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What is log-concavity?

A sequence a1, . . . , an ∈ R≥0 is log-concave if

a2k ≥ ak+1 ak−1 (1 < k < n).

Log-concavity (and positivity) implies unimodality:

a1 ≤ · · · ≤ am ≥ · · · ≥ an for some 1 ≤ m ≤ n.
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Example 1: binomial coefficients

ak =

(
n

k

)
k = 0, 1, . . . , n.

This sequence is log-concave because

a2k
ak+1 ak−1

=

(
n
k

)2
(

n
k+1

) (
n

k−1

) =

(
1 +

1

k

)(
1 +

1

n − k

)
,

which is greater than 1.



Example 2: permutations with k inversions

ak = number of π ∈ Sn with k inversions,

where inversion of π is pair i < j s.t. πi > πj .

This sequence is log-concave because

∑

0≤k≤(n2)

ak q
k = [n]q! =

n−1∏

i=1

(1 + q + q2 + . . .+ qi)

is a product of log-concave polynomials.
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Example 3: forests of a graph

ak = number of forests with k edges of graph G .

Forest is a subset of edges of G that has no cycles.

Log-concavity was conjectured for all matroids

(Mason ‘72), and was proved through combinatorial

Hodge theory (Huh ‘15).

G forest not forest spanning tree



Example 3: forests of a graph

ak = number of forests with k edges of graph G .

Forest is a subset of edges of G that has no cycles.

We will provide another proof of Mason’s conjecture

in this lecture series using combinatorial atlas.

G forest not forest spanning tree



Combinatorial atlas: version 1



Atlas v1: Definition

A combinatorial atlas is a collection of d × d

nonnegative symmetric matrices and vector:

M0,M1, . . . ,Md ∈ Rd×d
≥0 , h ∈ Rd

≥0.

M0 is the parent of the atlas.

M1, . . . ,Md are the children of the atlas.

We would want M0, . . . ,Md to satisfy hyperbolic

property.



Hyperbolic property

M has hyperbolic property (Hyp) if

⟨x ,My⟩2 ≥ ⟨x ,Mx⟩ ⟨y ,My⟩
for every x ∈ Rr and y ∈ Rr

≥0.

M satisfies (OPE) if

M has at most one positive eigenvalue.

Lemma (Lemma 3.5 (C.–Pak 22))
M satisfies (Hyp) ⇐⇒ M satisfies (OPE).



Fantastic (Hyp) and where to find them

They are everywhere in mathematics:

Convex geometry: Alexandrov–Fenchel inequality.

Algebraic geometry: Hodge theory.

Combinatorics: Lorentzian polynomials.



How does (Hyp) imply log-concavity?

Input: ak−1, ak , ak+1 ∈ R .

Find: M ∈ Rd×d
≥0 and x , y ∈ Rd

≥0 such that

ak = ⟨x ,My⟩, ak+1 = ⟨x ,Mx⟩, ak−1 = ⟨y ,My⟩.

⟨x ,My⟩2 ≥ ⟨x ,My⟩ ⟨y ,My⟩ (Hyp)

then implies

a2k ≥ ak+1ak−1 (log-concave ineq.)



Mason’s (graphic) conjecture



Mason’s graphic conjecture

Let G = (V ,E ) be a graph.

ak = number of forests of G with k edges.

Forest is a subset of edges of G that has no cycles.

Conjecture (Mason ‘72)
For 0 < k < |V | ,

a2k ≥ ak+1 ak−1.

We will in fact show that

a2k ≥
(
1 + 1

k

)
ak+1 ak−1.



Forest words

A word ω = ω1 · · ·ωk ∈ E ∗ is a forest word if

{ω1, . . . , ωk} is the edge set of a forest.

e1

e2

e3e4

e1e3e2 and e1e3e2 are forest words.

e1e2e4 and e2e4e2 are NOT forest words.



Forest matrix

Let E = {e1, . . . , em} and 0 < k < |V | .

