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Recap: Matroids

Matroid M = (X , I) is ground set X with

collection of independent sets I ⊆ 2X .

Graphical matroids

X = edges of a graph G ,

I = forests in G .

Realizable matroids

X = finite set of vectors over field F,

I = sets of linearly independent vectors.



Recap: Axioms of matroids

(Hereditary) S ⊆ T and T ∈ I implies S ∈ I.

T S

(Exchange) If S ,T ∈ I and |S | < |T |, then
there is x ∈ T \ S such that S ∪ {x} ∈ I.

S T S ∪ {x}



Recap: Matroids

Matroid M = (X , I) is ground set X with

collection of independent sets I ⊆ 2X .

Graphical matroids

X = edges of a graph G ,

I = forests in G .

Realizable matroids

X = finite set of vectors over field F,

I = sets of linearly independent vectors.



Recap: Mason’s Conjecture (1972)

Let M = (X , I) be a matroid, and let n = |X | .
ak := no. of independent sets of size k .

It was conjectured that, for 0 < k < n:

(1) ak
2 ≥ ak+1 ak−1;

(2) ak
2 ≥

(
1 + 1

k

)
ak+1 ak−1;

(3) ak
2 ≥

(
1 + 1

k

) (
1 + 1

n−k

)
ak+1 ak−1.

We previously proved Mason (2)

for graphic matroids in Day 1.



Proof of Mason (2)

for all matroids



Independent words

A word ω = ω1 · · ·ωk ∈ X ∗ is a independent word if

{ω1, . . . , ωk} is an independent set.

e1

e2

e3e4

e1e3e2 and e1e2e3 are independent words of MG .

e1e2e4 and e2e4e2 are NOT independent words.



Independent matrix (for Mason (2))

Let X = {x1, . . . , xn} and 0 < k < n .

Independent matrix I2[M, k] is (n + 1)× (n + 1)

matrix where, for i , j ∈ [n]:

(I2[M, k])i ,j :=
no. of ind. words of length k + 1

starts with xi , ends with xj
;

(I2[M, k])i ,n+1 :=
no. of ind. words of length k

starts with xi
;

(I2[M, k])n+1,n+1 :=
no. of ind. words of length

k − 1
.



Example: Independent matrix, k = 2

e1

e2

e3e4

G




0 1 1 1 3
1 0 2 1 3
1 2 0 2 3
1 1 2 0 3
3 3 3 3 4




I2[MG, 2]

(I2[MG , 2])2,3 := |{e2e1e3, e2e4e3}| = 2;

(I2[MG , 2])2,5 := |{e2e1, e2e3, e2e4}| = 3;

(I2[MG , 2])5,5 := |{e1, e2, e3, e4}| = 4.



Recap: Hyperbolic property

M has hyperbolic property (Hyp) if

⟨x ,My⟩2 ≥ ⟨x ,Mx⟩ ⟨y ,My⟩
for every x ∈ Rr and y ∈ Rr

≥0.

M satisfies (OPE) if

M has at most one positive eigenvalue.

Lemma (Lemma 3.5 (C.–Pak 22))
M satisfies (Hyp) ⇐⇒ M satisfies (OPE).



Independent matrix theorem

Theorem
For every matroid M and 0 < k < n,

The matrix I2[M, k] satisfies (Hyp).

This theorem implies Mason (2).



Independent matrix theorem implies Mason (2)

Let

M := I2[M, k], x := (1, . . . , 1, 0), y := (0, . . . , 0, 1).

Then

⟨x ,My⟩ = k!ak , ⟨x ,Mx⟩ = (k + 1)!ak+1,

⟨y ,My⟩ = (k − 1)!ak−1.

⟨x ,My⟩2 ≥ ⟨x ,My⟩ ⟨y ,My⟩ (Hyp)

then implies

a2k ≥
(
1 + 1

k

)
ak+1 ak−1.



Independent atlas



Recap: Atlas definition

A combinatorial atlas is a collection of d × d

nonnegative symmetric matrices and vector:

M0,M1, . . . ,Md ∈ Rd×d
≥0 , h ∈ Rd

≥0.

