Combinatorial Atlas for Log-concave Inequalities

Swee Hong Chan
joint with Igor Pak

What is log-concavity?

A sequence $a_{1}, \ldots, a_{n} \in \mathbb{R}_{\geq 0}$ is log-concave if

$$
a_{k}^{2} \geq a_{k+1} a_{k-1} \quad(1<k<n)
$$

Log-concavity (and positivity) implies unimodality:
$a_{1} \leq \cdots \leq a_{m} \geq \cdots \geq a_{n}$ for some $1 \leq m \leq n$.

Example: binomial coefficients

$$
a_{k}=\binom{n}{k} \quad k=0,1, \ldots, n .
$$

This sequence is log-concave because
$\frac{a_{k}^{2}}{a_{k+1} a_{k-1}}=\frac{\binom{n}{k}^{2}}{\binom{n}{k+1}\binom{n}{k-1}}=\left(1+\frac{1}{k}\right)\left(1+\frac{1}{n-k}\right)$,
which is greater than 1 .

Example: permutations with k inversions

$$
a_{k}=\text { number of } \pi \in S_{n} \text { with } k \text { inversions, }
$$

where inversion of π is pair $i<j$ s.t. $\pi_{i}>\pi_{j}$.
This sequence is log-concave because

$$
\sum_{0 \leq k \leq\binom{ n}{2}} a_{k} q^{k}=[n]_{q}!=\prod_{i=1}^{n-1}\left(1+q+q^{2}+\ldots+q^{i}\right)
$$

is a product of log-concave polynomials.

Log-concavity appears in different objects

 for different reasons.Today we focus on reason for matroids.

Warmup: graphs and forests

Let $G=(V, E)$ be a graph.
A (spanning) forest $F=\left(V, E^{\prime}\right)$ with $E^{\prime} \subseteq E$ is a subset of edges without cycles.

G

forest

not forest

spanning tree

Log-concavity for forests

Theorem (Huh '15)
For every graph and $k \geq 1$,

$$
I_{k}^{2} \geq I_{k+1} I_{k-1}
$$

where I_{k} is the number of forests with k edges.

Proof used Hodge theory from algebraic geometry.
In fact, stronger inequalities for more general objects are true.

Object: Matroids
Matroid $\mathcal{M}=(X, \mathcal{I})$ is ground set X with collection of independent sets $\mathcal{I} \subseteq 2^{X}$.

Graphical matroids

- $X=$ edges of a graph G,
- $\mathcal{I}=$ forests in G.

Realizable matroids

- $X=$ finite set of vectors over field \mathbb{F},
- $\mathcal{I}=$ sets of linearly independent vectors.

Matroids: Conditions

- $S \subseteq T$ and $T \in \mathcal{I}$ implies $S \in \mathcal{I}$.

- If $S, T \in \mathcal{I}$ and $|S|<|T|$, then there is $x \in T \backslash S$ such that $S \cup\{x\} \in \mathcal{I}$.

Note: These are natural properties of sets of linearly independent vectors.

Mason's Conjecture (1972)

For every matroid and $k \geq 1$,
(1) $I_{k}{ }^{2} \geq I_{k+1} I_{k-1}$;
(2) $I_{k}{ }^{2} \geq\left(1+\frac{1}{k}\right) I_{k+1} I_{k-1}$;
(3) $I_{k}{ }^{2} \geq\left(1+\frac{1}{k}\right)\left(1+\frac{1}{n-k}\right) I_{k+1} I_{k-1}$.
I_{k} is number of ind. sets of size k, and $n=|X|$.

Note: $(3) \Rightarrow(2) \Rightarrow(1)$.

Why $\left(1+\frac{1}{k}\right)\left(1+\frac{1}{n-k}\right)$?

Mason (3) is equivalent to ultra/binomial log-concavity,

$$
\frac{I_{k}^{2}}{\binom{n}{k}^{2}} \geq \frac{I_{k+1}}{\binom{n}{k+1}} \frac{I_{k-1}}{\binom{n}{k-1}}
$$

Equality occurs if every $(k+1)$-subset is independent.

