frac{1}{d-1},$$

so $I_2[\mathcal{M}, 1]$ satisfies (OPE), and thus (Hyp).

Assume $k \geq 2$.

Then M_1, \ldots, M_d satisfy (Hyp) by induction.

Children-parent-principle $\implies M_0$ satisfies (Hyp). $\iff t \operatorname{I}_2[\mathcal{M}, k] + (1 - t) \operatorname{I}_2[\mathcal{M}, k - 1]$ satisfies (Hyp).

 $t \to 1 \implies I_2[\mathcal{M}, k]$ satisfies (Hyp).

Recap complete

Let $\mathcal{M} = (X, \mathcal{I})$ be a matroid, and let n = |X|.

 $a_k :=$ no. of independent sets of size k.

We have shown Mason (2):

$$a_k^2 \geq (1+\frac{1}{k})a_{k+1}a_{k-1}.$$

Recap complete

Let $\mathcal{M} = (X, \mathcal{I})$ be a matroid, and let n = |X|.

 $a_k :=$ no. of independent sets of size k.

We have shown Mason (2):

$$a_k^2 \geq (1+\frac{1}{k})a_{k+1}a_{k-1}.$$

We now show how to improve to Mason(3):

$$a_k^2 \geq (1+\frac{1}{k})(1+\frac{1}{n-k})a_{k+1}a_{k-1}.$$

Which part of proof can be improved?

Looking back to our proof

Recall the $d \times d$ matrix:

$$\mathrm{I}_2[\mathfrak{M},1] \;=\; \begin{bmatrix} 0 & 1 & \cdots & 1 & 1 \\ 1 & 0 & \cdots & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & \cdots & 0 & 1 \\ 1 & 1 & \cdots & 1 & 1 \end{bmatrix}$$

satisfies (OPE) with eigenvalues approximately:

$$d-1+rac{1}{d-1},\ -1,\ldots,-1,\ -rac{1}{d-1},$$

There are rooms for improvements here!

Room for improvement

Changing $I_2[\mathcal{M}, 1]$ to $d \times d$ matrix:

has eigenvalues approximately

$$d-1+rac{1}{d-1}-O(oldsymbol{arepsilon}),-1,\ldots,-1,-rac{1}{d-1}+O(oldsymbol{arepsilon}),$$

still satisfies (OPE) for small ε and implies

$${a_k}^2 \geq \left(1+rac{1}{k}
ight) \left(oldsymbol{1}+oldsymbol{arepsilon}
ight) a_{k+1} a_{k-1} \quad (k=1).$$

Independent matrix (3)

Independent matrix $I_3[\mathcal{M}, k]$ is $(n + 1) \times (n + 1)$ matrix where, for $i, j \in [n]$:

no. of ind. words of $(I_3[\mathcal{M}, k])_{i,j} := (n - k - 1)!$ length k + 1, starts with x_i , ends with x_i ; $(I_3[\mathcal{M}, k])_{i,n+1} := (n-k)!$ no. of ind. words of length k, starts with x_i ; $(I_3[\mathcal{M}, k])_{n+1,n+1} := (n-k+1)!$ no. of ind. words of length k-1. Independent matrix theorem (3)

Theorem For every matroid \mathcal{M} and 0 < k < n, The new matrix $I_3[\mathcal{M}, k]$ satisfies (Hyp).

This improved theorem implies Mason (3).

Independent matrix theorem (3) implies Mason (3)

$$M := I_3[\mathcal{M}, k], \ x := (1, \dots, 1, 0), \ y := (0, \dots, 0, 1).$$

Then

$$\begin{array}{ll} \langle \boldsymbol{x}, \boldsymbol{M} \boldsymbol{y} \rangle &= k! \, (\boldsymbol{n} - \boldsymbol{k})! \, \boldsymbol{a}_k; \\ \langle \boldsymbol{x}, \boldsymbol{M} \boldsymbol{x} \rangle &= (k+1)! \, (\boldsymbol{n} - \boldsymbol{k} - \boldsymbol{1})! \, \boldsymbol{a}_{k+1}; \\ \langle \boldsymbol{y}, \boldsymbol{M} \boldsymbol{y} \rangle &= (k-1)! \, . (\boldsymbol{n} - \boldsymbol{k} + \boldsymbol{1})! \, \boldsymbol{a}_{k-1}. \end{array}$$

$$\langle \boldsymbol{x}, \boldsymbol{M} \boldsymbol{y} \rangle^2 \geq \langle \boldsymbol{x}, \boldsymbol{M} \boldsymbol{y} \rangle \langle \boldsymbol{y}, \boldsymbol{M} \boldsymbol{y} \rangle \quad (\mathsf{Hyp})$$

then implies
 $a_k^2 \geq \left(1 + \frac{1}{k}\right) \left(\mathbf{1} + \frac{1}{n-k}\right) a_{k+1} a_{k-1}.$

Proof of Mason (3) independent matrix theorem

Let k = 1. W.l.o.g. \mathcal{M} is simple matroid.

