Log-concavity, Cross Product Conjectures, and FKG Inequalities in Order Theory

Swee Hong Chan

joint with Igor Pak and Greta Panova

What is log-concavity?

A sequence $a_1, \ldots, a_n \in \mathbb{R}_{\geq 0}$ is log-concave if

$$a_k^2 \geq a_{k+1} a_{k-1}$$
 for all $1 < k < n$.

Log-concavity (and positivity) implies unimodality:

$$a_1 \leq \cdots \leq a_m \geq \cdots \geq a_n$$
 for some $1 \leq m \leq n$.

Example: binomial coefficients

$$a_k = \binom{n}{k}$$
 $k = 0, 1, \ldots, n$

This sequence is log-concave because

$$\frac{a_k^2}{a_{k+1} a_{k-1}} = \frac{\binom{n}{k}^2}{\binom{n}{k+1}\binom{n}{k-1}} = \left(1 + \frac{1}{k}\right) \left(1 + \frac{1}{n-k}\right),$$

which is greater than 1.

Example: permutations with k inversions $a_k =$ number of $\pi \in S_n$ with k inversions, where inversion of π is pair i < j s.t. $\pi_i > \pi_j$.

This sequence is log-concave because

$$\sum_{0 \le k \le {n \choose 2}} a_k \, q^k \; = \; [n]_q! \; = \; \prod_{i=1}^{n-1} (1+q+\ldots+q^i) \; .$$

is a product of log-concave polynomials.

Log-concavity is a widespread phenomenon observed in numerous subjects in mathematics.

Today we focus on log-concavity for **probabilities in posets**.

Partially ordered sets

A poset P is a set X with partial order \prec on X.

Linear extension

A linear extension L is a complete order of \prec .

We write L(x) = k if x is k-th smallest in L.

Stanley's inequality Fix $z \in P$. N_k is probability that $\mathcal{L}(z) = k$, where \mathcal{L} is uniform random linear extension of P. Theorem (Stanley '81) For every poset and k > 1, $N_k^2 > N_{k+1} N_{k-1}$ The inequality was initially conjectured by Chung-Fishburn-Graham, and was proved using

Aleksandrov-Fenchel inequality for mixed volumes.

Our contribution

Problem

(Folklore, Graham '83, Biró-Trotter '11, Stanley '14) Give a combinatorial proof of Stanley's inequality.

Answer (C.–Pak '21+) More combinatorial proof for Stanley's inequality, with generalizations to weighted version.

Applications of log-concavity

$\frac{1}{3} - \frac{2}{3}$ Conjecture

Conjecture (Kislitsyn '68, Fredman '75, Linial '84) For finite poset that is not completely ordered, there exist elements x, y:

$$\frac{1}{3} \leq \mathbb{P}\big[\mathcal{L}(x) < \mathcal{L}(y)\big] \leq \frac{2}{3},$$

where \mathcal{L} is uniform random linear extension of P.

Quote (Brightwell-Felsner-Trotter '95) "This problem remains one of the most intriguing problems in the combinatorial theory of posets."

Why $\frac{1}{3}$ and $\frac{2}{3}$?

The upper, lower bound are achieved by this poset:

The big breakthrough

Theorem (Kahn-Saks '84)

For poset that is not completely ordered, there exist elements *x*, *y*:

$$\frac{3}{11} \leq \mathbb{P}\big[\mathcal{L}(x) < \mathcal{L}(y)\big] \leq \frac{8}{11},$$
roughly between 0.273 and 0.727.

Proof used log-concavity as a crucial component.

Proof sketch of Kahn-Saks Theorem

Find $x, y \in P$ such that

$$egin{aligned} &|h(y)-h(x)|&\leq&1, \ \end{aligned}$$
 where $&h(x):=\mathbb{E}[\mathcal{L}(x)]$ and $&h(y):=\mathbb{E}[\mathcal{L}(y)]. \end{aligned}$

Let F_k be probability that $\mathcal{L}(y) - \mathcal{L}(x) = k$.

$$\mathbb{P}\big[\mathcal{L}(x) < \mathcal{L}(y)\big] = F_1 + F_2 + \cdots + F_n,$$

$$\mathbb{P}\big[\mathcal{L}(y) < \mathcal{L}(x)\big] = F_{-1} + F_{-2} + \cdots + F_{-n}.$$

Proof sketch of Kahn-Saks Theorem Since |h(y) - h(x)| is small, $F_1 + 2F_2 + \cdots + nF_n \approx F_{-1} + 2F_{-2} + \cdots + nF_{-n}$.

