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What is log-concavity?
A sequence ai,...,a, € Ry is log-concave if

ai > kg1 dk-1 (1< k< n).

Log-concavity (and positivity) implies unimodality:

< - ---<a,>-->a, forsome 1<m<n.
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Example 1: binomial coefficients

n
dy — (k) k:O,l,...,n.

This sequence is log-concave because

2
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Akt k-1 (1) () ( k> ( n= k)

which is greater than 1.




Example 2: permutations with k inversions

ax = number of m € S, with k inversions,

where inversion of 7 is pair |/ <j s.t. m > 7.

This sequence is log-concave because

n—1
Y. ad =g = [[0+a+d+... +q)
Oﬁkﬁ(g) i=1

is a product of log-concave polynomials.



Example 3: forests of a graph

ax = number of forests with k edges of graph G.

Forest is a subset of edges of G that has no cycles.

Log-concavity was conjectured for all matroids
(Mason ‘72), and was proved through combinatorial
Hodge theory (Huh ‘15).
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Motivation

Which log-concave inequality is more “difficult”?

3 is more 1, 2 3 are
difficult! equally easy!




Our goal

We aim to differentiate simple log-concave
inequalities from complex log-concave inequalities

using Complexity Theory.



Matroids



Object: matroids
Matroid M = (X, Z) is ground set X with
collection of independent sets Z C 2%,

Graphic matroids
@ X = edges of a graph G,

@ 7 = forestsin G.

Realizable matroids

@ X = finite set of vectors over field F,
sets of linearly independent vectors.
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Matroids: conditions
@ SCT and T €7 implies S € 1.

B

T S

x € T\ S such that SU{x} € T.
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A basis is a maximal independent set.

Rank r of matroid is the size of the bases.



Mason conjecture

For matroid M, let
I(k) := no. of independents sets with k elements.

For graphic matroid, I(k) is no. of forest with k edges.

Conjecture (Mason ‘72)

The sequence 1(1),1(2),... is log-concave,

I(k)? > I(k+1)I(k—1) (ke€N),




Mason conjecture (continued)

Conjecture (Mason ‘72)

I(k)? > I(k+1)I(k—1) (k€N).

Conjecture was proved for graphic matroids
by (Huh ‘15), and for all matroids
by (Adiprasito-Huh—Katz ‘18).

Both proofs used combinatorial Hodge theory.



Stanley—Yan inequality (simple)

Fix a disjoint subset S of X.
B(k) := no. of bases B such that |[BN S| = k,
multiplied by r! x (;)_1.

Theorem (Stanley ‘81, Yan ‘23)
The sequence B(1),B(2),... is log-concave,

B(k)> > B(k+1)B(k—1) (keN).




Stanley—Yan inequality (simple)

Theorem (Stanley ‘81, Yan '23)

B(k)> > B(k+1)B(k—1) (keN).

Proved for regular matroids by (Stanley ‘81) using

Alexandrov—Fenchel inequality for mixed volumes.

Proved for all matroids by (Yan ‘23) using theory

of Lorentzian polynomials.



Proof of Mason conjecture

Let
M direct sum of M with the
free matroid of r elements;
S = X.
Then
I(k) for M = % xB(k) for M.

Thus Stanley—Yan inequality for M’
implies Mason conjecture for M.



Stanley—Yan inequality (true)

Fix d > 0, disjoint subsets S, 5;,...,S54 of X,
and /q,..., 04 € N.

By(k) = number of bases B of M such that
R |IBNS| =k, |[BNS|=1{; for i€[d],

multiplied by r!x (,," ).

Theorem (Stanley ‘81, Yan ‘23)

The sequence By(1),B4(2),... is log-concave,

Bg(k)*> > Bg(k+1)Bg(k—1)  (k € N).




When is equality achieved?

Quote (Gardner ‘02)
If inequalities are silver currency in mathematics,
those that come along with precise equality

conditions are gold.

Example (AM-GM inequality)
For non-negative xi, ..., Xy,

X]_+"‘+Xn >

- = nX].“'th

with equality if and only if x; = --- = x,.




Main result
Consider the decision problem for checking
equality in Stanley—Yan inequality:
By(k)* =" By(k+1) By(k — 1).

Theorem (C.—Pak ‘24+)
For d > 1, problem cannot be decided in polynomial

time, unless NP = coNP.




Main result

Consider the decision problem for checking

equality in Stanley—Yan inequality:
By(k)* =" By(k+1) By(k — 1).

Theorem (C.—Pak ‘24+)

For d > 1, problem cannot be decided in polynomial
time, unless NP = coNP.

Theorem 1 (C.—Pak ‘24+)
For d > 1, problem is not part of polynomial

v

hierarchy, unless polynomial hierarchy collapses.
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Polynomial hierarchy



Decision vs counting

Decision problem: answer is either ‘Yes' or ‘No'.

Counting problem: answer is a nonnegative integer.

Example (3-colorings of graph G)
@ Decision problem: Check if there exists

a proper 3-coloring of G.

e Counting problem: Find the number of

proper 3-colorings of G.

Polynomial hierarchy is a subclass of decision problems.



