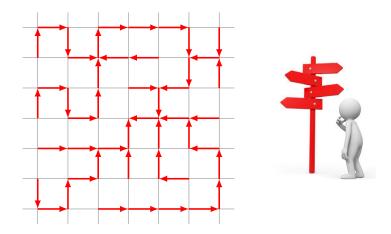
In between random walk and rotor walk

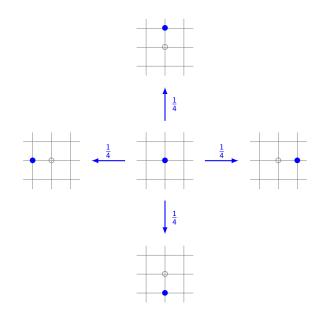
Swee Hong Chan Cornell University Joint work with Lila Greco, Lionel Levine, Boyao Li



Rotor walk

Simple random walk on \mathbb{Z}^2

Simple random walk on \mathbb{Z}^2

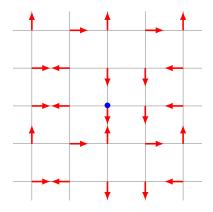


Simple random walk on \mathbb{Z}^2

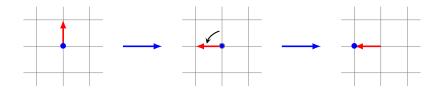
- Visits every site infinitely often? Yes!
- Scaling limit? The standard 2-D Brownian motion:

$$(\underbrace{\frac{1}{\sqrt{n}}X_{[nt]}}_{\substack{\text{location of the walker at time } [nt]})_{t\geq 0} \stackrel{n\to\infty}{\Longrightarrow} \frac{1}{\sqrt{2}} (\underbrace{B_1(t), B_2(t)}_{\substack{\text{independent standard Brownian motions}}})_{t\geq 0})_{t\geq 0}$$

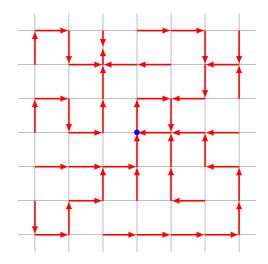
Put a signpost at each site.

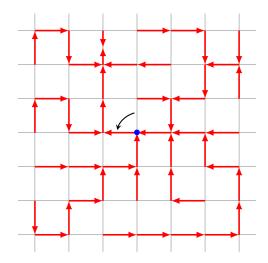


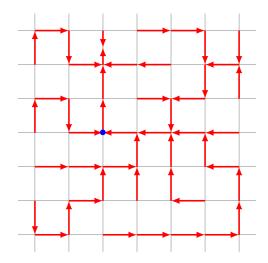
Turn the signpost 90° counterclockwise, then follow the signpost.

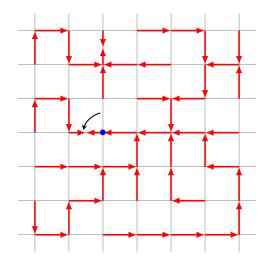


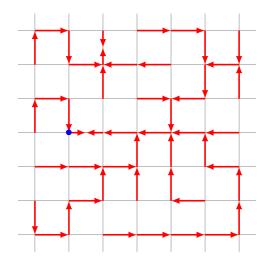
The signpost says: "This is the way you went the last time you were here", (assuming you ever were!)

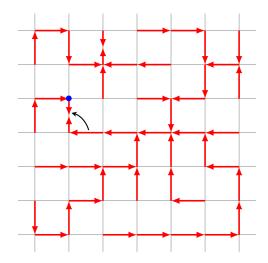


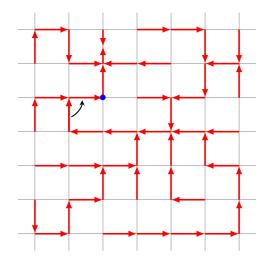


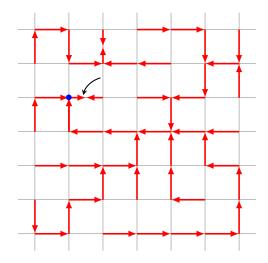


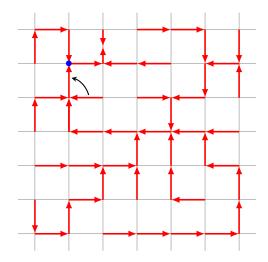




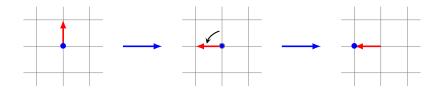








Turn the signpost 90° counterclockwise, then follow the signpost.

