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Simple random walk on Z2

Visits every site infinitely often? Yes!

Scaling limit? The standard 2-D Brownian motion:

(
1√
n
X[nt]︸︷︷︸

location of the
walker at time [nt]

)t≥0
n→∞
=⇒ 1√

2
(B1(t),B2(t)︸ ︷︷ ︸

independent standard
Brownian motions

)t≥0.



Rotor walk on Z2



Rotor walk on Z2

Put a signpost at each site.

•



Rotor walk on Z2

Turn the signpost 90◦ counterclockwise, then follow the signpost.

• •◦ •◦

The signpost says:
“This is the way you went the last time you were here“,
(assuming you ever were!)
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Rotor walk on Z2

Turn the signpost 90◦ counterclockwise, then follow the signpost.

• •◦ •◦

The signpost says:
“This is the way you went the last time you were here“,
(assuming you ever were!)



Why rotor walk?

Randomness can be (was) expensive to simulate!



Why rotor walk?

As a model for ants’ foraging strategy.



Why rotor walk?

As a model of self-organized criticality for statistical mechanics.

Visited sites after 80 returns to the origin (by Laura Florescu).



Conjectures for rotor walk on Z2

If the initial signposts are i.i.d. uniform among the four directions,
then

(PDDK ‘96) Visits every site infinitely often?

(PDDK ‘96) #{X1, . . . ,Xn} is � n2/3?
(compare with n/ log n for the simple random walk.)

(Kapri-Dhar ‘09) The asymptotic shape of {X1, . . . ,Xn} is a
disc?



More randomness please!

Random Deterministic

Something
in between

Well
studied

Many open
problems

Let’s study
this!!!
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p-rotor walk on Z2

With probability p, turn the signpost 90◦ counter-clockwise.
With probability 1− p, turn the signpost 90◦ clockwise.

•
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• ◦ •◦
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Follow rotor walk rule with prob. p, do the opposite with prob. 1− p
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p-rotor walk on Z2

Follow rotor walk rule with prob. p, do the opposite with prob. 1− p

Ops...



p-rotor walk on Z2

With probability p, turn the signpost 90◦ counter-clockwise.
With probability 1− p, turn the signpost 90◦ clockwise.

•

p 1− p

• ◦ •◦

Recover the rotor walk if p = 1.



Scaling limit for p-rotor walk on Z
(Huss, Levine, Sava-Huss 18) The scaling limit for p-rotor walk on
Z is a perturbed Brownian motion (Y (t))t≥0,

Y (t) = B(t)︸︷︷︸
standard
Brownian

motion

+ a sup
0≤s≤t

Y (s)︸ ︷︷ ︸
perturbation at

maximum

+ b inf
0≤s≤t

Y (s)︸ ︷︷ ︸
perturbation at

minimum

, t ≥ 0.

Y (t) for a = −0.998, and b = 0 (by Wilfried Huss).



Scaling limit for p-rotor walk on Z2

Question: Is the scaling limit for p-rotor walk on Z2 is a “2-D
perturbed Brownian motion”?

Problem: How to define “2-D perturbed Brownian motion”?.
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Scaling limit for p-rotor walk on Z2

Question: Is the scaling limit for p-rotor walk on Z2 is a “2-D
perturbed Brownian motion”?

Problem: How to define “2-D perturbed Brownian motion”?.

Conjecture: The scaling limit for p-rotor walk on Z2 when p = 1
2 is

the standard 2-D Brownian motion.



Uniform spanning tree plus one edge (UST+)
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Uniform spanning tree plus one edge (UST+)

•

Pick a spanning tree of the black box directed to the origin
(uniformly at random).



Uniform spanning tree plus one edge (UST+)

•

Take the limit as the black box grows until it covers Z2.
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Uniform spanning tree plus one edge (UST+)

•

Take the limit as the black box grows until it covers Z2.



Uniform spanning tree plus one edge (UST+)

•

Add a signpost from the origin, uniform among the four directions.



Scaling limit for p-rotor walk on Z2

Theorem (C., Greco, Levine, Li ‘18+)

Let p = 1
2 and let the uniform spanning tree plus one edge be the

initial signpost configuration. Then, with probability 1, the p-rotor
walk on Z2 scales to the standard 2-D Brownian motion:

1√
n

(X[nt]︸︷︷︸
location of the

walker at time [nt]

)t≥0
n→∞
=⇒ 1√

2
(B1(t),B2(t)︸ ︷︷ ︸

independent
Brownian motions

)t≥0.



Main ideas of the proof

How does p = 1
2 help?

Because then the p-rotor walk is a martingale:

E[Xt+1︸︷︷︸
location of
the walker

| Ft ] =Xt + (p

[
0 −1
1 0

]
︸ ︷︷ ︸
90◦ rotation

matrix

+(1− p)

[
0 1
−1 0

]
︸ ︷︷ ︸
−90◦ rotation

matrix

) ρt(Xt)︸ ︷︷ ︸
signpost of Xt

at time t

=Xt .

How does uniform spanning tree plus one edge help?



Main ideas of the proof

How does p = 1
2 help?