One can hope this implies

 $F_1 + F_2 + \cdots + F_n \approx F_{-1} + F_{-2} + \cdots + F_{-n},$

which would then imply

 $\mathbb{P}[\mathcal{L}(x) < \mathcal{L}(y)] \approx \mathbb{P}[\mathcal{L}(y) < \mathcal{L}(x)] \approx 0.5.$

But things can go really wrong:

 $\overline{\mathbf{F}_{-4}} \quad \overline{\mathbf{F}_{-3}} \quad \overline{\mathbf{F}_{-2}} \quad \overline{\mathbf{F}_{-1}} \quad \overline{\mathbf{F}_{1}} \quad \overline{\mathbf{F}_{2}} \quad \overline{\mathbf{F}_{3}} \quad \overline{\cdots} \quad \overline{\mathbf{F}_{n-2}} \quad \overline{\mathbf{F}_{n-1}}$

Log-concavity comes to rescue

Theorem (Kahn–Saks '84) For $k \neq 0$, $F_k^2 \geq F_{k+1}F_{k-1}$, $F_{-k}^2 \geq F_{-(k+1)}F_{-(k-1)}$.

This generalizes Stanley's inequality, and was proved by Aleksandrov-Fenchel inequality.

Proof sketch of Kahn-Saks Theorem

Log-concavity (and other ineqs.) imply:

- 𝒫[𝒫(𝑥) < 𝒫(𝒴)] is maximized (resp. minimized)
 </p>

 when 𝑘₁, 𝑘₂, ..., 𝑘_n is geometric sequence,

Combined with $|h(y) - h(x)| \le 1$, the result follows.

Best known bound for $\frac{1}{3} - \frac{2}{3}$ Conjecture

Theorem (Brightwell-Felsner-Trotter '95) For poset that is not completely ordered, there exist elements x, y:

$$\frac{5-\sqrt{5}}{10} \leq \mathbb{P}\big[\mathcal{L}(x) < \mathcal{L}(y)\big] \leq \frac{5+\sqrt{5}}{10},$$

roughly between 0.276 and 0.724.

Note: Kahn–Saks bound was 0.273 and 0.727.

This bound cannot be improved for infinite posets.

Cross Product Conjecture

New ingredient: Cross Product Conjecture Fix $x, y, z \in P$. Let $F(k, \ell)$ be probability that $\mathcal{L}(y) - \mathcal{L}(x) = k$ and $\mathcal{L}(z) - \mathcal{L}(y) = \ell$.

Conjecture (Brightwell-Felsner-Trotter '95) For $k, \ell \ge 1$, $F(k, \ell)F(k+1, \ell+1) \le F(k+1, \ell)F(k, \ell+1).$

Equivalently,

$$\det \begin{bmatrix} F(k,\ell) & F(k,\ell+1) \\ F(k+1,\ell) & F(k+1,\ell+1) \end{bmatrix} \leq 0.$$

What was known

Conjecture (Brightwell-Felsner-Trotter '95) For $k, \ell \ge 1$, $F(k, \ell)F(k + 1, \ell + 1) \le F(k + 1, \ell)F(k, \ell + 1).$

Brightwell-Felsner-Trotter proved the case $k = \ell = 1$ by Ahlswede–Daykin inequality. Combined with Kahn–Saks proof, this gives the $\frac{5\pm\sqrt{5}}{10}$ bound for $\frac{1}{3} - \frac{2}{3}$ Conjecture.