Forest matrix F [G , k] is (m + 1)× (m + 1) matrix

where, for i , j ∈ [m]:

(F [G , k])i ,j :=
no. of forest words of length k + 1

starts with ei , ends with ej
;

(F [G , k])i ,m+1 :=
no. of forest words of length k

starts with ei
;

(F [G , k])m+1,m+1 :=
no. of forest words of length

k − 1
.



Example: Forest matrix, k = 2

e1

e2

e3e4

G




0 1 1 1 3
1 0 2 1 3
1 2 0 2 3
1 1 2 0 3
3 3 3 3 4




F [G, 2]

(F [G , 2])2,3 := |{e2e1e3, e2e4e3}| = 2;

(F [G , 2])2,5 := |{e2e1, e2e3, e2e4}| = 3;

(F [G , 2])5,5 := |{e1, e2, e3, e4}| = 4.



Forest matrix theorem

Theorem
For every graph G and 0 < k < |V |,

The matrix F [G , k] satisfies (Hyp).

This theorem implies Mason’s graphic conjecture

(proof next slide).



Forest matrix theorem implies Mason’s conjecture

Let

M := F [G , k], x := (1, . . . , 1, 0), y := (0, . . . , 0, 1).

Then

⟨x ,My⟩ = k!ak , ⟨x ,Mx⟩ = (k + 1)!ak+1,

⟨y ,My⟩ = (k − 1)!ak−1.

⟨x ,My⟩2 ≥ ⟨x ,My⟩ ⟨y ,My⟩ (Hyp)

then implies

a2k ≥
(
1 + 1

k

)
ak+1 ak−1.



Forest matrix theorem

Theorem
For every graph G and 0 < k < |V |,

The matrix F [G , k] satisfies (Hyp).

We will prove this theorem today by atlas method.



Forest atlas



Edge contraction

The contraction of edge e of G is the graph G/e

where endpoints of e are merged to one.

G G/e

Loops and parallel edges are not removed.

In particular, there is a bijection between

edges of G and G/e.



Forest atlas

Fix t ∈ (0, 1) and d := m + 1 and 2 ≤ k < |V | .

Forest atlas (M0, . . . ,Md ,h) is given by

M0 := t F [G , k] + (1− t)F [G , k − 1];

Mi := F [G/ei , k − 1] (i ∈ [m]);

Md := F [G , k − 1];

h := (t, . . . , t, 1− t).

We will show that M0, . . . ,Md satisfy (Hyp),

by showing that forest atlas satisfies some

technical properties.



Technical properties of atlas that imply (Hyp)



Property 1–2: Irreducibility and h-Positivity

Atlas (M0, . . . ,Md ,h) satisfies (Irr) if

matrix M0 is irreducible.

Atlas satisfies (h-Pos) if

every entry of h is strictly positive.



Forest atlas satisfies (Irr) and (h-Pos)

W.l.o.g. G has no loops or parallel edges.

Then all non-diagonal entries of F [G , k] are positive.

M0 = t F [G , k] + (1− t)F [G , k − 1]

is then irreducible, which implies (Irr).

h = (t, . . . , t, 1−t) is strictly positive as t ∈ (0, 1),

which implies (h-Pos).



Property 3: Decreasing support

Atlas (M0, . . . ,Md ,h) satisfies (Dec) if,

supp(Mi) ⊆ supp(M0),

for every i ∈ [d ].

Here support of matrix M is

supp(M) :=
{
i ∈ [d ] : Mi ,j ̸= 0 for some j ∈ [d ]

}
.



Forest atlas satisfies (Dec)

W.l.o.g. G has no loops or parallel edges.

Then all non-diagonal entries of F [G , k] are positive.

Then supp(F [G , k]) = [m + 1] = [d ] .

Since

M0 = t F [G , k] + (1− t)F [G , k − 1],

It then follows that

supp(Mi) ⊆ [d ] = supp(F [G , k]) = supp(M0),

which implies (Dec).