M0 is the parent of the atlas.

M1, . . . ,Md are the children of the atlas.

We would want M0, . . . ,Md to satisfy hyperbolic

property.



Matroid contraction

The contraction of element x ∈ X of matroid M

is matroid M/x := (X ′, I ′) where

X ′ := X \ {x}; I ′ := {S ⊆ X ′ : S ∪ {x} ∈ I }.

G G/e



Matroid: loops and parallel elements

A loop is x ∈ X such that {x} /∈ I.

Non-loops x , y ∈ X are parallel if {x , y} /∈ I.

A matroid is simple if it has

no loops and parallel elements.



Independent atlas

Fix t ∈ (0, 1) and d := n + 1 and 2 ≤ k < n .

Independent atlas (M0, . . . ,Md ,h) is given by

M0 := t I2[M, k] + (1− t) I2[M, k − 1];

Mi := I2[M/xi , k − 1] (i ∈ [n]);

Md := I2[M, k − 1];

h := (t, . . . , t, 1− t).

We will show that M0, . . . ,Md satisfy (Hyp).



Recap: Children-to-parent principle

Theorem (Theorem 3.4 (C.-Pak 22))
Let atlas (M0, . . . ,Md ,h) satisfies (Inh), (T-Inv),

(Dec), (Irr), and (h-Pos). Then

M1, · · · ,Md satisfy (Hyp) =⇒ M0 satisfies (Hyp).

Thus our strategy becomes:

Assume M1, . . . ,Md satisfy (Hyp) (induction);

Verify (Inh), (T-Inv), (Dec), (Irr), (h-Pos);

=⇒ M0 satisfies (Hyp).



Proof of independent matrix theorem



Proof of independent matrix theorem

We will use induction on k . Base case is k = 1.

W.l.o.g. M has no loops or parallel elements. Then

I2[M, 1] =




0 1 · · · 1 1

1 0 · · · 1 1
...

...
. . .

...
...

1 1 · · · 0 1

1 1 · · · 1 1




is d × d matrix with eigenvalues approximately

d − 1 + 1
d−1 , −1, . . . ,−1, − 1

d−1 ,

so I2[M, 1] satisfies (OPE), and thus (Hyp).



Proof of independent matrix theorem

Assume k ≥ 2.

Then M1, . . . ,Md satisfy (Hyp) by induction.

Children-parent-principle =⇒ M0 satisfies (Hyp).

⇐⇒ t I2[M, k] + (1− t) I2[M, k − 1] satisfies (Hyp).

t → 1 =⇒ I2[M, k] satisfies (Hyp).



Recap complete

Let M = (X , I) be a matroid, and let n = |X | .
ak := no. of independent sets of size k .

We have shown Mason (2):

ak
2 ≥

(
1 + 1

k

)
ak+1 ak−1.

We now show how to improve to Mason (3):

ak
2 ≥

(
1 + 1

k

) (
1 + 1

n−k

)
ak+1 ak−1.
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ak := no. of independent sets of size k .

We have shown Mason (2):

ak
2 ≥

(
1 + 1

k

)
ak+1 ak−1.

We now show how to improve to Mason (3):

ak
2 ≥

(
1 + 1

k

) (
1 + 1

n−k

)
ak+1 ak−1.



Which part of proof can be improved?



Looking back to our proof

Recall the d × d matrix:

I2[M, 1] =




0 1 · · · 1 1

1 0 · · · 1 1
...

...
. . .

...
...

1 1 · · · 0 1

1 1 · · · 1 1




satisfies (OPE) with eigenvalues approximately:

d − 1 + 1
d−1 , −1, . . . ,−1, − 1

d−1 ,

There are rooms for improvements here!



Room for improvement

Changing I2[M, 1] to d × d matrix:



0 1 · · · 1 1

1 0 · · · 1 1
...

...
. . .

...
...

