Log-concave Poset Inequalities
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What is log-concavity?
A sequence ai,...,a, € Ry is log-concave if

ai > kg1 dk-1 (1< k< n).

Log-concavity (and positivity) implies unimodality:

< - ---<a,>-->a, forsome 1<m<n.
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Example 1: binomial coefficients

n
dy — (k) k:O,l,...,n.

This sequence is log-concave because

2
% ()

1 1
— = (1+3)(1+ ,
Akt k-1 (1) () ( k> ( n= k)

which is greater than 1.




Example 2: permutations with k inversions

ax = number of m € S, with k inversions,

where inversion of 7 is pair i <j s.t. m > 7.

This sequence is log-concave because

n—1
Y ad = [l = [[0+q+d+...+q)

is a product of log-concave polynomials.
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Example 3: forests of a graph

ax = number of forests with k edges of graph G.
Forest is a subset of edges of G that has no cycles.

Log-concavity was conjectured for all matroids
(Mason ‘72), and was proved through combinatorial
Hodge theory (Huh ‘15).
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Example 3: forests of a graph

ax = number of forests with k edges of graph G.

Forest is a subset of edges of G that has no cycles.

We will provide another proof of Mason's conjecture

in this lecture series using combinatorial atlas.
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Combinatorial atlas: version 1



Atlas v1: Definition

A combinatorial atlas is a collection of d X d

nonnegative symmetric matrices and vector:
dxd d
Mo,Ml,...,MdGRZS, hEREO'
My is the parent of the atlas.

My, ..., My are the children of the atlas.

We would want My, ..., My to satisfy hyperbolic
property.



Hyperbolic property

M has hyperbolic property (Hyp) if
(x,My)? > {(x,Mx) (y,My)

for every x € R" and y € R%,.

M satisfies (OPE) if

M has at most one positive eigenvalue.

Lemma (Lemma 3.5 (C.—Pak 22))
M satisfies (Hyp) <= M satisfies (OPE).




Fantastic (Hyp) and where to find them

They are everywhere in mathematics:
Convex geometry: Alexandrov—Fenchel inequality.
Algebraic geometry: Hodge theory.

Combinatorics: Lorentzian polynomials.




How does (Hyp) imply log-concavity?

Input: ax_1,ax, akr1 € R.

Find: M € R%5? and x,y € RY; such that

dx = <X7My>7 dk+1 = <X7MX>7 k-1 = <y7My>

(x,My)* > (x,My) (y,My) (Hyp)
then implies

ai > akr13k-1 (log-concave ineq.)



Mason’s (graphic) conjecture



Mason's graphic conjecture
Let G = (V,E) be a graph.
ar = number of forests of G with k edges.

Forest is a subset of edges of G that has no cycles.

Conjecture (Mason ‘72)
For 0 < k <|V

7

2
a, = aki1dk-1-

We will in fact show that

a, > (1+ %) a1 a1



Forest words

A word w=wy---wk € E* is a forest word if

{wi,...,wk} is the edge set of a forest.

er| X4 les
€2

e1e36 and ejezep are forest words.

e1ees and ererer are NOT forest words.



Forest matrix
Let E={e,...,en} and 0 < k < |V/|.

Forest matrix F[G, k| is (m+ 1) x (m+ 1) matrix

where, for i,j € [m]:

no. of forest words of length k + 1
(FIG,k])ij = . . :
starts with e;, ends with ¢;

(FIG. K]); __no. of forest words of length k
P RbmEL starts with ¢;

no. of forest words of length

FIG, k) me1ime1 =
(FIG Kmitmis = 8



Example: Forest matrix, k = 2

e1l| X4 |es

€2
G

(FIG,2])23 =
(FIG,2])25 =
(FIG,2])s5 =

W= = = O
W =N O =
W N O
W OoON = =
W W W W

FlG,2]

{ever63, eveges}| = 2;
{exer1, ere3, ees}| = 3;
{e1, &, &3, &}| = 4.



Forest matrix theorem

Theorem
For every graph G and 0 < k < |V/|,

The matrix F[G, k] satisfies (Hyp).

This theorem implies Mason's graphic conjecture

(proof next slide).