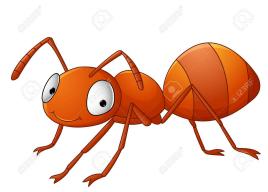


The signpost says: "This is the way you went the last time you were here", (assuming you ever were!)

Randomness can be (was) expensive to simulate!

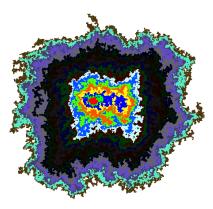
Why rotor walk?

As a model for ants' foraging strategy.



Why rotor walk?

As a model of self-organized criticality for statistical mechanics.



Visited sites after 80 returns to the origin (by Laura Florescu).

Conjectures for rotor walk on \mathbb{Z}^2

If the initial signposts are i.i.d. uniform among the four directions, then

- (PDDK '96) Visits every site infinitely often?
- (PDDK '96) #{X₁,...,X_n} is ≍ n^{2/3}? (compare with n/ log n for the simple random walk.)
- (Kapri-Dhar '09) The asymptotic shape of $\{X_1, \ldots, X_n\}$ is a disc?

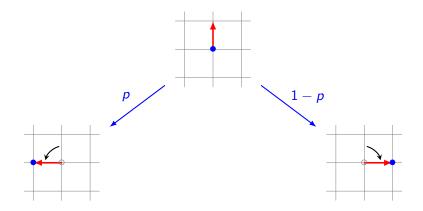
More randomness please!

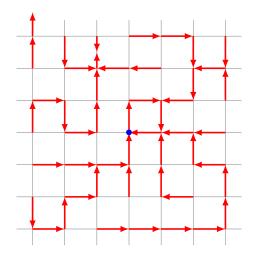
Deterministic

More randomness please!

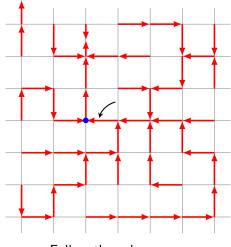
p-rotor walk on \mathbb{Z}^2

With probability p, turn the signpost 90° counter-clockwise. With probability 1 - p, turn the signpost 90° clockwise.

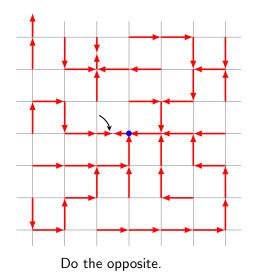




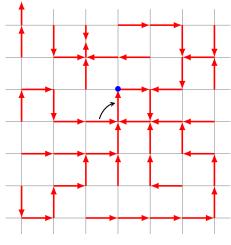
Follow rotor walk rule with prob. p, do the opposite with prob. 1 - p



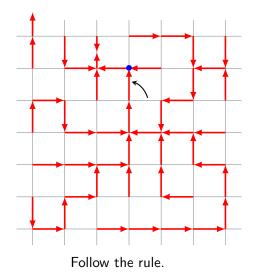
Follow the rule.

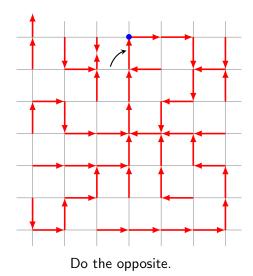


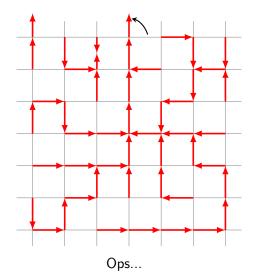
Follow rotor walk rule with prob. p, do the opposite with prob. 1 - p



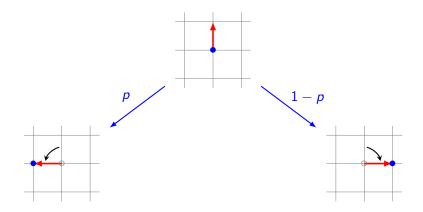
Do the opposite again.