1 1 · · · 0 1

1 1 · · · 1 1+ ε




has eigenvalues approximately

d − 1 + 1
d−1 − O(ε),−1, . . . ,−1,− 1

d−1 + O(ε),

still satisfies (OPE) for small ε and implies

ak
2 ≥

(
1 + 1

k

) (
1+ ε

)
ak+1 ak−1 (k = 1).



Independent matrix (3)

Independent matrix I3[M, k] is (n + 1)× (n + 1)

matrix where, for i , j ∈ [n]:

(I3[M, k])i ,j := (n − k − 1)!

no. of ind. words of

length k + 1, starts

with xi , ends with xj ;

(I3[M, k])i ,n+1 := (n − k)!
no. of ind. words of

length k , starts with xi ;

(I3[M, k])n+1,n+1 := (n − k + 1)!
no. of ind. words

of length k − 1.



Independent matrix theorem (3)

Theorem
For every matroid M and 0 < k < n,

The new matrix I3[M, k] satisfies (Hyp).

This improved theorem implies Mason (3).



Independent matrix theorem (3) implies Mason (3)

M := I3[M, k], x := (1, . . . , 1, 0), y := (0, . . . , 0, 1).

Then

⟨x ,My⟩ = k!(n − k)!ak ;

⟨x ,Mx⟩ = (k + 1)!(n − k − 1)!ak+1;

⟨y ,My⟩ = (k − 1)! .(n − k + 1)!ak−1.

⟨x ,My⟩2 ≥ ⟨x ,My⟩ ⟨y ,My⟩ (Hyp)

then implies

a2k ≥
(
1 + 1

k

)(
1+ 1

n−k

)
ak+1 ak−1.



Proof of Mason (3)

independent matrix theorem



Proof of independent matrix theorem (3)

Let k = 1. W.l.o.g. M is simple matroid.

Then I3[M, 1] is (n + 1)× (n + 1) matrix:

I3[M, 1] =




0 (n − 2)! · · · (n − 2)! (n − 1)!

(n − 2)! 0 · · · (n − 2)! (n − 1)!
...

...
. . .

...
...

(n − 2)! (n − 2)! · · · 0 (n − 1)!

(n − 1)! (n − 1)! · · · (n − 1)! n!


 .

The eigenvalues are

(n + 1)(n − 1)!, 0, −(n − 2)!, . . . , −(n − 2)! .

so I3[M, 1] satisfies (OPE), and thus (Hyp).



Proof of independent matrix theorem (3)

Assume k ≥ 2.

Fix t ∈ (0, 1) and d := n + 1 and 2 ≤ k < n .

Independent atlas (M0, . . . ,Md ,h) is given by

M0 := t I3[M, k] + (1− t) I3[M, k − 1];

Mi := I3[M/xi , k − 1] (i ∈ [n]);

Md := I3[M, k − 1];

h := (t, . . . , t, 1− t).

The definition of this atlas does not change.



Proof of independent matrix theorem (3)

Then M1, . . . ,Md satisfy (Hyp) by induction.

Children-parent principle =⇒ M0 satisfies (Hyp).

⇐⇒ t I3[M, k] + (1− t) I3[M, k − 1] satisfies (Hyp).

t → 1 =⇒ I3[M, k] satisfies (Hyp).

This part of the proof does not change.



What we have shown

Let M = (X , I) be a matroid, and let n = |X | .
ak := no. of independent sets of size k .

Theorem (Mason (3))

ak
2 ≥

(
1 + 1

k

) (
1 + 1

n−k

)
ak+1 ak−1.

Next we show that this inequality can be

improved even further.
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k

) (
1 + 1
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Mason (4) for graphical matroids



Mason (4) for graphical matroids

Theorem (C.-Pak)
For graphical matroid of connected graph

G = (V ,E ), and κ = |V | − 2,

(aκ)
2 ≥ 3

2

(
1 +

1

κ

)
aκ+1 aκ−1.

Numerically better than Mason (3), because

3

2
≥ 1 +

1

n − κ
= 1 +

1

|E | − |V |+ 2

for G that is not tree.