Forest matrix theorem implies Mason’s conjecture
Let
M = F[G, k], x :== (1,...,1,0), y := (0,...,0,1).
Then
(x,My) = klax, (x,Mx) = (k+ 1)ak1,
(y,My) = (k—1)la;_;.

(x,My)* > (x,My) (y,My) (Hyp)
then implies

a, > (1+ %) a1 ak1.



Forest matrix theorem

Theorem
For every graph G and 0 < k < |V

7

The matrix F[G, k] satisfies (Hyp).

We will prove this theorem today by atlas method.



Forest atlas



Edge contraction

The contraction of edge e of G is the graph G/e

where endpoints of e are merged to one.

AN

G Gle

Loops and parallel edges are not removed.
In particular, there is a bijection between
edges of G and G/e.



Forest atlas

Fix t € (0,1) and d:=m+1 and 2 < k < |V/|.

Forest atlas (My, ..., My, h) is given by
My = tF[G,k] + (1 —1t)F[G, k—1];
M; = F[G/e, k—1] (i €[m]);
My = F[G, k— 1]
h = (t,...,t,1—1t),
We will show that My, ..., My satisfy (Hyp),

by showing that forest atlas satisfies some

technical properties.



Technical properties of atlas that imply (Hyp)



Property 1-2: lrreducibility and h-Positivity

Atlas (Mo, ..., My, h) satisfies (Irr) if

matrix My is irreducible.

Atlas satisfies (h-Pos) if

every entry of h is strictly positive.



Forest atlas satisfies (Irr) and (h-Pos)

W.l.o.g. G has no loops or parallel edges.

Then all non-diagonal entries of F[G, k] are positive.

My = tF[G. k] + (1 —t)F[G, k —1]

is then irreducible, which implies (Irr).

h = (t,...,t,1—t) is strictly positive as t € (0,1),

which implies (h-Pos). O



Property 3: Decreasing support

Atlas (Mo, ..., My, h) satisfies (Dec) if,

supp(M;) C supp(Mp),

for every i € [d].

Here support of matrix M is

supp(M) = {i €[d] : M;j #0 for some j € [d]}.



Forest atlas satisfies (Dec)

W.l.o.g. G has no loops or parallel edges.
Then all non-diagonal entries of F[G, k] are positive.

Then supp(F[G, k]) = [m+ 1] = [d].

Since
My = tF[G, k] + (1 —t)F[G, k —1],
It then follows that
supp(M;) C [d] = supp(F[G, k]) = supp(Mp),
which implies (Dec). O



Property 4: Transposition-Invariance

Atlas satisfies (T-Inv) if,
(Mi)je = (Mj)ei = (Mp)i,

for every i,j, ¢ € [d].

Here (M;); is the j, (-th entry of matrix M;.



Forest atlas satisfies (T-Inv)

W.lo.g. i,j,¢ € [m]. Then

(Mi)je = (Mj)ei = (Me)ij
= ‘{forest words ejejey - - - }‘,
k—2
and (T-Inv) follows.



Property 5: Inheritance

Atlas (Mo, ..., My, h) satisfies (Inh) if,
i, j-th entry of My = j-th entry of M;h,

for all i,j € [d].



Forest atlas satisfies (Inh)

W.l.o.g. i,j € [m]. Then

i, j-th entry of Mj
= t(F[G, k])ij + (1= t)(F[G, k —1])i,
= t|{forest words e; --- e of G}
k-1
+ (1 — t)|{forest words ¢; --- e of G}|
k—2
= t|{forest words --- e of G/ej}|
k—1
+ (1 —1t) ‘{forest words --- e of G/e,-}‘
k—2



Forest atlas satisfies (Inh)

i, j-th entry of My

= Z t|{forest words e, --- € of G/ei}|
=1 k=2
+ (1= t) |{forest words --- & of G/e}|
k—2

=Y h(F[G/er, k—1]);
/=1

+ hnea (FIG/ei k= 1])mia,
= (1;,M;h) = j-th entry of M;h.



Children-to-parent principle

Theorem (Theorem 3.4 (C.-Pak 22))
Let atlas (M, ..., Mgy, h) satisfies (Inh), (T-Inv),
(Dec), (Irr), and (h-Pos). Then

My, - -, My satisfy (Hyp) = M, satisfies (Hyp)

V.