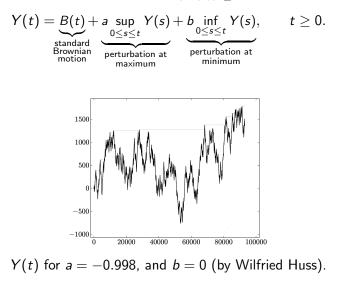
With probability p, turn the signpost 90° counter-clockwise. With probability 1 - p, turn the signpost 90° clockwise.



Recover the rotor walk if p = 1.

Scaling limit for *p*-rotor walk on \mathbb{Z}

(Huss, Levine, Sava-Huss 18) The scaling limit for *p*-rotor walk on \mathbb{Z} is a perturbed Brownian motion $(Y(t))_{t>0}$,



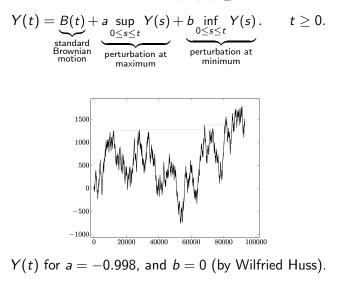
Scaling limit for *p*-rotor walk on \mathbb{Z}^2

Question: Is the scaling limit for *p*-rotor walk on \mathbb{Z}^2 is a "2-D perturbed Brownian motion"?

Problem: How to define "2-D perturbed Brownian motion"?.

Scaling limit for *p*-rotor walk on \mathbb{Z}

(Huss, Levine, Sava-Huss 18) The scaling limit for *p*-rotor walk on \mathbb{Z} is a perturbed Brownian motion $(Y(t))_{t>0}$,



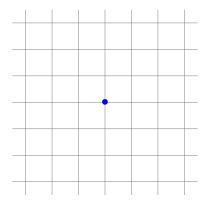
Scaling limit for *p*-rotor walk on \mathbb{Z}^2

Question: Is the scaling limit for *p*-rotor walk on \mathbb{Z}^2 is a "2-D perturbed Brownian motion"?

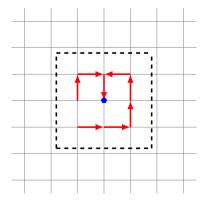
Problem: How to define "2-D perturbed Brownian motion"?.

Conjecture: The scaling limit for *p*-rotor walk on \mathbb{Z}^2 when $p = \frac{1}{2}$ is the standard 2-D Brownian motion.

Uniform spanning tree plus one edge (UST⁺)

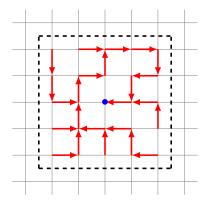


Uniform spanning tree plus one edge (UST^+)



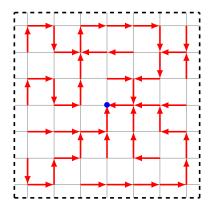
Pick a spanning tree of the black box directed to the origin (uniformly at random).

Uniform spanning tree plus one edge (UST^+)



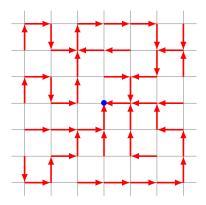
Take the limit as the black box grows until it covers \mathbb{Z}^2 .

Uniform spanning tree plus one edge (UST⁺)



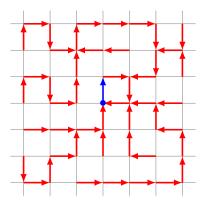
Take the limit as the black box grows until it covers \mathbb{Z}^2 .

Uniform spanning tree plus one edge (UST⁺)



Take the limit as the black box grows until it covers \mathbb{Z}^2 .

Uniform spanning tree plus one edge (UST^+)



Add a signpost from the origin, uniform among the four directions.

Scaling limit for *p*-rotor walk on \mathbb{Z}^2

Theorem (C., Greco, Levine, Li '18+)

Let $p = \frac{1}{2}$ and let the uniform spanning tree plus one edge be the initial signpost configuration. Then, with probability 1, the p-rotor walk on \mathbb{Z}^2 scales to the standard 2-D Brownian motion:

$$\frac{1}{\sqrt{n}} (X_{[nt]})_{t \ge 0} \stackrel{n \to \infty}{\Longrightarrow} \frac{1}{\sqrt{2}} (\underline{B_1(t), B_2(t)})_{t \ge 0}.$$

walker at time [nt]

Brownian motions

Main ideas of the proof

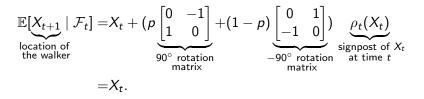
• How does $p = \frac{1}{2}$ help?