Solution to Mason (1)

Theorem (Adiprasito-Huh-Katz '18)
For every matroid and $k \geq 1$,

$$
I_{k}^{2} \geq I_{k+1} I_{k-1}
$$

Proof used combinatorial Hodge theory for matroids.

Solution to Mason (2)

Theorem (Huh-Schröter-Wang '18)
For every matroid and $k \geq 1$,

$$
I_{k}^{2} \geq\left(1+\frac{1}{k}\right) I_{k+1} I_{k-1}
$$

Proof used combinatorial Hodge theory for correlation inequality on matroids.

Solution to Mason (3)

Theorem
(Anari-Liu-Oveis Gharan-Vinzant, Brändén-Huh '20)
For every matroid and $k \geq 1$,

$$
I_{k}^{2} \geq\left(1+\frac{1}{k}\right)\left(1+\frac{1}{n-k}\right) I_{k+1} I_{k-1} .
$$

Proof used theory of strong log-concave polynomials / Lorentzian polynomials.

Solution to Mason (3)

Theorem
(Anari-Liu-Oveis Gharan-Vinzant, Brändén-Huh '20)
For every matroid and $k \geq 1$,

$$
I_{k}^{2} \geq\left(1+\frac{1}{k}\right)\left(1+\frac{1}{n-k}\right) I_{k+1} I_{k-1} .
$$

Theorem (Murai-Nagaoka-Yazawa '21)
Equality occurs if and only if every $(k+1)$-subset is independent.

Our contribution

Method: Combinatorial atlas

Results: Log-concave inequalities, and
if and only if conditions for equality

- Matroids (refined);
- Morphism of matroids (refined);
- Discrete polymatroids;
- Stanley's poset inequality (refined);
- Poset antimatroids;
- Branching greedoid (log-convex);
- Interval greedoids.

Method: Combinatorial atlas
Results: Log-concave inequalities, and if and only if conditions for equality

- Matroids (refined);
- Morphism of matroids (refined);
- Discrete polymatroids;
- Stanley's poset inequality (refined);
- Poset antimatroids;
- Branching greedoid (log-convex);
- Interval greedoids.

Combinatorial atlas application:
 Matroids

Warmup: graphical matroids refinement

Corollary (C.-Pak)

For graphical matroid of simple connected graph
$G=(V, E)$, and $k=|V|-2$,

$$
\left(I_{k}\right)^{2} \geq \frac{3}{2}\left(1+\frac{1}{k}\right) I_{k+1} I_{k-1},
$$

with equality if and only if G is cycle graph.

Numerically better than Mason (3), because

$$
\frac{3}{2} \geq 1+\frac{1}{n-k}=1+\frac{1}{|E|-|V|+2}
$$

for G that is not tree.

Comparison with Mason (3)

Our bound gives

$$
\frac{\left(I_{k}\right)^{2}}{I_{k+1} I_{k-1}} \geq \frac{3}{2} \quad \text { when }|E|-|V| \rightarrow \infty,
$$

Meanwhile, Mason (3) bound only gives

$$
\frac{\left(I_{k}\right)^{2}}{I_{k+1} I_{k-1}} \geq 1 \quad \text { when }|E|-|V| \rightarrow \infty .
$$

Our bound is better numerically and asymptotically.

Refinement for Mason (3)

Theorem 1 (C.-Pak)
For every matroid and $k \geq 1$,

$$
I_{k}^{2} \geq\left(1+\frac{1}{k}\right)\left(1+\frac{1}{\operatorname{prl}_{\mathcal{M}}(k-1)-1}\right) I_{k+1} I_{k-1} .
$$

This refines Mason (3),

$$
I_{k}^{2} \geq\left(1+\frac{1}{k}\right)\left(1+\frac{1}{n-k}\right) I_{k+1} I_{k-1}
$$

since

$$
\operatorname{pr|}_{\mathcal{M}}(k-1) \leq n-k+1
$$

Refinement for different matroids

- For all matroids,

$$
I_{k}^{2} \geq\left(1+\frac{1}{k}\right)\left(1+\frac{1}{n-k}\right) I_{k+1} I_{k-1}
$$