Thus our strategy becomes:
@ Assume My, ..., My satisfy (Hyp) (induction);
@ Verify (Inh), (T-Inv), (Dec), (Irr), (h-Pos);
e —> Mj satisfies (Hyp).



Proof of forest matrix theorem



Recall forest matrix theorem

Theorem
For every graph G and 0 < k < |V/,

The matrix F[G, k] satisfies (Hyp).

We will now prove this theorem (next slide).



Proof of forest matrix theorem

We will use induction on k. Base case is kK = 1.

W.l.o.g. G has no loops or parallel edges. Then

01 -~ 11
0 1
F[G,1] = :
11 1
(11 1)
The eigenvalues are
(d=1)++/(d—1)°+4 1 1 (d—1)—+/(d—1)2+4

2 ’ 2 ?

so F[G, 1] satisfies (OPE), and thus (Hyp).



Proof of forest matrix theorem

Assume k > 2.

Then My, ..., My satisfy (Hyp) by induction.
Children-parent-principle = Mj satisfies (Hyp).
< tF[G,k|+ (1 —t)F[G, k — 1] satisfies (Hyp).

t -1 = FJ[G, k] satisfies (Hyp). O



What we have shown today
Let G = (V,E) be a graph.
ax = number of forests with k edges of graph G.

Forest is a subset of edges of G that has no cycles.

Theorem 1
For 0 < k < |V

7

a, > (1+ %) a1 ak-1.




What we have shown today
Let G = (V,E) be a graph.
ax = number of forests with k edges of graph G.

Forest is a subset of edges of G that has no cycles.

Theorem 1
For 0 < k < |V

7

a, > (1+ %) a1 ak-1.

In fact, we can prove stronger inequalities for more

general objects.



Mason’s conjecture for matroids



Object: Matroids
Matroid M = (X, Z) is ground set X with
collection of independent sets Z C 2%,

Graphical matroids
@ X = edges of a graph G,

@ 7 = forestsin G.

Realizable matroids

@ X = finite set of vectors over field F,
sets of linearly independent vectors.

ol =



Matroids: Conditions
@ SCT and T €7 implies S € 1.

-

T S

x € T\ S such that SU {x} € 7.

N - IN

SuU{z}

Note: These are natural properties of sets of

linearly independent vectors.



Mason's Conjecture (1972)

For every matroid and k > 1,

(1) L2 > Liyy Lq;

1
(2) L*> > (1+;>]k+1 Ii1;

1 1
1+ — 14+ — | L1 1.
<+k)< +n—k) k+1 k-1

I is number of ind. sets of size k, and n = | X|.

—~
w
N—
~

N
V4

Note: (3) = (2) = (1).



Why (1+ %) (1+-2) ?

Mason (3) is equivalent to ultra/binomial log-concavity,
2
Ik D1 I

(i) ()

Equality occurs if every (k + 1)-subset is independent.



Solution to Mason (1)

Theorem (Adiprasito-Huh-Katz '18)
For every matroid and k > 1,

L* > Ier I

Proof used combinatorial Hodge theory for

matroids.



Solution to Mason (2)

Theorem (Huh-Schréter-Wang ‘18)
For every matroid and k > 1,

1
L > (1 + E) Tiyr Ik—1.

Proof used combinatorial Hodge theory for

correlation inequality on matroids.



Solution to Mason (3)

Theorem

(Anari—Liu—Oveis Gharan-Vinzant, Brandén-Huh ‘20)
For every matroid and k > 1,

1 1
L2 > (1+=2)(1+— )01
k_<+k)(+n_k)k+1k1

Proof used theory of strong log-concave polynomials /

Lorentzian polynomials.



Solution to Mason (3)

Theorem

(Anari—Liu—Oveis Gharan-Vinzant, Brandén-Huh ‘20)
For every matroid and k > 1,

1 1
L2 > (1+=2)(1+— )01
k_<+k)<+n_k)k+1k1

In fact, this inequality can be further improved, and

we will see this improvement in the next class.



Next episode preview



Improvement for graphical matroids

Theorem (C.-Pak)

For graphical matroid of simple connected graph
G=(V,E), and k=1|V| -2,

3 1
(Ik)2 > 5 (1 + ;) Tiy1 Ix1,

with equality if and only if G is cycle graph.

