Complexity of Log-concave Inequalities for Matroids

Swee Hong Chan

joint with Igor Pak

What is log-concavity?

A sequence $a_1, \ldots, a_n \in \mathbb{R}_{\geq 0}$ is log-concave if

$$
a_k^2 \geq a_{k+1} a_{k-1} \qquad (1 < k < n).
$$

Log-concavity (and positivity) implies unimodality:

$$
a_1 \leq \cdots \leq a_m \geq \cdots \geq a_n \text{ for some } 1 \leq m \leq n.
$$

Example 1: binomial coefficients

$$
a_k = \binom{n}{k} \qquad k = 0, 1, \ldots, n.
$$

This sequence is log-concave because

$$
\frac{a_k^2}{a_{k+1} a_{k-1}} = \frac{\binom{n}{k}^2}{\binom{n}{k+1} \binom{n}{k-1}} = \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{n-k}\right),
$$

which is greater than 1.

Example 2: permutations with k inversions

 a_k = number of $\pi \in S_n$ with k inversions, where inversion of π is pair $i < j$ s.t. $\pi_i > \pi_j$.

This sequence is log-concave because

$$
\sum_{0\leq k\leq {n\choose 2}}a_k\,q^k\;=\;[n]_q!\;=\;\prod_{i=1}^{n-1}(1+q+q^2+\ldots+q^i)
$$

is a product of log-concave polynomials.

Example 3: forests of a graph

 a_k = number of forests with k edges of graph G. Forest is a subset of edges of G that has no cycles.

Log-concavity was conjectured for all matroids (Mason '72), and was proved through combinatorial Hodge theory (Huh '15).

Which log-concave inequality is more "difficult"?

We aim to differentiate simple log-concave inequalities from complex log-concave inequalities using Complexity Theory.

Matroids

Object: matroids

Matroid $\mathcal{M} = (X, \mathcal{I})$ is ground set X with collection of independent sets $\mathcal{I} \subseteq 2^{\mathcal{X}}$.

Graphic matroids

- \bullet X = edges of a graph G,
- \bullet \mathcal{I} = forests in G.

Realizable matroids

- $\bullet X =$ finite set of vectors over field \mathbb{F} ,
- \bullet \mathcal{I} = sets of linearly independent vectors.

Matroids: conditions

A basis is a maximal independent set. Rank r of matroid is the size of the bases.

For matroid M, let

 $I(k) := no$. of independents sets with k elements.

For graphic matroid, $I(k)$ is no. of forest with k edges.

Conjecture (Mason '72) The sequence $I(1), I(2), \ldots$ is log-concave, ${\rm I}(k)^2 \ \geq \ {\rm I}(k+1){\rm I}(k-1) \qquad (k\in {\mathbb N}),$ Mason conjecture (continued)

Conjecture (Mason '72) $I(k)^2 \geq I(k+1)I(k-1)$ $(k \in \mathbb{N}).$

Conjecture was proved for graphic matroids by (Huh '15), and for all matroids by (Adiprasito–Huh–Katz '18).

Both proofs used combinatorial Hodge theory.

Stanley–Yan inequality (simple)

Fix a disjoint subset S of X .

 $B(k) :=$ no. of bases B such that $|B \cap S| = k$, multiplied by $r! \times {r \choose k}$ $\binom{r}{k}^{-1}$.

Theorem (Stanley '81, Yan '23) The sequence $B(1), B(2), \ldots$ is log-concave, $B(k)^2 \ge B(k+1)B(k-1)$ (k ∈ N). Stanley–Yan inequality (simple)

Theorem (Stanley '81, Yan '23) $B(k)^2 \ge B(k+1)B(k-1)$ (k ∈ N).

Proved for regular matroids by (Stanley '81) using Alexandrov–Fenchel inequality for mixed volumes.

Proved for all matroids by (Yan '23) using theory of Lorentzian polynomials.

Proof of Mason conjecture

Let

 \mathcal{M}' := direct sum of M with the free matroid of r elements; $S = X$

Then

$$
I(k) \ \ \text{for} \ \ \mathcal{M} \quad = \quad \frac{1}{r!} \times B(k) \ \ \text{for} \ \ \mathcal{M}'.
$$

Thus Stanley–Yan inequality for M′ implies Mason conjecture for M.

Stanley–Yan inequality (true)

Fix $d > 0$, disjoint subsets S, S_1, \ldots, S_d of X, and $\ell_1, \ldots, \ell_d \in \mathbb{N}$.