• How does uniform spanning tree plus one edge help?

Main ideas of the proof

• How does $p = \frac{1}{2}$ help?

Because then the *p*-rotor walk is a martingale:



• How does uniform spanning tree plus one edge help?

Martingale CLT

If $(X_t)_{t\geq 0}$ is a martingale with bounded differences in \mathbb{R}^2 , then

$$\frac{1}{\sqrt{n}}(X_{[nt]})_{t\geq 0} \stackrel{n\to\infty}{\Longrightarrow} \frac{1}{\sqrt{2}}(\underbrace{B_1(t), B_2(t)}_{independent})_{t\geq 0},$$

Brownian motions

provided that:

$$\frac{1}{n} \sum_{t=0}^{n-1} (\underbrace{X_{t+1} - X_t}_{\text{martingale}}) (X_{t+1} - X_t)^\top \xrightarrow[P]{n \to \infty} \begin{bmatrix} \frac{1}{2} & 0\\ 0 & \frac{1}{2} \end{bmatrix}. \quad (\text{LLN})$$

Martingale CLT

If $(X_t)_{t\geq 0}$ is a martingale with bounded differences in \mathbb{R}^2 , then

$$\frac{1}{\sqrt{n}}(X_{[nt]})_{t\geq 0} \stackrel{n\to\infty}{\Longrightarrow} \frac{1}{\sqrt{2}}(\underbrace{B_1(t), B_2(t)}_{independent})_{t\geq 0},$$

Brownian motions

provided that:

$$\frac{1}{n} \sum_{t=0}^{n-1} \mathbf{1}\{\widehat{\rho_t}(0) = \text{vertical}\} \xrightarrow[P]{\to \infty} \frac{1}{2}. \quad (LLN)$$

$$\underset{\text{at time } t}{\xrightarrow{t}}$$

In our case, (LLN) means the fraction of vertical signposts encountered by the walker converges (in probability) to one-half.

Martingale CLT

If $(X_t)_{t\geq 0}$ is a martingale with bounded differences in \mathbb{R}^2 , then

$$\frac{1}{\sqrt{n}}(X_{[nt]})_{t\geq 0} \stackrel{n\to\infty}{\Longrightarrow} \frac{1}{\sqrt{2}}(\underbrace{B_1(t), B_2(t)}_{independent})_{t\geq 0},$$

Brownian motions

provided that:

$$\frac{1}{n} \sum_{t=0}^{n-1} \mathbf{1}\{\widehat{\rho_t}(0) = \text{vertical}\} \xrightarrow[P]{\to \infty} \frac{1}{2}. \quad (LLN)$$

$$\underset{\text{at time } t}{\xrightarrow{t}}$$

In our case, (LLN) means the fraction of vertical signposts encountered by the walker converges (in probability) to one-half.

Main ideas of the proof

• How does $p = \frac{1}{2}$ help?

Because then the *p*-rotor walk is a martingale.

• How does uniform spanning tree plus one edge help?

Main ideas of the proof

• How does $p = \frac{1}{2}$ help?

Because then the *p*-rotor walk is a martingale.

How does uniform spanning tree plus one edge help?
 Because it is stationary and ergodic from the walker's POV.

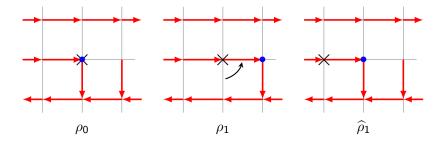
Stationarity from the walker's POV

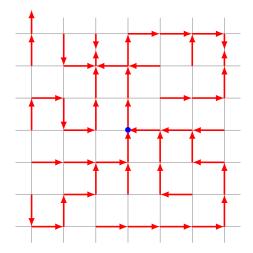
A signpost configuration $(\rho_0(x))_{x\in\mathbb{Z}^2}$ is stationary in time from the walker's point of view if