Property 4: Transposition-Invariance

Atlas satisfies (T-Inv) if,

(Mi)j ,ℓ = (Mj)ℓ,i = (Mℓ)i ,j

for every i , j , ℓ ∈ [d ].

Here (Mi)j ,ℓ is the j , ℓ-th entry of matrix Mi .



Forest atlas satisfies (T-Inv)

W.l.o.g. i , j , ℓ ∈ [m]. Then

(Mi)j ,ℓ = (Mj)ℓ,i = (Mℓ)i ,j

=
∣∣{forest words eiejeℓ · · ·︸︷︷︸

k−2

}
∣∣,

and (T-Inv) follows.



Property 5: Inheritance

Atlas (M0, . . . ,Md ,h) satisfies (Inh) if,

i , j-th entry of M0 = j-th entry of Mih ,

for all i , j ∈ [d ] .



Forest atlas satisfies (Inh)

W.l.o.g. i , j ∈ [m] . Then

i , j-th entry of M0

= t (F [G , k])i ,j + (1− t) (F [G , k − 1])i ,j

= t
∣∣{forest words ei · · ·︸︷︷︸

k−1

ej of G}
∣∣

+ (1− t)
∣∣{forest words ei · · ·︸︷︷︸

k−2

ej of G}
∣∣

= t
∣∣{forest words · · ·︸︷︷︸

k−1

ej of G/ei}
∣∣

+ (1− t)
∣∣{forest words · · ·︸︷︷︸

k−2

ej of G/ei}
∣∣



Forest atlas satisfies (Inh)

i , j-th entry of M0

=
m∑

ℓ=1

t
∣∣{forest words eℓ · · ·︸︷︷︸

k−2

ej of G/ei}
∣∣

+ (1− t)
∣∣{forest words · · ·︸︷︷︸

k−2

ej of G/ei}
∣∣

=
m∑

ℓ=1

hℓ (F [G/ei , k − 1])ℓ,j

+ hm+1 (F [G/ei , k − 1])m+1,j

= ⟨1j ,Mih⟩ = j-th entry of Mih.



Children-to-parent principle

Theorem (Theorem 3.4 (C.-Pak 22))
Let atlas (M0, . . . ,Md ,h) satisfies (Inh), (T-Inv),

(Dec), (Irr), and (h-Pos). Then

M1, · · · ,Md satisfy (Hyp) =⇒ M0 satisfies (Hyp).

Thus our strategy becomes:

Assume M1, . . . ,Md satisfy (Hyp) (induction);

Verify (Inh), (T-Inv), (Dec), (Irr), (h-Pos);

=⇒ M0 satisfies (Hyp).



Proof of forest matrix theorem



Recall forest matrix theorem

Theorem
For every graph G and 0 < k < |V |,

The matrix F [G , k] satisfies (Hyp).

We will now prove this theorem (next slide).



Proof of forest matrix theorem

We will use induction on k . Base case is k = 1.

W.l.o.g. G has no loops or parallel edges. Then

F [G , 1] =




0 1 · · · 1 1

1 0 · · · 1 1
...

...
. . .

...
...

1 1 · · · 0 1

1 1 · · · 1 1


 .

The eigenvalues are

(d−1)+
√

(d−1)2+4

2 ,−1, . . . ,−1,
(d−1)−

√
(d−1)2+4

2 ,

so F [G , 1] satisfies (OPE), and thus (Hyp).



Proof of forest matrix theorem

Assume k ≥ 2.

Then M1, . . . ,Md satisfy (Hyp) by induction.

Children-parent-principle =⇒ M0 satisfies (Hyp).

⇐⇒ tF [G , k] + (1− t)F [G , k − 1] satisfies (Hyp).

t → 1 =⇒ F [G , k] satisfies (Hyp).



What we have shown today

Let G = (V ,E ) be a graph.

ak = number of forests with k edges of graph G .

Forest is a subset of edges of G that has no cycles.