- Graphical matroids and $k=|V|-2$,

$$
I_{k}{ }^{2} \geq\left(1+\frac{1}{k}\right) \frac{3}{2} I_{k+1} I_{k-1}
$$

- Realizable matroids over \mathbb{F}_{q},

$$
I_{k}^{2} \geq\left(1+\frac{1}{k}\right)\left(1+\frac{1}{q^{m-k+1}-2}\right) I_{k+1} I_{k-1} .
$$

- (k, m, n)-Steiner system matroid,

$$
I_{k}^{2} \geq\left(1+\frac{1}{k}\right) \frac{n-k+1}{n-m} I_{k+1} I_{k-1}
$$

Refinement for Mason (3)

Theorem 2 (C.-Pak)
For every matroid and $k \geq 1$,

$$
I_{k}^{2} \geq\left(1+\frac{1}{k}\right)\left(1+\frac{1}{\operatorname{prl}_{\mathcal{M}}(k-1)-1}\right) I_{k+1} I_{k-1} .
$$

This refines Mason (3),

$$
I_{k}^{2} \geq\left(1+\frac{1}{k}\right)\left(1+\frac{1}{n-k}\right) I_{k+1} I_{k-1},
$$

since

$$
\operatorname{pr|}_{\mathcal{M}}(k-1) \leq n-k+1
$$

Parallel classes of matroid \mathcal{M}

Loop is $x \in X$ such that $\{x\} \notin \mathcal{I}$.
Non-loops x, y are parallel if $\{x, y\} \notin \mathcal{I}$.
Parallelship equiv. relation: $x \sim y$ if $\{x, y\} \notin \mathcal{I}$.
Parallel class $=$ equivalence class of \sim.

Matroid contraction

Contraction of $S \in \mathcal{I}$ is matroid \mathcal{M}_{S} with

$$
X_{S}=X \backslash S, \quad \mathcal{I}_{S}=\{T \backslash S: S \subseteq T\}
$$

$\operatorname{prl}(S):=$ number of parallel classes of \mathcal{M}_{S}

Parallel number

The k-parallel number is
$\operatorname{prl}_{\mathcal{M}}(k):=\max \{\operatorname{prl}(S) \mid S \in \mathcal{I}$ with $|S|=k\}$.

Refinement for Mason (3)

Theorem 3 (C.-Pak)
For every matroid and $k \geq 1$,

$$
I_{k}^{2} \geq\left(1+\frac{1}{k}\right)\left(1+\frac{1}{\operatorname{prl}_{\mathcal{M}}(k-1)-1}\right) I_{k+1} I_{k-1} .
$$

This refines Mason (3),

$$
I_{k}^{2} \geq\left(1+\frac{1}{k}\right)\left(1+\frac{1}{n-k}\right) I_{k+1} I_{k-1},
$$

since

$$
\operatorname{pr|}_{\mathcal{M}}(k-1) \leq n-k+1
$$

When is equality achieved?

- When every $(k+1)$-subset is independent,

$$
\operatorname{pr|}_{\mathfrak{M}}(k-1)=n-k+1 .
$$

- Graphical matroid when G is a cycle,

$$
\operatorname{prl}_{M}(k-1)=3 .
$$

- Realizable matroids of every m-vectors over \mathbb{F}_{q},

$$
\operatorname{prl}_{\mathfrak{M}}(k-1)=q^{m-k+1}-1 .
$$

- (k, m, n)-Steiner system matroid,

$$
\operatorname{prl}_{\mathcal{M}}(k-1)=\frac{n-k+1}{m-k+1} .
$$

Equality conditions

Theorem 4 (C.-Pak)
For every matroid and $k \geq 1$,

$$
\begin{gathered}
I_{k}^{2}=\left(1+\frac{1}{k}\right)\left(1+\frac{1}{\operatorname{prl}_{M}(k-1)-1}\right) I_{k+1} I_{k-1} \\
\text { if and only if }
\end{gathered}
$$

for every $S \in \mathcal{I}$ with $|S|=k-1$,

- \mathcal{M}_{S} has prl ${ }_{M}(k-1)$ parallel classes; and
- Every parallel class of \mathcal{M}_{S} has same size.

Combinatorial atlas: the method

Combinatorial atlas

Input: Acyclic digraph \mathcal{A}, where each vertex v is associated with

- Symmetric matrix M with nonnegative entries;
- Vector \boldsymbol{g}, \boldsymbol{h} with nonnegative entries.