Then $I_3[\mathcal{M},1]$ is $(n+1) \times (n+1)$ matrix:

$$I_{3}[\mathcal{M}, 1] = \begin{bmatrix} 0 & (n-2)! & \cdots & (n-2)! & (n-1)! \\ (n-2)! & 0 & \cdots & (n-2)! & (n-1)! \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ (n-2)! & (n-2)! & \cdots & 0 & (n-1)! \\ (n-1)! & (n-1)! & \cdots & (n-1)! & n! \end{bmatrix}$$

٠

The eigenvalues are

$$(n+1)(n-1)!, 0, -(n-2)!, \dots, -(n-2)!.$$

so $I_3[\mathcal{M}, 1]$ satisfies (OPE), and thus (Hyp).

Assume $k \ge 2$.

Fix $t \in (0, 1)$ and d := n + 1 and $2 \le k < n$. Independent atlas (M_0, \ldots, M_d, h) is given by

$$\begin{split} M_0 &:= t \ I_3[\mathcal{M}, k] + (1-t) \ I_3[\mathcal{M}, k-1]; \\ M_i &:= \ I_3[\mathcal{M}/x_i, k-1] \quad (i \in [n]); \\ M_d &:= \ I_3[\mathcal{M}, k-1]; \\ h &:= \ (t, \dots, t, 1-t). \end{split}$$

The definition of this atlas does not change.

Then M_1, \ldots, M_d satisfy (Hyp) by induction.

Children-parent principle $\implies M_0$ satisfies (Hyp).

 $\iff t \operatorname{I}_{3}[\mathcal{M}, k] + (1 - t) \operatorname{I}_{3}[\mathcal{M}, k - 1]$ satisfies (Hyp).

 $t \to 1 \implies I_3[\mathcal{M}, k]$ satisfies (Hyp).

This part of the proof does not change.

What we have shown

Let
$$\mathcal{M} = (X, \mathcal{I})$$
 be a matroid, and let $n = |X|$.

 $a_k :=$ no. of independent sets of size k.

Theorem (Mason (3))
$$a_k^2 \ge (1 + \frac{1}{k}) (1 + \frac{1}{n-k}) a_{k+1} a_{k-1}.$$

What we have shown

Let
$$\mathcal{M} = (X, \mathcal{I})$$
 be a matroid, and let $n = |X|$.

 $a_k :=$ no. of independent sets of size k.

Theorem (Mason (3)) $a_k^2 \ge (1 + \frac{1}{k}) (1 + \frac{1}{n-k}) a_{k+1} a_{k-1}.$

Next we show that this inequality can be improved even further.

Mason (4) for graphical matroids

Mason (4) for graphical matroids

Theorem (C.-Pak) For graphical matroid of connected graph G = (V, E), and $\kappa = |V| - 2$, $(a_{\kappa})^2 \geq \frac{3}{2} \left(1 + \frac{1}{\kappa}\right) a_{\kappa+1} a_{\kappa-1}.$

Numerically better than Mason (3), because

$$rac{3}{2} \ \geq \ 1 + rac{1}{n-\kappa} \ = \ 1 + rac{1}{|E| - |V| + 2}$$

for G that is not tree.

Comparison with Mason (3)

Mason (4) gives
$$\frac{(a_{\kappa})^2}{a_{\kappa+1} a_{\kappa-1}} \geq \frac{3}{2} \quad \text{when } |E| - |V| \to \infty,$$

$$\begin{array}{ll} {\sf Meanwhile,\ Mason\ (3)\ only\ gives}\\ {\displaystyle \frac{(a_{\kappa})^2}{a_{\kappa+1}\,a_{\kappa-1}}} &\geq 1 \qquad {\sf when} \ |E|-|V| \to \infty. \end{array}$$

New bound is better numerically and asymptotically. We will prove Mason (4) today using atlas method.

Which part of proof can be further improved?

Room for further improvement

Recall
$$(n + 1) \times (n + 1)$$
 matrix:

$$I_{3}[\mathcal{M}, 1] = \begin{bmatrix} 0 & (n-2)! & \cdots & (n-2)! & (n-1)! \\ (n-2)! & 0 & \cdots & (n-2)! & (n-1)! \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ (n-2)! & (n-2)! & \cdots & 0 & (n-1)! \\ (n-1)! & (n-1)! & \cdots & (n-1)! & n! \end{bmatrix}$$

has eigenvalues

$$(n+1)(n-1)!, 0, -(n-2)!, \ldots, -(n-2)!.$$

No room for improvement for general matroids. But such matrix never occurs for graphic matroids. Independent matrix for graphic Mason (4)

Let
$$E = \{e_1, ..., e_n\}$$
 and $\kappa = |V| - 2$.

