
Complexity of Log-concave
Inequalities for Matroids

Swee Hong Chan

joint with Igor Pak

What is log-concavity?

A sequence a1, . . . , an ∈ R≥0 is log-concave if

a2k ≥ ak+1 ak−1 (1 < k < n).

Log-concavity (and positivity) implies unimodality:

a1 ≤ · · · ≤ am ≥ · · · ≥ an for some 1 ≤ m ≤ n.

1 4 9 15 20 22 20 15 9 4 1

Example 1: binomial coefficients

ak =

(
n

k

)
k = 0, 1, . . . , n.

This sequence is log-concave because

a2k
ak+1 ak−1

=

(
n
k

)2(
n

k+1

) (
n

k−1

) =

(
1 +

1

k

)(
1 +

1

n − k

)
,

which is greater than 1.

Example 2: permutations with k inversions

ak = number of π ∈ Sn with k inversions,

where inversion of π is pair i < j s.t. πi > πj .

This sequence is log-concave because∑
0≤k≤(n2)

ak q
k = [n]q! =

n−1∏
i=1

(1 + q + q2 + . . .+ qi)

is a product of log-concave polynomials.

Example 3: forests of a graph

ak = number of forests with k edges of graph G .

Forest is a subset of edges of G that has no cycles.

Log-concavity was conjectured for all matroids

(Mason ‘72), and was proved through combinatorial

Hodge theory (Huh ‘15).

G forest not forest spanning tree

Motivation

Which log-concave inequality is more “difficult”?

Our goal

We aim to differentiate simple log-concave

inequalities from complex log-concave inequalities

using Complexity Theory.

Matroids

Object: matroids

Matroid M = (X , I) is ground set X with

collection of independent sets I ⊆ 2X .

Graphic matroids

X = edges of a graph G ,

I = forests in G .

Realizable matroids

X = finite set of vectors over field F,

I = sets of linearly independent vectors.

Matroids: conditions

S ⊆ T and T ∈ I implies S ∈ I.

T S

If S ,T ∈ I and |S | < |T |, then there is

x ∈ T \ S such that S ∪ {x} ∈ I.

S T S ∪ {x}

A basis is a maximal independent set.

Rank r of matroid is the size of the bases.

Mason conjecture

For matroid M, let

I(k) := no. of independents sets with k elements.

For graphic matroid, I(k) is no. of forest with k edges.

Conjecture (Mason ‘72)
The sequence I(1), I(2), . . . is log-concave,

I(k)2 ≥ I(k + 1) I(k − 1) (k ∈ N),

Mason conjecture (continued)

Conjecture (Mason ‘72)

I(k)2 ≥ I(k + 1) I(k − 1) (k ∈ N).

Conjecture was proved for graphic matroids

by (Huh ‘15), and for all matroids

by (Adiprasito–Huh–Katz ‘18).

Both proofs used combinatorial Hodge theory.

Stanley–Yan inequality (simple)

Fix a disjoint subset S of X .

B(k) := no. of bases B such that |B ∩ S | = k ,

multiplied by r !×
(
r
k

)−1
.

Theorem (Stanley ‘81, Yan ‘23)
The sequence B(1),B(2), . . . is log-concave,

B(k)2 ≥ B(k + 1)B(k − 1) (k ∈ N).

Stanley–Yan inequality (simple)

Theorem (Stanley ‘81, Yan ‘23)

B(k)2 ≥ B(k + 1)B(k − 1) (k ∈ N).

Proved for regular matroids by (Stanley ‘81) using

Alexandrov–Fenchel inequality for mixed volumes.

Proved for all matroids by (Yan ‘23) using theory

of Lorentzian polynomials.

Proof of Mason conjecture

Let

M′ :=
direct sum of M with the

free matroid of r elements;

S := X .

Then

I(k) for M = 1
r ! × B(k) for M′.

Thus Stanley–Yan inequality for M′

implies Mason conjecture for M.

Stanley–Yan inequality (true)

Fix d ≥ 0 , disjoint subsets S , S1, . . . , Sd of X ,

and ℓ1, . . . , ℓd ∈ N .