Because then the p-rotor walk is a martingale:

E[Xt+1︸︷︷︸
location of
the walker

| Ft ] =Xt + (p

[
0 −1
1 0

]
︸ ︷︷ ︸
90◦ rotation

matrix

+(1− p)

[
0 1
−1 0

]
︸ ︷︷ ︸
−90◦ rotation

matrix

) ρt(Xt)︸ ︷︷ ︸
signpost of Xt

at time t

=Xt .

How does uniform spanning tree plus one edge help?



Martingale CLT

If (Xt)t≥0 is a martingale with bounded differences in R2, then

1√
n

(X[nt])t≥0
n→∞
=⇒ 1√

2
(B1(t),B2(t)︸ ︷︷ ︸

independent
Brownian motions

)t≥0,

provided that:

1

n

n−1∑
t=0

(Xt+1 − Xt︸ ︷︷ ︸
martingale
difference

)(Xt+1 − Xt)
> n→∞−−−→

P

[
1
2 0
0 1

2

]
. (LLN)

In our case, (LLN) means the fraction of vertical signposts
encountered by the walker converges (in probability) to one-half.
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Stationarity from the walker’s POV

A signpost configuration (ρ0(x))x∈Z2 is stationary in time from the
walker’s point of view if

(ρ̂1(x))x∈Z2︸ ︷︷ ︸
signpost conf. at

time 1 from walker’s POV

:= (ρ1(x − X1))x∈Z2
d
= (ρ0(x))x∈Z2︸ ︷︷ ︸

signpost conf.
at time 0

.

×• •× •×

ρ0 ρ1 ρ̂1



Why is UST+ stationary?

•

The signposts at previously visited sites form a tree oriented
towards the walker.
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Pointwise ergodic theorem

For a Markov chain (Ω,T , π) and any integrable function f ,

1

n

n−1∑
t=0

f (T t(x))
n→∞−−−→
π−a.s.

E[f | I]︸ ︷︷ ︸
conditioning on the

invariant σ−field

.

This implies:

1

n

n−1∑
t=0

1{ρ̂t(0)︸ ︷︷ ︸
walker’s signpost

at time t

= vertical} n→∞−−−→
P

E[f | I], (LLN’)

Ω = set of signpost configurations;
T = One step of p-rotor walk + recentering;
π = UST+;
f = 1{ρ(0) = vertical}.
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Back to (LLN)

Note that:

1

n

n−1∑
t=0

1{ρ̂t(0)︸ ︷︷ ︸
walker’s signpost

at time t

= vertical} n→∞−−−→
P

E[f | I]︸ ︷︷ ︸
conditioning on the

invariant σ−field

, (LLN’)

1

n

n−1∑
t=0

1{ρ̂t(0) = vertical} n→∞−−−→
P

1

2
, (LLN)

implies

if the chain is ergodic,

A is invariant ⇒ Pπ[A] ∈ {0, 1}.



Invariant sets

A set of signpost configurations A is invariant if

ρ ∈ A ⇔ T (ρ) ∈ A almost surely.

×•

•× •×

• × ×•



Tail sets
A set of signpost configurations A is a tail set if

ρ ∈ A ⇔ ρ′ ∈ A,

for any ρ, ρ′ that differ by finitely many edges.

ρ ρ′



Tail triviality of UST+

(BLPS ’01) UST+ is tail trivial, i.e.,

A is a tail set ⇒ Pπ[A] ∈ {0, 1}.

Recall that we want to show that UST+ is ergodic, i.e.,

A is invariant ⇒ Pπ[A] ∈ {0, 1}.



How tail triviality implies ergodicity (sketch)

Because “any” invariant set A is a tail set.

• •

ρ ρ′

ρ ∈ A ⇔ ρ8 = ρ′8 ∈ A ⇔ ρ′ ∈ A.
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Because “any” invariant set A is a tail set.
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Back to the scaling limit

Scaling limit

Martingale CLT

(LLN)

Ergodic theorem

Ergodicity

Tail trivialityX



Back to the scaling limit

Theorem (C., Greco, Levine, Li ‘18+)

Let p = 1
2 and let the uniform spanning tree plus one edge be the

initial signpost configuration. Then, with probability 1, the p-rotor
walk on Z2 scales to the standard 2-D Brownian motion:

1√
n

(X[nt]︸︷︷︸
location of the

walker at time [nt]

)t≥0
n→∞
=⇒ 1√

2
(B1(t),B2(t)︸ ︷︷ ︸

independent
Brownian motions

)t≥0.
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What is next?

For p-rotor walk with UST+ as the initial signpost configuration:

Question: Prove scaling limit for when p 6= 1
2 ?

Problem: Need to define the “2-D perturbed Brownian motion (?)”.

2-D?



What is next?

For p-rotor walk with UST+ as the initial signpost configuration:

Question: Does the walk visit every site in Zd infinitely often?

Answer for p ∈ {0, 1}: NO (Florescu, Levine, Peres 16):

Answer for Z with p ∈ (0, 1): YES (Huss, Levine, Sava-Huss 18).

Answer for Zd with p = 1
2 and d ≥ 3: NO.

Open for Zd with p ∈ (0, 1) and d = 2.
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My email: sweehong@math.cornell.edu
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