Theorem 1
For 0 < k < |V | ,

a2k ≥
(
1 + 1

k

)
ak+1 ak−1.

In fact, we can prove stronger inequalities for more

general objects.
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Mason’s conjecture for matroids



Object: Matroids

Matroid M = (X , I) is ground set X with

collection of independent sets I ⊆ 2X .

Graphical matroids

X = edges of a graph G ,

I = forests in G .

Realizable matroids

X = finite set of vectors over field F,

I = sets of linearly independent vectors.



Matroids: Conditions

S ⊆ T and T ∈ I implies S ∈ I.

T S

If S ,T ∈ I and |S | < |T |, then there is

x ∈ T \ S such that S ∪ {x} ∈ I.

S T S ∪ {x}

Note: These are natural properties of sets of

linearly independent vectors.



Mason’s Conjecture (1972)

For every matroid and k ≥ 1,

(1) Ik
2 ≥ Ik+1 Ik−1;

(2) Ik
2 ≥

(
1 +

1

k

)
Ik+1 Ik−1;

(3) Ik
2 ≥

(
1 +

1

k

)(
1 +

1

n − k

)
Ik+1 Ik−1.

Ik is number of ind. sets of size k , and n = |X |.

Note: (3) ⇒ (2) ⇒ (1).



Why
(
1 + 1

k

) (
1 + 1

n−k

)
?

Mason (3) is equivalent to ultra/binomial log-concavity,

Ik
2

(
n
k

)2 ≥ Ik+1(
n

k+1

) Ik−1(
n

k−1

) .

Equality occurs if every (k + 1)-subset is independent.



Solution to Mason (1)

Theorem (Adiprasito-Huh-Katz ‘18)
For every matroid and k ≥ 1,

Ik
2 ≥ Ik+1 Ik−1.

Proof used combinatorial Hodge theory for

matroids.



Solution to Mason (2)

Theorem (Huh-Schröter-Wang ‘18)
For every matroid and k ≥ 1,

Ik
2 ≥

(
1 +

1

k

)
Ik+1 Ik−1.

Proof used combinatorial Hodge theory for

correlation inequality on matroids.



Solution to Mason (3)

Theorem

(Anari-Liu-Oveis Gharan-Vinzant, Brändén-Huh ‘20)
For every matroid and k ≥ 1,

Ik
2 ≥

(
1 +

1

k

)(
1 +

1

n − k

)
Ik+1 Ik−1.

Proof used theory of strong log-concave polynomials /

Lorentzian polynomials.



Solution to Mason (3)

Theorem

(Anari-Liu-Oveis Gharan-Vinzant, Brändén-Huh ‘20)
For every matroid and k ≥ 1,

Ik
2 ≥

(
1 +

1

k

)(
1 +

1

n − k

)
Ik+1 Ik−1.

In fact, this inequality can be further improved, and

we will see this improvement in the next class.



Next episode preview



Improvement for graphical matroids

Theorem (C.-Pak)
For graphical matroid of simple connected graph

G = (V ,E ), and k = |V | − 2,

(Ik)
2 ≥ 3

2

(
1 +

1

k

)
Ik+1 Ik−1,

with equality if and only if G is cycle graph.

Numerically better than Mason (3), because

3

2
≥ 1 +

1

n − k
= 1 +

1

|E | − |V |+ 2

for G that is not tree.



Comparison with Mason (3)

New bound gives

(Ik)
2

Ik+1 Ik−1
≥ 3

2
when |E | − |V | → ∞,

Meanwhile, Mason (3) bound only gives

(Ik)
2

Ik+1 Ik−1
≥ 1 when |E | − |V | → ∞.

New bound is better numerically and asymptotically.

This bound will be proved by atlas method in the

next class.



SEE YOU NEXT CLASS!