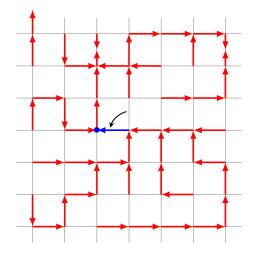
$$(\widehat{
ho_1}(x))_{x\in\mathbb{Z}^2}:=(
ho_1(x-X_1))_{x\in\mathbb{Z}^2}\stackrel{d}{=}(\underbrace{
ho_0(x))_{x\in\mathbb{Z}^2}}_{x\in\mathbb{Z}^2}.$$

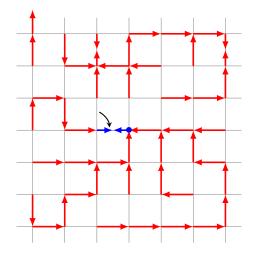
signpost conf. at time 1 from walker's POV

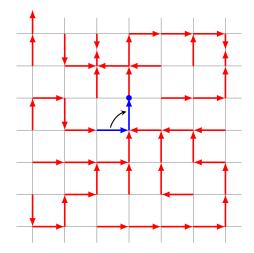
signpost conf. at time 0

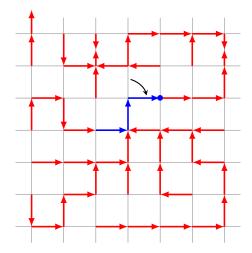


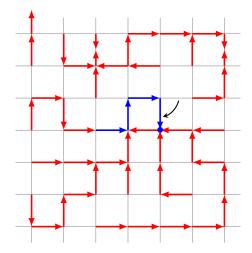


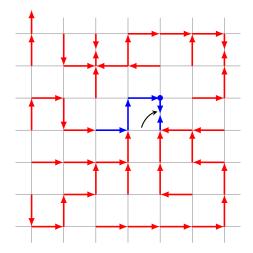


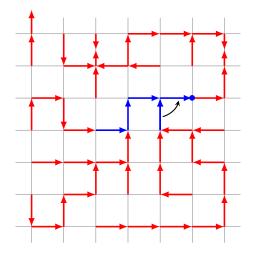


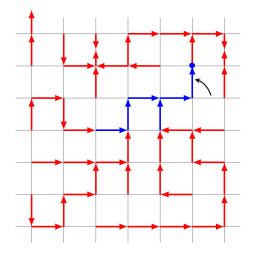


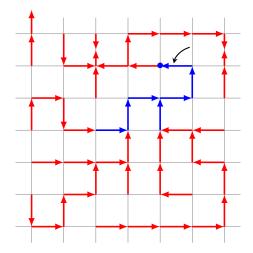


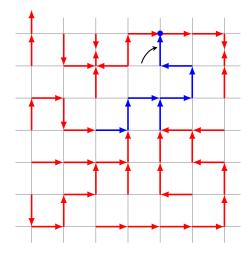


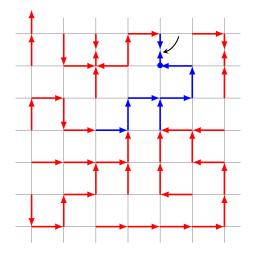


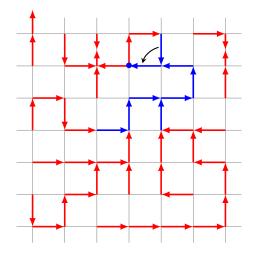












Pointwise ergodic theorem

For a Markov chain (Ω, T, π) and any integrable function f,

$$\frac{1}{n} \sum_{t=0}^{n-1} f(T^t(x)) \xrightarrow[\pi-a.s.]{n \to \infty} \underbrace{\mathbb{E}[f \mid \mathcal{I}]}_{\text{conditioning on the invariant } \sigma-\text{field}}.$$

Pointwise ergodic theorem

For a Markov chain (Ω, T, π) and any integrable function f,

$$\frac{1}{n} \sum_{t=0}^{n-1} f(T^t(x)) \xrightarrow[\pi-a.s.]{n \to \infty} \underbrace{\mathbb{E}[f \mid \mathcal{I}]}_{\text{conditioning on the invariant } \sigma-\text{field}}.$$