Independent matrix $I_4[\mathcal{M}_G, \kappa]$ is $(n+1) \times (n+1)$ matrix where, for $i, j \in [n]$:

 $(I_4[\mathcal{M}_G, \kappa])_{i,j} := \begin{array}{l} \text{no. of ind. words of length } \kappa + 1\\ \text{starts with } e_i, \text{ ends with } e_j \end{array};$ $(I_4[\mathcal{M}_G, \kappa])_{i,n+1} := \begin{array}{l} \text{no. of ind. words of length } \kappa\\ \text{starts with } e_i \end{array};$ $(I_4[\mathcal{M}_G, \kappa])_{i,n+1} := \begin{array}{l} \begin{array}{l} \text{no. of ind. words of length } \kappa\\ \text{starts with } e_i \end{array};$

 $(I_4[\mathcal{M}_G,\kappa])_{n+1,n+1} := \frac{3}{2} \times \frac{\text{no. of ind. words of}}{\text{length } \kappa - 1}$

Independent matrix theorem (4)

Theorem For every graph G = (V, E) and $\kappa = |V| - 2$, The new matrix $I_4[\mathcal{M}_G, \kappa]$ satisfies (Hyp).

This improved theorem implies graphic Mason (4).

Ind. matrix theorem (4) implies graphic Mason (4)

$$M:={
m I}_4[{\mathfrak M}_G,\kappa],\;\; {m x}:=(1,\ldots,1,0),\;\; {m y}:=(0,\ldots,0,1).$$
 Then

$$\langle \boldsymbol{x}, \boldsymbol{M} \boldsymbol{y} \rangle^2 \geq \langle \boldsymbol{x}, \boldsymbol{M} \boldsymbol{y} \rangle \langle \boldsymbol{y}, \boldsymbol{M} \boldsymbol{y} \rangle \quad (\mathsf{Hyp})$$

then implies

$$a_k^2 \geq \frac{3}{2} \left(1 + \frac{1}{k}\right) a_{k+1} a_{k-1}.$$

We prove by induction on $|\mathbf{V}|$. Let |V| = 3. W.I.o.g G = (V, E) is simple graph. Then $\mathbf{n} = |\mathbf{E}| \leq \mathbf{3}$, and $I_4[\mathcal{M}_G, \kappa]$ is either $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & \frac{3}{2} \end{bmatrix}$ or $\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & \frac{3}{2} \end{bmatrix}$

The eigenvalues are

 $(2.6\overline{9}, -1, -0.1\overline{9})$ or $(\frac{7}{2}, 0, -1, -1)$ so $I_4[\mathcal{M}_G, \kappa]$ satisfies (OPE), and thus (Hyp).

Assume $|V| \ge 4$.

Fix $t \in (0, 1)$ and d := |E| + 1 and $\kappa := |V| - 2$. Independent atlas (M_0, \ldots, M_d, h) is given by

$$\begin{split} M_0 &:= t \ I_4[\mathcal{M}_G, \kappa] + (1-t) \ I_2[\mathcal{M}_G, \kappa-1]; \\ M_i &:= I_4[\mathcal{M}_{G/e_i}, \kappa-1] \quad (1 \le i \le |E|); \\ M_d &:= I_2[\mathcal{M}_G, \kappa-1]; \\ h &:= (t, \dots, t, 1-t). \end{split}$$

Then M_1, \ldots, M_d satisfy (Hyp) by induction.

Children-parent principle $\implies M_0$ satisfies (Hyp).

$$\iff t \operatorname{I}_{4}[\mathcal{M}_{G},\kappa] + (1-t) \operatorname{I}_{2}[\mathcal{M}_{G},\kappa-1] \text{ satisfies (Hyp)}.$$

 $t \to 1 \implies I_4[\mathcal{M}_G, \kappa]$ satisfies (Hyp).

This part of the proof does not change.

What we have shown

Theorem (C.-Pak '24) For graphical matroid of simple connected graph G = (V, E), and $\kappa = |V| - 2$, $(a_{\kappa})^2 \ge \frac{3}{2} \left(1 + \frac{1}{\kappa}\right) a_{\kappa+1} a_{\kappa-1}$, with equality if and only if G is a cycle graph.

Naturally, this improvement can be generalized to all matroids (next slide).

Mason (4) for all matroids

Parallel classes

A loop is $x \in X$ such that $\{x\} \notin \mathcal{I}$. Non-loops $x, y \in X$ are parallel if $\{x, y\} \notin \mathcal{I}$. Parallel equivalence relation: $x \sim y$ if $\{x, y\} \notin \mathcal{I}$. Parallel class = equivalence class of \sim .