Comparison with Mason (3)

Mason (4) gives

(aκ)
2

aκ+1 aκ−1
≥ 3

2
when |E | − |V | → ∞,

Meanwhile, Mason (3) only gives

(aκ)
2

aκ+1 aκ−1
≥ 1 when |E | − |V | → ∞.

New bound is better numerically and asymptotically.

We will prove Mason (4) today using atlas method.



Which part of proof can be further improved?



Room for further improvement

Recall (n + 1)× (n + 1) matrix:

I3[M, 1] =




0 (n − 2)! · · · (n − 2)! (n − 1)!

(n − 2)! 0 · · · (n − 2)! (n − 1)!
...

...
. . .

...
...

(n − 2)! (n − 2)! · · · 0 (n − 1)!

(n − 1)! (n − 1)! · · · (n − 1)! n!




has eigenvalues

(n + 1)(n − 1)!, 0, −(n − 2)!, . . . , −(n − 2)! .

No room for improvement for general matroids.

But such matrix never occurs for graphic matroids.



Independent matrix for graphic Mason (4)

Let E = {e1, . . . , en} and κ = |V | − 2 .

Independent matrix I4[MG , κ] is (n + 1)× (n + 1)

matrix where, for i , j ∈ [n]:

(I4[MG , κ])i ,j :=
no. of ind. words of length κ+ 1

starts with ei , ends with ej
;

(I4[MG , κ])i ,n+1 :=
no. of ind. words of length κ

starts with ei
;

(I4[MG , κ])n+1,n+1 :=
3

2
× no. of ind. words of

length κ− 1
.



Independent matrix theorem (4)

Theorem
For every graph G = (V ,E ) and κ = |V | − 2,

The new matrix I4[MG , κ] satisfies (Hyp).

This improved theorem implies graphic Mason (4).



Ind. matrix theorem (4) implies graphic Mason (4)

M := I4[MG , κ], x := (1, . . . , 1, 0), y := (0, . . . , 0, 1).

Then

⟨x ,My⟩ = κ!aκ; ⟨y ,My⟩ = (κ− 1)!aκ−1;

⟨x ,Mx⟩ = 3
2 (κ+ 1)!aκ+1.

⟨x ,My⟩2 ≥ ⟨x ,My⟩ ⟨y ,My⟩ (Hyp)

then implies

a2k ≥ 3
2

(
1 + 1

k

)
ak+1 ak−1.



Proof of independent matrix theorem (4)



Proof of independent matrix theorem (4)

We prove by induction on |V | . Let |V | = 3.

W.l.o.g G = (V ,E ) is simple graph.

Then n = |E | ≤ 3, and I4[MG , κ] is

either

[
0 1 1

1 0 1

1 1 3
2

]
or



0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 3
2




The eigenvalues are

(2.69,−1,−0.19) or (72 , 0,−1,−1)

so I4[MG , κ] satisfies (OPE), and thus (Hyp).



Proof of independent matrix theorem (4)

Assume |V | ≥ 4.

Fix t ∈ (0, 1) and d := |E |+ 1 and κ := |V | − 2 .

Independent atlas (M0, . . . ,Md ,h) is given by

M0 := t I4[MG , κ] + (1− t) I2[MG , κ− 1];

Mi := I4[MG/ei , κ− 1] (1 ≤ i ≤ |E |);
Md := I2[MG , κ− 1];

h := (t, . . . , t, 1− t).



Proof of independent matrix theorem (4)

Then M1, . . . ,Md satisfy (Hyp) by induction.

Children-parent principle =⇒ M0 satisfies (Hyp).

⇐⇒ t I4[MG , κ] + (1− t) I2[MG , κ− 1] satisfies (Hyp).

t → 1 =⇒ I4[MG , κ] satisfies (Hyp).

This part of the proof does not change.



What we have shown

Theorem (C.-Pak ‘24)
For graphical matroid of simple connected graph

G = (V ,E ), and κ = |V | − 2,

(aκ)
2 ≥ 3

2

(
1 +

1

κ

)
aκ+1 aκ−1,

with equality if and only if G is a cycle graph.