This implies:

$$\frac{1}{n} \sum_{t=0}^{n-1} \underbrace{\mathbf{1}_{\{\widehat{\rho}_t(0)} = \text{vertical}\}}_{\substack{\text{walker's signpost}\\ \text{at time } t}} \mathbb{E}[f \mid \mathcal{I}], \qquad (\text{LLN'})$$

$$\begin{split} \Omega &= \text{set of signpost configurations;} \\ T &= \text{One step of } p\text{-rotor walk} + \text{recentering;} \\ \pi &= \text{UST}^+; \\ f &= \mathbf{1}\{\rho(\mathbf{0}) = \text{vertical}\}. \end{split}$$

Back to (LLN)

Note that:

$$\frac{1}{n} \sum_{t=0}^{n-1} \mathbf{1}_{\substack{\{\widehat{\rho}_t(\mathbf{0}) = \text{vertical}\}\\ \text{walker's signpost}\\ \text{at time } t}} \underbrace{\mathbb{E}[f \mid \mathcal{I}]}_{\substack{P \\ \text{conditioning on the}\\ \text{invariant } \sigma-\text{field}}} (\text{LLN'})$$

implies

$$\frac{1}{n} \sum_{t=0}^{n-1} \mathbf{1}\{\widehat{\rho}_t(0) = \text{vertical}\} \xrightarrow[P]{n \to \infty} \frac{1}{2}, \quad (\text{LLN})$$

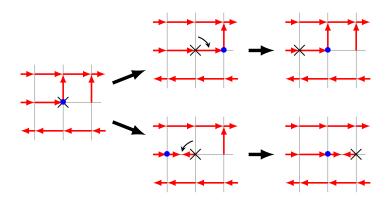
if the chain is ergodic,

$$A ext{ is invariant } \Rightarrow \mathbb{P}_{\pi}[A] \in \{0,1\}.$$

Invariant sets

A set of signpost configurations A is invariant if

 $\rho \in A \quad \Leftrightarrow \quad T(\rho) \in A \quad \text{ almost surely.}$

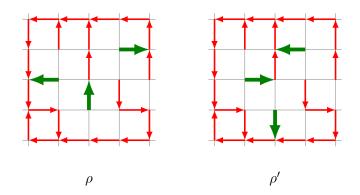


Tail sets

A set of signpost configurations A is a tail set if

$$\rho \in A \quad \Leftrightarrow \quad \rho' \in A,$$

for any ρ,ρ' that differ by finitely many edges.



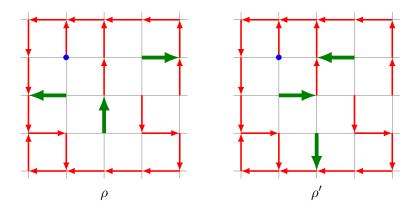
Tail triviality of UST⁺

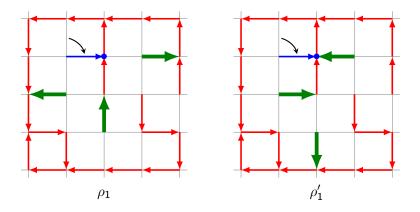
(BLPS '01) UST⁺ is tail trivial, i.e.,

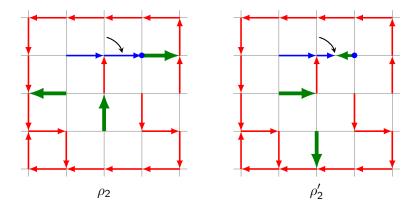
 $A ext{ is a tail set } \Rightarrow \mathbb{P}_{\pi}[A] \in \{0,1\}.$

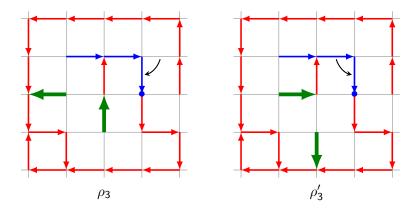
Recall that we want to show that UST⁺ is ergodic, i.e.,

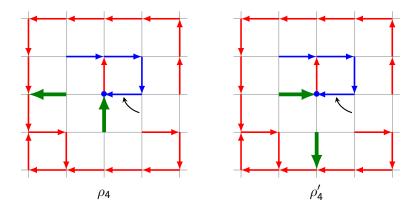
A is invariant
$$\Rightarrow \mathbb{P}_{\pi}[A] \in \{0, 1\}.$$