References: www.arxiv.org/abs/2110.10740

www.arxiv.org/abs/2203.01533

Webpage: www.math.rutgers.edu/~sc2518/

Email: sweehong.chan@rutgers.edu

www.arxiv.org/abs/2110.10740
www.arxiv.org/abs/2203.01533
www.math.rutgers.edu/~sc2518/


Method: Combinatorial atlas

Results: Log-concave inequalities, and

if and only if conditions for equality

Matroids (refined);

Morphism of matroids (refined);

Discrete polymatroids;

Stanley’s poset inequality (refined);

Poset antimatroids;

Branching greedoid (log-convex);

Interval greedoids.
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Combinatorial atlas application:

Matroids



Refinement for Mason (3)

Theorem 2 (C.-Pak)
For every matroid and k ≥ 1,

Ik
2 ≥

(
1 +

1

k

)(
1 +

1

prlM(k − 1)− 1

)
Ik+1 Ik−1.

This refines Mason (3),

Ik
2 ≥

(
1 +

1

k

)(
1 +

1

n − k

)
Ik+1 Ik−1,

since

prlM(k − 1) ≤ n − k + 1.



Refinement for different matroids

For all matroids,

Ik
2 ≥

(
1 + 1

k

) (
1 + 1

n−k

)
Ik+1 Ik−1.

Graphical matroids and k = |V | − 2,

Ik
2 ≥

(
1 + 1

k

)
3
2 Ik+1 Ik−1.

Realizable matroids over Fq,

Ik
2 ≥

(
1 + 1

k

) (
1 + 1

qm−k+1−2

)
Ik+1 Ik−1.

(k ,m, n)-Steiner system matroid,

Ik
2 ≥

(
1 + 1

k

)
n−k+1
n−m Ik+1 Ik−1.



Refinement for Mason (3)

Theorem 3 (C.-Pak)
For every matroid and k ≥ 1,

Ik
2 ≥

(
1 +

1

k

)(
1 +

1

prlM(k − 1)− 1

)
Ik+1 Ik−1.

This refines Mason (3),

Ik
2 ≥

(
1 +

1

k

)(
1 +

1

n − k

)
Ik+1 Ik−1,

since

prlM(k − 1) ≤ n − k + 1.



Parallel classes of matroid M

Loop is x ∈ X such that {x} /∈ I.
Non-loops x , y are parallel if {x , y} /∈ I.
Parallelship equiv. relation: x ∼ y if {x , y} /∈ I.
Parallel class = equivalence class of ∼.



Matroid contraction

Contraction of S ∈ I is matroid MS with

XS = X \ S , IS = {T \ S : S ⊆ T}.

prl(S) := number of parallel classes of MS



Parallel number

The k-parallel number is

prlM(k) := max{prl(S) | S ∈ I with |S | = k}.

prl(S) = 2 prl(S) = 2 prl(S) = 2 prl(S) = 3

prlM(1) = 3



Refinement for Mason (3)

Theorem 4 (C.-Pak)
For every matroid and k ≥ 1,

Ik
2 ≥

(
1 +

1

k

)(
1 +

1

prlM(k − 1)− 1

)
Ik+1 Ik−1.

This refines Mason (3),

Ik
2 ≥

(
1 +

1

k

)(
1 +

1

n − k

)
Ik+1 Ik−1,

since

prlM(k − 1) ≤ n − k + 1.



When is equality achieved?

When every (k + 1)-subset is independent,

prlM(k − 1) = n − k + 1.

Graphical matroid when G is a cycle,

prlM(k − 1) = 3.

Realizable matroids of every m-vectors over Fq,

prlM(k − 1) = qm−k+1 − 1.

(k ,m, n)-Steiner system matroid,

prlM(k − 1) =
n − k + 1

m − k + 1
.



Equality conditions

Theorem 5 (C.-Pak)
For every matroid and k ≥ 1,

Ik
2 ===

(
1 +

1

k

)(
1 +

1

prlM(k − 1)− 1

)
Ik+1 Ik−1

if and only if

for every S ∈ I with |S | = k − 1,

MS has prlM(k − 1) parallel classes; and

Every parallel class of MS has same size.