Atlas: example

Atlas: example (zoomed in)

Atlas example: matroid (simplified)

For matroid with $X=\{a, b, c\}$, the atlas for $k=2$ is

Atlas example: matroid (simplified)

The matrix for the top vertex is
$M_{a, b}=(k+1)!\times$ number of independent sets of size $k+1$ containing a, b
$M_{a, *}=k!\times$ number of independent sets of size k containing a
$M_{*, *}=(k-1)!\times$ number of independent sets of size $k-1$

Combinatorial atlas

Input: Acyclic digraph \mathcal{A}, where each vertex v is associated with

- Symmetric matrix M with nonnegative entries;
- Vector \boldsymbol{g}, \boldsymbol{h} with nonnegative entries.

Goal: Show every M has hyperbolic inequality.

Hyperbolic inequality

M has hyperbolic inequality property if

$$
\langle x, M y\rangle^{2} \geq\langle x, M x\rangle\langle y, M y\rangle
$$

for every $\boldsymbol{x} \in \mathbb{R}^{r}, \boldsymbol{y} \in \mathbb{R}_{\geq 0}^{r}$.
This condition is equivalent to
M has at most one positive eigenvalue.
Note: Already known to be important in Lorentzian polynomials and Bochner's method proof of Aleksandrov-Fenchel inequality.

How to get log-concave inequalities?

Assume a_{k-1}, a_{k}, a_{k+1} can be computed by
$a_{k}=\langle\boldsymbol{g}, \mathbf{M} \boldsymbol{h}\rangle, a_{k+1}=\langle\boldsymbol{g}, \mathbf{M g}\rangle, a_{k-1}=\langle\boldsymbol{h}, \boldsymbol{M} \boldsymbol{h}\rangle$,
for $\boldsymbol{M}, \boldsymbol{g}, \boldsymbol{h}$ from a top vertex of the atlas.

$$
\langle\boldsymbol{g}, \boldsymbol{M} \boldsymbol{h}\rangle^{2} \geq\langle\boldsymbol{g}, \boldsymbol{M} \boldsymbol{g}\rangle\langle\boldsymbol{h}, \boldsymbol{M} \boldsymbol{h}\rangle \quad \text { (hyperbolic ineq.) }
$$

then implies

$$
a_{k}^{2} \geq a_{k+1} a_{k-1} \quad \text { (log-concave ineq.) }
$$

Combinatorial atlas

Input: Acyclic digraph \mathcal{A}, where each vertex v is associated with

- Symmetric matrix M with nonnegative entries;
- Vector \boldsymbol{g}, \boldsymbol{h} with nonnegative entries.

Goal: Show every M has hyperbolic inequality.
Method: Verify three conditions:

- Irreducibility condition;
- Inheritance condition;
- Subdivergence condition.

Irreducibility condition

- Matrix M associated to v is irreducible when restricted to its support;
- Vector \boldsymbol{h} is associated to v is a positive vector.

For matroids, this means that the base exchange graph is connected.

This is a consequence of the exchange property.

Inheritance condition

Edge $e=\left(v, v_{i}\right)$ of v is associated with linear map $T_{i}: \mathbb{R}^{r} \rightarrow \mathbb{R}^{r}$ such that, for every $\boldsymbol{x} \in \mathbb{R}^{r}$, i-th coordinate of $M x=\left\langle T_{i} x, M_{i} T_{i} \boldsymbol{h}\right\rangle$, where \boldsymbol{M} and \boldsymbol{h} are associated to v, and \boldsymbol{M}_{i} is associated to v_{i}.

For matroids with $X=\left\{e_{1}, \ldots, e_{n}\right\}$, this means
$k \times$ number of independent k-sets
$=\sum_{i=1}^{n}$ number of independent k-sets containing e_{i}.

Subdivergence condition

For every $x \in \mathbb{R}^{r}$,

$$
\sum_{i=1}^{r} h_{i}\left\langle T_{i} x, M_{i} T_{i} x\right\rangle \geq\langle x, M x\rangle
$$

where $h_{i}=i$-th coordinate of \boldsymbol{h}.

Note: Equality occurs for Lorentzian polynomials and for matroids.