Bd(k) :=
number of bases B of M such that

|B ∩ S | = k , |B ∩ Si | = ℓi for i ∈ [d],

multiplied by r !×
(

r
k ,ℓ1,...,ℓd

)−1
.

Theorem (Stanley ‘81, Yan ‘23)
The sequence Bd(1),Bd(2), . . . is log-concave,

Bd(k)
2 ≥ Bd(k + 1)Bd(k − 1) (k ∈ N).

When is equality achieved?

Quote (Gardner ‘02)
If inequalities are silver currency in mathematics,

those that come along with precise equality

conditions are gold.

Example (AM–GM inequality)
For non-negative x1, . . . , xn,

x1+···+xn
n ≥ n

√
x1 · · · xn,

with equality if and only if x1 = · · · = xn .

Main result

Consider the decision problem for checking

equality in Stanley–Yan inequality:

Bd(k)
2 =?=?=? Bd(k + 1) Bd(k − 1).

Theorem (C.–Pak ‘24+)
For d ≥ 1, problem cannot be decided in polynomial

time, unless NP = coNP.

Theorem 1 (C.–Pak ‘24+)
For d ≥ 1, problem is not part of polynomial

hierarchy, unless polynomial hierarchy collapses.

Main result

Consider the decision problem for checking

equality in Stanley–Yan inequality:

Bd(k)
2 =?=?=? Bd(k + 1) Bd(k − 1).

Theorem (C.–Pak ‘24+)
For d ≥ 1, problem cannot be decided in polynomial

time, unless NP = coNP.

Theorem 1 (C.–Pak ‘24+)
For d ≥ 1, problem is not part of polynomial

hierarchy, unless polynomial hierarchy collapses.

Polynomial hierarchy

Decision vs counting

Decision problem: answer is either ‘Yes’ or ‘No’.

Counting problem: answer is a nonnegative integer.

Example (3-colorings of graph G)
Decision problem: Check if there exists

a proper 3-coloring of G .

Counting problem: Find the number of

proper 3-colorings of G .

Polynomial hierarchy is a subclass of decision problems.

Complexity class P

P :=

{
Decision problems solvable by deterministic

Turing machine in polynomial time

}

Example
Check if a given 3-coloring of a graph G is proper.

This can be solved in O(n2) time by checking

the color of endpoints of every edge.

YES NO

Complexity class NP

NP :=

{
Decision problems solvable by nondetermi-

nistic Turing machine in polynomial time

}
.

Can split into many parallel branches;

Output ‘YES’ if one of the branches said ‘YES’;

Output ‘NO’ if all branches said ‘NO’.

Complexity class NP

NP :=

{
Decision problems solvable by nondetermi-

nistic Turing machine in polynomial time

}
.

Can split into many parallel branches;

Output ‘YES’ if one of the branches said ‘YES’;

Output ‘NO’ if all branches said ‘NO’.

Complexity class NP: example

Problem: Check if graph G has a proper 3-coloring.

Each branch corresponds to checking if

a particular 3-coloring of G is proper.

YES NO

· · ·

NO

Output to this example is ‘YES’.

Turing machine with an oracle

At each step, this machine can either:

Perform usual nondeterministic Turing

machine operation; or

Ask an oracle that is able to answer one

fixed type of problems.

Turing machine with an oracle: example

Problem: Check if there is an induced subgraph of

G of size ⌈n/2⌉ that is not 3-colorable.

Oracle: Can check if a graph is 3-colorable.

Each branch of the machine corresponds to

an induced subgraph of G of size ⌈n/2⌉ .

· · ·

For every branch, oracle checks

if subgraph is 3-colorable.

Turing machine with an oracle: example

Problem: Check if there is an induced subgraph of

G of size ⌈n/2⌉ that is not 3-colorable.

Oracle: Can check if a graph is 3-colorable.

Each branch of the machine corresponds to

an induced subgraph of G of size ⌈n/2⌉ .

· · ·

For every branch, oracle checks

if subgraph is 3-colorable.

Complexity class ΣP
i

The first two classes are

ΣP
0 := P; ΣP

1 := NP.

For i ≥ 1, the class ΣP
i := NPΣP

i−1 is
Decision problems solvable by nondetermi-

nistic Turing machine in polynomial time

with an oracle for problem from ΣP
i−1.