Complexity class P
p._ { Decision problems solvable by deterministic }

Turing machine in polynomial time

Example
Check if a given 3-coloring of a graph G is proper. J

This can be solved in O(n?) time by checking

the color of endpoints of every edge.
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Complexity class NP

NP — Decision problems solvable by nondetermi-
' nistic Turing machine in polynomial time

@ Can split into many parallel branches;
@ Output ‘YES' if one of the branches said ‘YES’;
@ Output ‘NO' if all branches said ‘NO’'.

Deterministic Non-Deterministic
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Complexity class NP

NP — { Decision problems solvable by nondetermi-

nistic Turing machine in polynomial time

@ Can split into many parallel branches;
@ Output ‘YES' if one of the branches said ‘YES’;
@ Output ‘NO' if all branches said ‘NO’'.

z
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Complexity class NP: example

Problem: Check if graph G has a proper 3-coloring.

[ ]

Each branch corresponds to checking if

a particular 3-coloring of G is proper.

Output to this example is ‘YES'.



Turing machine with an oracle

At each step, this machine can either:

@ Perform usual nondeterministic Turing

machine operation; or

@ Ask an oracle that is able to answer one

fixed type of problems.

"




Turing machine with an oracle: example

Problem: Check if there is an induced subgraph of
G of size [n/2] that is not 3-colorable.

Oracle: Can check if a graph is 3-colorable.



Turing machine with an oracle: example

Problem: Check if there is an induced subgraph of
G of size [n/2] that is not 3-colorable.

Oracle: Can check if a graph is 3-colorable.

Each branch of the machine corresponds to

an induced subgraph of G of size [n/2].

For every branch, oracle checks

if subgraph is 3-colorable.



Complexity class

The first two classes are

6 =P, XY := NP.
For i > 1, the class Z,P — NP¥ IS

Decision problems solvable by nondetermi-
nistic Turing machine in polynomial time
with an oracle for problem from ¥F .

Note that

Yo C ¥ C ¥y € ¥f C ...



Polynomial hierarchy (PH)

Polynomial hierarchy is the union of all £F's,

PH := sz’.
i=0

Conjecture
Polynomial hierarchy does not collapse,

Yo ¢ ¥F C ¥y ¢ ¥ ¢ o

o ¥} =3P is equivalent to P = NP.
e ¥ =13F is equivalent to NP = coNP.



Back to main result

Consider the decision problem for checking

equality in Stanley—Yan inequality:
Bg(k)> =" Bg(k +1) Bg(k —1).

Theorem (C.—Pak 24+)

For d > 1, decision problem is not in PH, unless

PH collapses.




Recall our goal ...

We aim to differentiate simple log-concave
inequalities from complex log-concave inequalities

using Complexity Theory.



Complexity class #P



Complexity class #P

Counting problems realizable as number
#P := < of ‘YES’ branches in some nondetermi-

nistic Turing machine.

Example
Count number of proper 3-colorings of graph G.

Not to be confused with FP, which is counting

problems solvable in deterministic polynomial time.



Main result

Theorem 2 (C.—Pak 24+)
For d > 1, the defect of Stanley—Yan inequality

Bg(k)* — By(k 4+ 1) By(k — 1)

is not in #P, unless PH collapses.

Note: By(k)® and By(k + 1) By(k — 1) are in #P.



Example 1: binomial inequality

<Z)2 - (kil) (kil) (1<k<n).

This inequality has a lattice path interpretation:
no. of pairs of north-east lattice

K(a— c,b—d):=
paths from a to ¢ and b to d,

for a,b,c,d € 72

c




Example 1: binomial inequality
Let

a=(0,1), c=(k,n—k+1),
b=(1,0), d=(k+1,n—k).
Then

K(a— c,b—d) = (Z>2
(

K(a—d,b—c) = knl) (kil).

C C




Example 1: binomial inequality
Note K(a — ¢,b —d) > K(a— d,b— c) by

path-swapping injections.

C C

Kla—c,b—d)—Kla—d,b—c)is
number of pairs of north-east lattice paths
from a to ¢, b to d, that do not intersect.

Thus this number is in #P.



Example 2: permutations with k inversions

Let a, = number of m € S, with k inversions.
n—1
Then Z gt = H(1+q+...+q’)
0<k<(3) i=1

is computable in poly(n) time.

Thus a; — axi1ak_1 is computable in poly(n) time,

and so is in #P.



Back to our goal
We compare three log-concave inequalities:

Binomial inequality: in #P;
Permutation inversion inequality: in #P;

Stanley—Yan inequality: not in #P, unless PH
collapses.

This differentiates Stanley—Yan inequality from
binomial inequality and permutation inversion

inequality.



What is next?

Conjecture
Defect of Mason conjecture

I(k)? — I(k+1)I(k—1) ¢ #P.




THANK YOU!

Preprint: www.arxiv.org/abs/2309.05764

Webpage: www.math.rutgers.edu/~sc2518/

Email: sweehong. chan@rutgers.edu
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Complexity class X7: example

Problem A: Check if a 3-coloring of G is proper.
Problem A is in ©§ = P.

Problem B: Check if G has a proper 3-coloring.
Problem B is in ¥7 = NP.

Problem C: Check if there is an induced subgraph of
G of size [n/2] that is not 3-colorable.
Problem C is in ¥5 = NP"P.