Numerically better than Mason (3), because

3o . 1
2 = n—k |E| — V] +2

for G that is not tree.




Comparison with Mason (3)

New bound gives
I)? 3
)" > = when |E| — |V]| — oo,
Tiv1 Ieq 2

Meanwhile, Mason (3) bound only gives

(L)

> 1 when |E| — |V| — oo.
Tii1 Ik El=1V]

New bound is better numerically and asymptotically.
This bound will be proved by atlas method in the

next class.



SEE YOU NEXT CLASS!

References: www.arxiv.org/abs/2110.10740
Www.arxiv.org/abs/2203.01533

Webpage:  www.math.rutgers.edu/~sc2518/

Email: sweehong.chan@rutgers.edu


www.arxiv.org/abs/2110.10740
www.arxiv.org/abs/2203.01533
www.math.rutgers.edu/~sc2518/

Method: Combinatorial atlas
Results: Log-concave inequalities, and

if and only if conditions for equality

@ Matroids (refined);

@ Morphism of matroids (refined);

@ Discrete polymatroids;

@ Stanley's poset inequality (refined);
@ Poset antimatroids;

@ Branching greedoid (log-convex);

Interval greedoids.



Method: Combinatorial atlas
Results: Log-concave inequalities, and

if and only if conditions for equality

e Matroids (refined);
o
o



Combinatorial atlas application:
Matroids



Refinement for Mason (3)

Theorem 2 (C.-Pak)
For every matroid and k > 1,

1 1
L2 > [1+=) (1 L1l 1.
C ( *k)( +prlM(k—l)—1>

V.

This refines Mason (3),

1 1
L2 > L+ =) [ 1+ ——) Lt Lea,
k n—k

since
priyg(k —1) < n—k+ 1.



Refinement for different matroids

@ For all matroids,
L> > (1+3) (14 2) Ier et
@ Graphical matroids and k = |V| — 2,
L2 > (1+3) 2 Ly L
@ Realizable matroids over [,
L2 > (14 3) (1+ gmmrs) ern e
@ (k, m, n)-Steiner system matroid,

L> > (1+3) =k ey

n—m




Refinement for Mason (3)

Theorem 3 (C.-Pak)
For every matroid and k > 1,

1 1
L2 > [1+=) (1 L1l 1.
C ( *k)( +prlM(k—l)—1>

V.

This refines Mason (3),

1 1
L2 > L+ =) [ 1+ ——) Lt Lea,
k n—k

since
priyg(k —1) < n—k+ 1.



Parallel classes of matroid M

Loop is x € X such that {x} ¢ Z.
Non-loops x, y are parallel if {x,y} ¢ Z.
Parallelship equiv. relation: x ~y if {x,y} ¢ Z.

Parallel class = equivalence class of ~.



Matroid contraction

Contraction of § € 7 is matroid Mg with

XSIX\S, ZgI{T\SZSQT}.

AN

prl(S) := number of parallel classes of Mg




Parallel number

The k-parallel number is

priyi(k) := max{prl(S) | S € Z with |S| = k}.

NN N K
&&NB

prin(1) =3



Refinement for Mason (3)

Theorem 4 (C.-Pak)
For every matroid and k > 1,

1 1
L2 > [1+=) (1 L1l 1.
C ( *k)( +prlM(k—l)—1>

V.

This refines Mason (3),

1 1
L2 > L+ =) [ 1+ ——) Lt Lea,
k n—k

since
priyg(k —1) < n—k+ 1.



When is equality achieved?

@ When every (k + 1)-subset is independent,
priyg(k —1) = n—k+ 1,

@ Graphical matroid when G is a cycle,
priy(k — 1) = 3.

@ Realizable matroids of every m-vectors over I,

priy(k —1) = g™+ —1.

@ (k, m, n)-Steiner system matroid,

n—k+1
Pk =1) = T



Equality conditions

Theorem 5 (C.-Pak)
For every matroid and k > 1,

1 1
L°=(1+=2)(1 Lot I
k <+k)(+prlM(k—1)—1>

if and only if

for every S € Z with |S| = k — 1,
@ Ms has prly(k — 1) parallel classes; and

@ Every parallel class of Mg has same size.