What was known

Conjecture (Brightwell-Felsner-Trotter '95) For $k, \ell \ge 1$, $F(k, \ell)F(k+1, \ell+1) \le F(k+1, \ell)F(k, \ell+1).$

Quote (Brightwell-Felsner-Trotter '95) "Something more powerful seems to be needed to prove general form of Cross Product Conjecture."

Theorem 1 (C.-Pak-Panova '22) Cross Product Conjecture is true for posets of width two.

> Proved algebraically using matrix algebra argument and combinatorially through Lindström–Gessel–Viennot type argument.

Our results

Theorem 2 (C.-Pak-Panova '23+) For every poset and $k, \ell \ge 1$, $F(k, \ell) F(k+1, \ell+1) < 2F(k+1, \ell) F(k, \ell+1)$.

Proof is based on Favard's inequality for mixed volumes, for which factor of 2 is tight for general geometric objects.

On the other hand, for specific classes of posets this factor of 2 can be improved.

A new protagonist

We now shift the attention from linear extensions to **order-preserving maps**.

Order-preserving maps

Fix poset
$$P = (X, \prec)$$
 and integer $t \ge 1$.
A map $M : X \to \{1, \ldots, t\}$ is order-preserving if
 $x \prec y$ implies $M(x) \le M(y)$.

Linear extensions are order-preserving maps that are also bijections to $\{1, \ldots, |X|\}$.

Previously on linear extensions ...

- Log-concavity?
 Solved: Stanley '81, Kahn–Saks '84, C.-Pak
- Cross–product conjecture?
 Open: Brightwell–Felsner–Trotter '95, C.-Pak-Panova '22
- ¹/₃-²/₃ Conjecture?
 Open: Kahn–Saks '84, Brightwell–Felsner–Trotter '95

Can we **improve** on these results for **order-preserving maps**?

Log-concavity for order-preserving maps

Graham's conjecture

Fix $z \in P$ and integer $t \ge 1$.

Let G_k be probability that $\mathcal{M}(z) = k$,

where \mathcal{M} is uniform random ord.-pres. map $X \to [t]$.

Conjecture (Graham '83) For every poset and $k \ge 1$,

$$G_k^2 \geq G_{k+1} G_{k-1}.$$

Quote (Graham '83)

"It would seem that [the conjecture] should have a proof based on the FKG or AD inequalities. However, such a proof has up to now successfully eluded all attempts to find it". What is Harris/FKG/AD inequalities?

They are fundamental inequalities in probability that shows, in many random systems, increasing events are positively correlated.

Example

For any $a, b, c, d \in V$ in Erdös–Renyi random graph,

 $\mathbb{P}\big[a \leftrightarrow b, \, c \leftrightarrow d\,\big] \geq \mathbb{P}\big[a \leftrightarrow b\,\big] \, \mathbb{P}\big[c \leftrightarrow d\,\big],$

where $a \leftrightarrow b$ is event that a and b are connected.

Presence of one path increases probability of other path.

FKG or FGK?

Commun. math. Phys. 22, 89-103 (1971) © by Springer-Verlag 1971

Correlation Inequalities on Some Partially Ordered Sets

C. M. FORTUIN and P. W. KASTELEYN Instituut-Lorentz, Rijksuniversiteit te Leiden, Leiden, Nederland

J. GINIBRE

Laboratoire de Physique Théorique et Hautes Energies, Université de Paris-Sud Orsay, France (Laboratoire associé au Centre National de la Recherche Scientifique)

Received March 2, 1971

Credit: Noga Alon, 2023

Graham's conjecture is true

Theorem (Daykin–Daykin–Paterson '84) For every poset and $k \ge 1$,

$$G_k^2 \geq G_{k+1} G_{k-1}.$$

Proof used an explicit injective argument, not based on FKG/AD inequality.

Quote (Daykin–Daykin–Paterson '84) "[Proof using FKG or Ahlswede–Daykin inequality] have as yet eluded discovery".

Our results

Theorem 3 (C.–Pak '22+) New proof of Daykin–Daykin–Paterson inequality based on Ahlswede–Daykin inequality, with generalization to multi-weighted version.

This proof validates Graham's prediction.