 .

Note that

ΣP
0 ⊆ ΣP

1 ⊆ ΣP
2 ⊆ ΣP

3 ⊆ · · ·

Polynomial hierarchy (PH)

Polynomial hierarchy is the union of all ΣP
i ’s,

PH :=
∞⋃
i=0

ΣP
i .

Conjecture
Polynomial hierarchy does not collapse,

ΣP
0 ⊊ ΣP

1 ⊊ ΣP
2 ⊊ ΣP

3 ⊊ · · ·

ΣP
0 = ΣP

1 is equivalent to P = NP.

ΣP
1 = ΣP

2 is equivalent to NP = coNP.

Back to main result

Consider the decision problem for checking

equality in Stanley–Yan inequality:

Bd(k)
2 =?=?=? Bd(k + 1) Bd(k − 1).

Theorem (C.–Pak ‘24+)
For d ≥ 1, decision problem is not in PH, unless

PH collapses.

Recall our goal ...

We aim to differentiate simple log-concave

inequalities from complex log-concave inequalities

using Complexity Theory.

Complexity class #P#P#P

Complexity class #P

#P :=


Counting problems realizable as number

of ‘YES’ branches in some nondetermi-

nistic Turing machine.

 .

Example
Count number of proper 3-colorings of graph G.

Not to be confused with FP, which is counting

problems solvable in deterministic polynomial time.

Main result

Theorem 2 (C.–Pak ‘24+)
For d ≥ 1, the defect of Stanley–Yan inequality

Bd(k)
2 − Bd(k + 1) Bd(k − 1)

is not in #P, unless PH collapses.

Note: Bd(k)
2 and Bd(k + 1) Bd(k − 1) are in #P .

Example 1: binomial inequality(
n

k

)2

≥
(

n

k + 1

)(
n

k − 1

)
(1 < k < n).

This inequality has a lattice path interpretation:

K (a → c , b → d) :=
no. of pairs of north-east lattice

paths from a to c and b to d ,

for a, b, c , d ∈ Z2.

•b

• d

•a

• c

Example 1: binomial inequality
Let

a = (0, 1), c = (k , n − k + 1),

b = (1, 0), d = (k + 1, n − k).

Then

K (a → c , b → d) =

(
n

k

)2

,

K (a → d , b → c) =

(
n

k − 1

)(
n

k + 1

)
.

•a
•b

• c
• d

•a
•b

• c
• d

Example 1: binomial inequality
Note K (a → c , b → d) ≥ K (a → d , b → c) by

path-swapping injections.

•a
•b

• c
• d

•a
•b

• c
• d

K (a → c , b → d)− K (a → d , b → c) is

number of pairs of north-east lattice paths

from a to c , b to d , that do not intersect.

Thus this number is in #P.

Example 2: permutations with k inversions

Let ak = number of π ∈ Sn with k inversions.

Then
∑

0≤k≤(n2)

ak q
k =

n−1∏
i=1

(1 + q + . . .+ qi)

is computable in poly(n) time.

Thus a2k − ak+1ak−1 is computable in poly(n) time,

and so is in #P.

Back to our goal

We compare three log-concave inequalities:

Binomial inequality: in #P;

Permutation inversion inequality: in #P;

Stanley–Yan inequality: not in #P, unless PH

collapses.

This differentiates Stanley–Yan inequality from

binomial inequality and permutation inversion

inequality.

What is next?

Conjecture
Defect of Mason conjecture

I(k)2 − I(k + 1) I(k − 1) /∈ #P.

THANK YOU!

Preprint: www.arxiv.org/abs/2309.05764

Webpage: www.math.rutgers.edu/~sc2518/

Email: sweehong.chan@rutgers.edu

www.arxiv.org/abs/2309.05764
www.math.rutgers.edu/~sc2518/

Complexity class ΣP
i : example

Problem A: Check if a 3-coloring of G is proper.

Problem A is in ΣP
0 = P.

Problem B: Check if G has a proper 3-coloring.

Problem B is in ΣP
1 = NP.

Problem C: Check if there is an induced subgraph of

G of size ⌈n/2⌉ that is not 3-colorable.

Problem C is in ΣP
2 = NPNP.