 $\mathrm{B}_d(k) := \begin{array}{c} \text{number of bases } B \text{ of } \mathbb{M} \text{ such that} \ \mathrm{B}_d(k) := \begin{array}{c} |E| \geq 0 \end{array}$ $|B \cap S| = k$, $|B \cap S_i| = \ell_i$ for $i \in [d]$,

multiplied by $r! \times {r \choose k, \ell_1, k}$ $\binom{r}{k,\ell_1,\ldots,\ell_d}^{-1}.$

Theorem (Stanley '81, Yan '23) The sequence $B_d(1), B_d(2), \ldots$ is log-concave, $\mathrm{B}_d(k)^2 \ \geq \ \mathrm{B}_d(k+1) \mathrm{B}_d(k-1) \qquad (k\in \mathbb{N}).$ When is equality achieved?

Quote (Gardner '02)

If inequalities are silver currency in mathematics, those that come along with precise equality conditions are gold.

Example (AM–GM inequality) For non-negative x_1, \ldots, x_n , $rac{x_1+\cdots+x_n}{n} \geq \sqrt[n]{x_1\cdots x_n},$ with equality if and only if $x_1 = \cdots = x_n$.

Main result

Consider the decision problem for checking equality in Stanley–Yan inequality: $B_d(k)^2 = \n\begin{cases}\nB_d(k+1) & B_d(k-1).\n\end{cases}$ Theorem $(C.-Pak '24+)$ For $d > 1$, problem cannot be decided in polynomial time, unless $NP = coNP$.

Main result

Consider the decision problem for checking equality in Stanley–Yan inequality:

$$
B_d(k)^2 =
$$
⁷ $B_d(k+1) B_d(k-1)$.

Theorem $(C.-Pak '24+)$ For $d > 1$, problem cannot be decided in polynomial time, unless $NP = coNP$.

Theorem 1 $(C.-Pak '24+)$ For $d \geq 1$, problem is not part of **polynomial** hierarchy, unless polynomial hierarchy collapses.

Polynomial hierarchy

Decision vs counting

Decision problem: answer is either 'Yes' or 'No'. Counting problem: answer is a nonnegative integer.

Example (3-colorings of graph G) • Decision problem: Check if there exists a proper 3-coloring of G.

• Counting problem: Find the number of proper 3-colorings of G.

Polynomial hierarchy is a subclass of decision problems.

Complexity class P

 $P := \left\{ \begin{array}{c} \text{Decision problems solvable by deterministic} \ \text{Turing machine in polynomial time} \end{array} \right\}$

Example

Check if a given 3-coloring of a graph G is proper.

This can be solved in $O(n^2)$ time by checking the color of endpoints of every edge.

Complexity class NP

 $NP := \left\{ \begin{array}{ll} \text{Decision problems solvable by nondetermin} \ \text{noise} \ \text{noise} \ \text{noise} \ \text{function} \ \text{probability} \ \text{model} \ \text{time} \end{array} \right\}.$

.

- Can split into many parallel branches;
- Output 'YES' if one of the branches said 'YES';
- Output 'NO' if all branches said 'NO'.

Complexity class NP

 $NP := \left\{ \begin{array}{ll} \text{Decision problems solvable by nondetermin} \ \text{noise} \ \text{noise} \ \text{noise} \ \text{function} \ \text{probability} \ \text{model} \ \text{time} \end{array} \right\}.$

- Can split into many parallel branches;
- Output 'YES' if one of the branches said 'YES';
- Output 'NO' if all branches said 'NO'.

.

Complexity class NP: example

Problem: Check if graph G has a proper 3-coloring.

Each branch corresponds to checking if a particular 3-coloring of G is proper.

Output to this example is 'YES'.

Turing machine with an oracle

At each step, this machine can either:

- **•** Perform usual nondeterministic Turing machine operation; or
- **•** Ask an oracle that is able to answer one fixed type of problems.

Turing machine with an oracle: example

- Problem: Check if there is an induced subgraph of G of size $\lceil n/2 \rceil$ that is not 3-colorable.
- Oracle: Can check if a graph is 3-colorable.

Turing machine with an oracle: example

Problem: Check if there is an induced subgraph of G of size $\lceil n/2 \rceil$ that is not 3-colorable. Oracle: Can check if a graph is 3-colorable.

Each branch of the machine corresponds to an induced subgraph of G of size $\lceil n/2 \rceil$.

For every branch, oracle checks if subgraph is 3-colorable.

Complexity class Σ_i^{P}

The first two classes are

 $Σ_0^P$ $P_0^P := P; \quad \Sigma_1^P := NP.$ For $i \geq 1$, the class $\Sigma_i^{\mathsf{P}} := \mathsf{NP}^{\Sigma_{i-1}^{\mathsf{P}}}$ is $\sqrt{ }$ \int $\overline{\mathcal{L}}$ Decision problems solvable by nondeterministic Turing machine in polynomial time with an oracle for problem from $\Sigma_{i-1}^{\mathsf{P}}$. \mathcal{L} $\overline{\mathcal{L}}$ \int

.