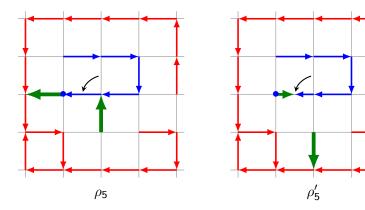


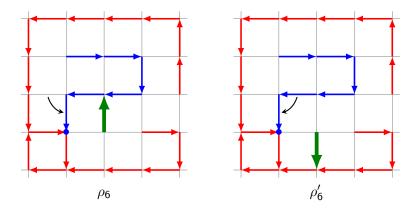


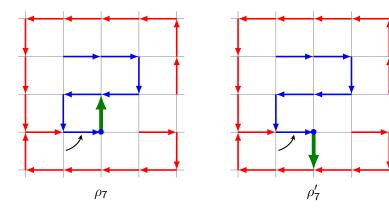


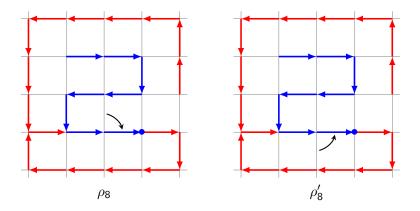




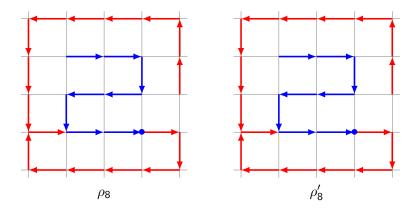




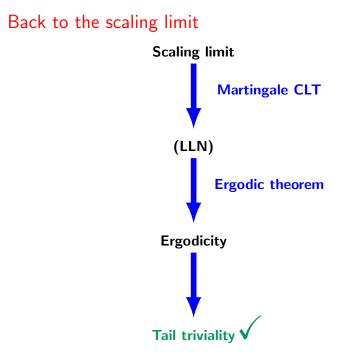




Because "any" invariant set A is a tail set.



 $\rho\in A\quad\Leftrightarrow\quad\rho_8=\rho_8'\in A\quad\Leftrightarrow\quad\rho'\in A.$



Back to the scaling limit

Theorem (C., Greco, Levine, Li '18+)

Let $p = \frac{1}{2}$ and let the uniform spanning tree plus one edge be the initial signpost configuration. Then, with probability 1, the p-rotor walk on \mathbb{Z}^2 scales to the standard 2-D Brownian motion:

$$\frac{1}{\sqrt{n}}(\underbrace{X_{[nt]}}_{location of the})_{t\geq 0} \stackrel{n\to\infty}{\Longrightarrow} \frac{1}{\sqrt{2}}(\underbrace{B_1(t), B_2(t)}_{independent})_{t\geq 0}.$$

walker at time [nt]

Brownian motions

What is next?

For *p*-rotor walk with UST^+ as the initial signpost configuration:

What is next?

For *p*-rotor walk with UST⁺ as the initial signpost configuration: Question: Prove scaling limit for when $p \neq \frac{1}{2}$?

Problem: Need to define the "2-D perturbed Brownian motion (?)".

What is next?

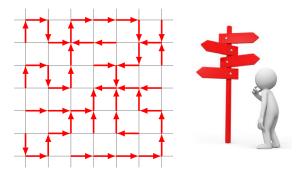
For *p*-rotor walk with UST⁺ as the initial signpost configuration: Question: Does the walk visit every site in \mathbb{Z}^d infinitely often?

Answer for $p \in \{0, 1\}$: NO (Florescu, Levine, Peres 16):

Answer for \mathbb{Z} with $p \in (0, 1)$: YES (Huss, Levine, Sava-Huss 18).

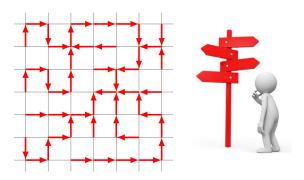
Answer for \mathbb{Z}^d with $p = \frac{1}{2}$ and $d \ge 3$: NO.

Open for \mathbb{Z}^d with $p \in (0, 1)$ and d = 2.



Preprint can be found at: arXiv:1809.04710 My webpage: http://pi.math.cornell.edu/~sc2637/ My email: sweehong@math.cornell.edu

THANK YOU!



Preprint can be found at: arXiv:1809.04710 My webpage: http://pi.math.cornell.edu/~sc2637/ My email: sweehong@math.cornell.edu