Naturally, this improvement can be generalized

to all matroids (next slide).



Mason (4) for all matroids



Parallel classes

A loop is x ∈ X such that {x} /∈ I.
Non-loops x , y ∈ X are parallel if {x , y} /∈ I.

Parallel equivalence relation: x ∼ y if {x , y} /∈ I.
Parallel class = equivalence class of ∼.



Parallel number

Contraction of S ∈ I is matroid MS := (XS , IS):
XS := X \ S , IS := {T \ S : S ⊆ T}.

For S ∈ I, the parallel number is

prl(S) := number of parallel classes of MS

= no. of elements of MS not counting multiplicity.

prl(S) = 5



Parallel constant

The k-th parallel constant is

p[M, k] := max{prl(S) | S ∈ I with |S | = k}.

prl(S) = 2 prl(S) = 2 prl(S) = 2 prl(S) = 3

p[M, 1] = 3



Mason (4)

Theorem (Thm 1.10, C.-Pak ‘24)
For matroid M and 0 < k < n ,

ak
2 ≥

(
1 +

1

k

)(
1 +

1

p[M, k − 1]− 1

)
ak+1 ak−1.

This refines Mason (3),

ak
2 ≥

(
1 +

1

k

)(
1 +

1

n − k

)
ak+1 ak−1,

since

p[M, k − 1] ≤ n − k + 1.



Improvement for different matroids

For all matroids,

ak
2 ≥

(
1 + 1

k

) (
1 + 1

n−k

)
ak+1 ak−1.

Graphical matroids and k = |V | − 2,

ak
2 ≥

(
1 + 1

k

)
3
2 ak+1 ak−1.

Realizable matroids over Fq,

ak
2 ≥

(
1 + 1

k

) (
1 + 1

qm−k+1−2

)
ak+1 ak−1.

(k ,m, n)-Steiner system matroid,

ak
2 ≥

(
1 + 1

k

)
n−k+1
n−m ak+1 ak−1.



Mason (4)

Theorem (Thm 1.10, C.-Pak ‘24)
For matroid M and 0 < k < n ,

ak
2 ≥

(
1 +

1

k

)(
1 +

1

p[M, k − 1]− 1

)
ak+1 ak−1.

Naturally, we have matching equality conditions

for this inequality.



When is equality achieved?

When M is free matroid, i.e. every subset of X

is independent;

When M is graphical matroid, with

G = cycle graph and k = |V | − 2;

When M is realizable matroid, with

X := {every m-dimensional vector over Fq};

When M is Steiner system matroid;

· · · · · · (running out of space) · · · · · ·



Equality conditions for Mason (4)

Theorem (Thm 1.10, C.-Pak ‘24)
For matroid M and 0 < k < n ,

ak
2 ===

(
1 + 1

k

) (
1 + 1

p[M,k−1]−1

)
ak+1 ak−1

if and only if for all S ∈ I with |S | = k − 1,

MS has p[M, k − 1] parallel classes; and

Every parallel class of MS has same size.

Quote (Dr. Strangelove ‘64)
How I Learned to Stop Worrying and Love

[Convoluted Equality Conditions].



Equality conditions for Mason (4)
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For matroid M and 0 < k < n ,

ak
2 ===

(
1 + 1

k

) (
1 + 1

p[M,k−1]−1

)
ak+1 ak−1

if and only if for all S ∈ I with |S | = k − 1,

MS has p[M, k − 1] parallel classes; and

Every parallel class of MS has same size.

Quote (Dr. Strangelove ‘64)
How I Learned to Stop Worrying and Love

[Convoluted Equality Conditions].



Other applications of combinatorial atlas

We get log-concave inequalities and

matching equality conditions for:

Mason’s inequality (refined) Day 1–2;

Morphism of matroids (refined);

Discrete polymatroids;

Stanley’s poset inequality (refined) Day 3–4;

Poset antimatroids;

Branching greedoid (log-convex);

Interval greedoids;

Stanley–Yan matroid basis inequality Day 4.



SEE YOU NEXT CLASS!
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