Parallel number

Contraction of $S \in \mathcal{I}$ is matroid $\mathcal{M}_S := (X_S, \mathcal{I}_S)$:

$$X_S := X \setminus S, \qquad \mathcal{I}_S := \{T \setminus S : S \subseteq T\}.$$

For $S \in \mathcal{I}$, the parallel number is

prl(S) := number of parallel classes of \mathcal{M}_S

= no. of elements of \mathcal{M}_S not counting multiplicity.

Parallel constant

The k-th parallel constant is

 $p[\mathcal{M}, k] := \max\{prl(S) \mid S \in \mathcal{I} \text{ with } |S| = k\}.$

Mason (4)

Theorem (Thm 1.10, C.-Pak '24) For matroid \mathcal{M} and 0 < k < n,

$$a_k^2 \geq \left(1+\frac{1}{k}\right) \left(1+\frac{1}{p[\mathcal{M},k-1]-1}\right) a_{k+1} a_{k-1}.$$

This refines Mason (3),

$${a_k}^2 \geq \left(1+rac{1}{k}\right) \left(1+rac{1}{n-k}\right) a_{k+1} a_{k-1},$$

since

$$\mathsf{p}[\mathcal{M}, k-1] \leq n-k+1.$$

Improvement for different matroids

• For all matroids,

$$a_k^2 \geq (1+\frac{1}{k})(1+\frac{1}{n-k})a_{k+1}a_{k-1}.$$

• Graphical matroids and k = |V| - 2,

$$a_k^2 \geq (1+\frac{1}{k}) \frac{3}{2} a_{k+1} a_{k-1}.$$

• Realizable matroids over \mathbb{F}_q ,

$$a_k^2 \geq (1+\frac{1}{k}) (1+\frac{1}{q^{m-k+1}-2}) a_{k+1} a_{k-1}.$$

• (k, m, n)-Steiner system matroid, $a_k^2 \ge (1 + \frac{1}{k}) \frac{n-k+1}{n-m} a_{k+1} a_{k-1}.$

Mason (4)

Theorem (Thm 1.10, C.-Pak '24)
For matroid
$$\mathfrak{M}$$
 and $0 < k < n$,
 $a_k^2 \ge \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{p[\mathfrak{M}, k-1] - 1}\right) a_{k+1} a_{k-1}.$

Naturally, we have matching equality conditions for this inequality. When is equality achieved?

- When M is free matroid, i.e. every subset of X is independent;
- When \mathcal{M} is graphical matroid, with G = cycle graph and k = |V| 2;
- When ${\mathcal M}$ is realizable matroid, with
 - $X := \{every \ m$ -dimensional vector over $\mathbb{F}_q\};$
- When $\mathcal M$ is Steiner system matroid;
- · · · · · (running out of space) · · · · ·

Equality conditions for Mason (4)

Theorem (Thm 1.10, C.-Pak '24) For matroid \mathcal{M} and 0 < k < n,

$$a_k^2 = \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{p[\mathcal{M}, k-1]-1}\right) a_{k+1} a_{k-1}$$

if and only if for all $S \in \mathcal{I}$ with $|S| = k - 1$,
• \mathcal{M}_S has $p[\mathcal{M}, k - 1]$ parallel classes; and

• Every parallel class of \mathcal{M}_S has same size.

Equality conditions for Mason (4)

Theorem (Thm 1.10, C.-Pak '24) For matroid \mathcal{M} and 0 < k < n,

$${a_k}^2 = \left(1+rac{1}{k}
ight) \left(1+rac{1}{\mathsf{p}[\mathfrak{M},k-1]-1}
ight) a_{k+1} a_{k-1}$$

if and only if for all $S \in \mathcal{I}$ with |S| = k - 1,

- \mathcal{M}_S has $p[\mathcal{M}, k-1]$ parallel classes; and
- Every parallel class of \mathcal{M}_S has same size.

Quote (Dr. Strangelove '64) How I Learned to Stop Worrying and Love [Convoluted Equality Conditions]. Other applications of combinatorial atlas We get log-concave inequalities and matching equality conditions for:

- Mason's inequality (refined) Day 1–2;
- Morphism of matroids (refined);
- Discrete polymatroids;
- Stanley's poset inequality (refined) Day 3-4;
- Poset antimatroids;
- Branching greedoid (log-convex);
- Interval greedoids;
- Stanley–Yan matroid basis inequality Day 4

SEE YOU NEXT CLASS!

References: www.arxiv.org/abs/2110.10740 www.arxiv.org/abs/2203.01533 Webpage: www.math.rutgers.edu/~sc2518/ Email: sweehong.chan@rutgers.edu