For matroids, this is consequence of hereditary property.

Bottom-to-top principle for hyperbolic inequalities

Proposition

Assume irreducibility, inheritance, subdivergence. If every child vertex has hyperbolic inequality property, then so does the parent vertex.

Bottom-to-top principle reduces Goal to checking hyperbolic inequality only for sink vertices.

Bottom-to-top principle

Bottom-to-top principle

Bottom-to-top principle

Bottom-to-top principle

How about equalities?

Combinatorial atlas equality

Input:

- An acyclic digraph $\mathcal{A}:=(\mathcal{V}, \mathcal{E})$ satisfying previous conditions;
- Vectors $\boldsymbol{g}, \boldsymbol{h} \in \mathbb{R}_{\geq 0}$;

Goal: Show "every" M has hyperbolic equality,

$$
\langle\boldsymbol{g}, \mathbf{M} \boldsymbol{h}\rangle^{2}=\langle\boldsymbol{g}, \mathbf{M} \boldsymbol{g}\rangle\langle\boldsymbol{h}, \mathbf{M} \boldsymbol{h}\rangle .
$$

Top-to-bottom principle for equalities

Proposition
Assume regularity condition. If parent vertex has hyperbolic equality property, then so do children vertices.

Top-to-bottom principle expands hyperbolic equality to sink vertices, and gives combinatorial characterizations.

Top-to-bottom principle

Top-to-bottom principle

Top-to-bottom principle

Top-to-bottom principle

Other applications

Full version: 2110.10740 (71 pages)
Expository version: 2203.01533 (28 pages)
Results: Log-concave inequalities and equalities for

- Matroids (refined);
- Morphism of matroids (refined);
- Discrete polymatroids;
- Stanley's poset inequality (refined);
- Poset antimatroids;
- Branching greedoid (log-convex);
- Interval greedoids.

thank you!

Preprint: www.arxiv.org/abs/2110.10740
www.arxiv.org/abs/2203.01533
Webpage: wWW.math.rutgers.edu/~sc2518/
Email: sc2518@rutgers.edu

What is next?

Log-concavity for chromatic polynomials

Theorem (Huh '12)
For every graph G and $k \geq 1$,

$$
C_{k}^{2} \geq C_{k+1} C_{k-1},
$$

where C_{0}, C_{1}, \ldots are absolute coefficients of the chromatic polynomial of G.

Comparison to Mason (1):

- $\left(I_{k}\right)_{k \geq 0}$ is f-vector of independence complex;
- $\left(C_{k}\right)_{k \geq 0}$ is f-vector of broken circuit complex.

Stronger log-concavity for chromatic polynomials

Conjecture (Brylawski ‘82)
For every connected graph $G=(V, E)$ and $k \geq 1$,

$$
C_{k}^{2} \geq\left(1+\frac{1}{|V|-k}\right)\left(1+\frac{1}{|E|-|V|+k}\right) C_{k+1} C_{k-1},
$$

Note: Brylawski conjectured the inequality for characteristic polynomial of all matroids.

Atlas example: matroid (simplified)

Consider the graphical matroid for

The corresponding combinatorial atlas is

Atlas example: matroid (simplified)

$$
\left.\begin{array}{ccccc}
a & b & c & d & \text { null } \\
{\left[\begin{array}{cccc}
0 & \frac{3}{2} \times 1 & \frac{3}{2} \times 1 & \frac{3}{2} \times 2
\end{array}\right.} & 3 \\
\frac{3}{2} \times 1 & 0 & \frac{3}{2} \times 1 & \frac{3}{2} \times 2 & 3 \\
\frac{3}{2} \times 1 & \frac{3}{2} \times 1 & 0 & \frac{3}{2} \times 2 & 3 \\
\frac{3}{2} \times 2 & \frac{3}{2} \times 2 & \frac{3}{2} \times 2 & 0 & 3 \\
3 & 3 & 3 & 3 & 4
\end{array}\right] \begin{gathered}
a \\
b \\
c \\
\text { null }
\end{gathered}
$$

$M_{a, b} \quad=\frac{3}{2} \times$ numbers of 3 -forests containing a, b
$M_{a, \text { null }}=$ number of 2-forests containing a
$M_{\text {null,null }}=$ number of 1 -forests
Here $\frac{3}{2}$ is the contribution from $1+\frac{1}{\operatorname{prl}_{\mathcal{M}}(k-1)-1}$.