Cross product conjecture for order-preserving maps

Our results

Fix $x, y, z \in P$ and $t \ge 1$. Let $G(k, \ell)$ be probability $\mathcal{M}(y) - \mathcal{M}(x) = k$ and $\mathcal{M}(z) - \mathcal{M}(y) = \ell$,

where \mathcal{M} is uniform random ord.-pres. map $X \to [t]$.

Theorem 4 (C.–Pak '22+) For all integers k, ℓ , $G(k, \ell) G(k + 1, \ell + 1) \leq G(k + 1, \ell) G(k, \ell + 1).$

This proves cross product conjecture for order-preserving maps.

Our results

Theorem (C.–Pak '22+) For all integers k, ℓ , $G(k, \ell) G(k + 1, \ell + 1) \leq G(k + 1, \ell) G(k, \ell + 1).$

Proof is based on same approach discovered when proving Daykin–Daykin–Paterson inequality.

This approach does not work for linear extensions, where inequality is known with factor of 2 in RHS.

Consequences: XYZ inequality

Theorem (Shepp '84) For incomparable elements $x, y, z \in P$,

$$\mathbb{P}\big[\mathcal{L}(x) > \mathcal{L}(y) \mid \mathcal{L}(x) > \mathcal{L}(z)\big] \geq \mathbb{P}\big[\mathcal{L}(x) > \mathcal{L}(y)\big]$$

Inequalities remain true if random linear extension \mathcal{L} is replaced with random order-preserving map \mathcal{M} .

XYZ inequality is a consequence of cross-product inequalities for order-preserving maps, with generalizations to weighted versions. $\frac{1}{3} - \frac{2}{3}$ Conjecture for order-preserving maps

$\frac{1}{3} - \frac{2}{3}$ Conjecture for order-preserving maps Conjecture For finite poset that is not completely ordered, there

exist elements x, y:

$$\frac{1}{3} \leq \lim_{t \to \infty} \mathbb{P} \big[\mathcal{M}_t(x) < \mathcal{M}_t(y) \big] \leq \frac{2}{3},$$

where \mathcal{M}_t is uniform random o.p. map $X \to [t]$.

This is in fact equivalent to $\frac{1}{3} - \frac{2}{3}$ Conjecture for linear extensions.

All recent advances unfortunately do not improve known bounds for this conjecture.

Open problem

Kahn-Saks Conjecture

 $\delta(P)$ is largest number such that there exist $x, y \in P$:

$$\delta(P) \leq \mathbb{P} \big[\mathcal{L}(x) < \mathcal{L}(y) \big] \leq 1 - \delta(P).$$

Note that $\frac{1}{3} - \frac{2}{3}$ Conjecture is equivalent to $\delta(P) \ge \frac{1}{3}$ for P not completely ordered.

Conjecture (Kahn-Saks '84)
$$\delta(P) \rightarrow \frac{1}{2}$$
 as width $(P) \rightarrow \infty$.

Kahn-Saks Conjecture

Conjecture (Kahn-Saks '84)

$$\delta(P) \rightarrow \frac{1}{2} \quad as \quad \text{width}(P) \rightarrow \infty.$$

Komlós '90 proved Conjecture for posets with $\Omega(\frac{n}{\log \log \log n})$ minimal elements.

C.-Pak-Panova '21 proved Conjecture for Young diagram posets with fixed width.

THANK YOU!

Webpage: www.math.rutgers.edu/~sc2518/ Email: sc2518@rutgers.edu

Order-reversing weight

A weight $\omega: X \to \mathbb{R}_{>0}$ is order-reversing if

 $\omega(x) \geq \omega(y)$ whenever $x \prec y$.

Weight of linear extension L is

Weighted Stanley's inequality

Let $N_{\omega,k}$ be probability that $\mathcal{L}(z) = k$,

where \mathcal{L}_{ω} is ω -weighted random linear extension.

Theorem 5 (C.–Pak '21+) For every poset and $k \ge 1$, $N_{\omega,k}^2 \ge N_{\omega,k+1} N_{\omega,k-1}$.

Proof used combinatorial atlas method, a new tool to establish log-concave inequalities.