Note that

$$
\Sigma^P_0 \ \subseteq \ \Sigma^P_1 \ \subseteq \ \Sigma^P_2 \ \subseteq \ \Sigma^P_3 \ \subseteq \ \cdots
$$

Polynomial hierarchy (PH)

Polynomial hierarchy is the union of all Σ_i^{P} 's,

$$
\mathsf{PH} := \bigcup_{i=0}^{\infty} \Sigma_i^{\mathsf{P}}.
$$

Conjecture

Polynomial hierarchy does not collapse,

$$
\Sigma^P_0 \; \subsetneq \; \Sigma^P_1 \; \subsetneq \; \Sigma^P_2 \; \subsetneq \; \Sigma^P_3 \; \subsetneq \; \cdots
$$

•
$$
\Sigma_0^P = \Sigma_1^P
$$
 is equivalent to $P = NP$.

 $\Sigma_1^{\mathsf{P}} = \Sigma_2^{\mathsf{P}}$ is equivalent to $\mathsf{NP} = \mathsf{coNP}$.

Back to main result

Consider the decision problem for checking equality in Stanley–Yan inequality: $B_d(k)^2 =$ ² $B_d(k+1) B_d(k-1)$.

Theorem (C.–Pak '24+) For $d > 1$, decision problem is not in PH, unless PH collapses.

We aim to differentiate simple log-concave inequalities from complex log-concave inequalities using **Complexity Theory**.

Complexity class #P

Complexity class $\#P$

$\mathsf{\#P} \coloneqq$ $\sqrt{ }$ \int $\overline{\mathcal{L}}$ Counting problems realizable as number of 'YES' branches in some nondeterministic Turing machine. \mathcal{L} $\overline{\mathcal{L}}$ \int

.

Example

Count number of proper 3-colorings of graph G.

Not to be confused with FP, which is counting problems solvable in deterministic polynomial time.

Main result

Theorem 2 (C.-Pak '24+)
For
$$
d \ge 1
$$
, the defect of Stanley–Yan inequality

$$
B_d(k)^2 - B_d(k+1) B_d(k-1)
$$
is not in #P, unless PH collapses.

Note: $B_d(k)^2$ and $B_d(k+1) B_d(k-1)$ are in $\#P$.

Example 1: binomial inequality

$$
{n \choose k}^2 \ge {n \choose k+1}{n \choose k-1} \qquad (1 < k < n).
$$

This inequality has a lattice path interpretation:

$$
K(a \to c, b \to d) := \frac{\text{no. of pairs of north-east lattice}}{\text{paths from a to c and b to d}},
$$

for
$$
a, b, c, d \in \mathbb{Z}^2
$$
.

Example 1: binomial inequality Let

$$
a = (0, 1), \qquad c = (k, n - k + 1),
$$

\n
$$
b = (1, 0), \qquad d = (k + 1, n - k).
$$

Example 1: binomial inequality

Note $K(a \to c, b \to d) \geq K(a \to d, b \to c)$ by path-swapping injections.

 $K(a \to c, b \to d) - K(a \to d, b \to c)$ is number of pairs of north-east lattice paths from a to c, b to d , that do not intersect. Thus this number is in $\#P$.

Example 2: permutations with k inversions

Let a_k = number of $\pi \in S_n$ with k inversions.

Then
$$
\sum_{0\leq k\leq {n\choose 2}}a_kq^k = \prod_{i=1}^{n-1}(1+q+\ldots+q^i)
$$

is computable in $poly(n)$ time.

Thus $a_k^2 - a_{k+1}a_{k-1}$ is computable in $\text{poly}(n)$ time, and so is in $\#P$.

Back to our goal

We compare three log-concave inequalities:

Binomial inequality: in $\#P$;

Permutation inversion inequality: in $\#P$;

Stanley–Yan inequality: not in $\#P$, unless PH collapses.

This differentiates Stanley–Yan inequality from binomial inequality and permutation inversion inequality.

What is next?

Conjecture Defect of Mason conjecture $I(k)^2 - I(k+1)I(k-1) \notin \#P$.

THANK YOU!

Preprint: <www.arxiv.org/abs/2309.05764> Webpage: <www.math.rutgers.edu/~sc2518/> Email: sweehong.chan@rutgers.edu

Complexity class Σ_i^{P} : example

Problem A: Check if a 3-coloring of G is proper. Problem A is in $\Sigma_0^P = P$.

Problem B: Check if G has a proper 3-coloring. Problem B is in $\Sigma_1^P = NP$.

Problem C: Check if there is an induced subgraph of G of size $\lceil n/2 \rceil$ that is not 3-colorable. Problem C is in $\Sigma_2^P = NP^{NP}$.