Combinatorial atlas application: Stanley's poset inequality

Partially ordered sets

A poset P is a set X with a partial order \prec on X.

Linear extension

A linear extension L is a complete order of \prec.

We write $L(x)=k$ if x is k-th smallest in L.

Stanley's inequality

Fix $z \in P$.

N_{k} is number of linear extensions with $L(z)=k$.

Theorem (Stanley '81)
For every poset and $k \geq 1$,

$$
N_{k}^{2} \geq N_{k+1} N_{k-1}
$$

Proof used Aleksandrov-Fenchel inequality for mixed volumes.

When is equality achieved?

Theorem (Shenfeld-van Handel)
Suppose $N_{k}>0$. Then

$$
N_{k}^{2}=N_{k+1} N_{k-1}
$$

if and only if

$$
N_{k}=N_{k+1}=N_{k-1}
$$

Proof used classifications of extremals of
Aleksandrov-Fenchel inequality for convex polytopes.

Our contribution

Open Problem (Folklore)
Give a combinatorial proof to Stanley's inequality.

Answer (C.-Pak)
We give new combinatorial proof for Stanley's ineq. and extend to weighted version.

Order-reversing weight
A weight $w: X \rightarrow \mathbb{R}_{>0}$ is order-reversing if

$$
w(x) \geq w(y) \quad \text { whenever } \quad x \prec y .
$$

Weight of linear extension L is

$$
w(L):=\prod_{L(x)<L(z)} w(x)
$$

Weighted Stanley's inequality

Fix $z \in P$.
$N_{w, k}$ is w-weight of linear extensions with $L(z)=k$.

Theorem 5 (C. Pak)
For every poset and $k \geq 1$,

$$
N_{w, k}^{2} \geq N_{w, k+1} N_{w, k-1}
$$

When is equality achieved?

Theorem 6 (C.-Pak)
Suppose $N_{w, k}>0$. Then

$$
\begin{aligned}
& N_{w, k^{2}}=N_{w, k+1} N_{w, k-1} \\
& \text { if and only if }
\end{aligned}
$$

for every linear extension L with $L(z)=k$,

$$
w\left(L^{-1}(k+1)\right)=w\left(L^{-1}(k-1)\right)=: s,
$$

and

$$
\frac{N_{w, k}}{s^{k}}=\frac{N_{w, k+1}}{s^{k+1}}=\frac{N_{w, k-1}}{s^{k-1}}
$$

Combinatorial atlas application:
 Poset antimatroids

Feasible words of a poset

A word $\alpha \in X^{*}$ is feasible if no repeating elements, and y occurs in α and $x \prec y \Rightarrow x$ occurs in α before y.

Feasible: $\varnothing, a, a b, a c, a b c, a c b, a b c d, a c b d$. Not feasible: $a a, b c, b a$.

Chain weight

For $x \in P$, chain weight is
$\omega(x)=$ number of maximal chains that starts with x.

$$
\begin{array}{lc}
& (a)(b) \text { (d) } \\
\omega(a)=2 & (a) \longrightarrow \text { (d) } \\
\omega(b)=1 & \text { (b) } \longrightarrow \text { d } \\
\omega(c)=1 & \text { (c) } \longrightarrow \text { d } \\
\omega(d)=1 & \text { (d) }
\end{array}
$$

Weight of word α is $\omega(\alpha):=\omega\left(\alpha_{1}\right) \ldots \omega\left(\alpha_{\ell}\right)$.

Log-concave inequality for poset antimatroids

$F_{\omega, k}$ is sum of ω-weight of feasible words of length k.
Theorem 7 (C.-Pak)
For every poset and $k \geq 1$,

$$
F_{\omega, k}^{2} \geq F_{\omega, k+1} F_{\omega, k-1}
$$

When is equality achieved?

Theorem 8 (C.-Pak)
Equality occurs for $k=1, \ldots$, height $(P)-1$
if and only if
Hasse diagram of P is a forest where every leaf is of the same level.

