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What is log-concavity?

A sequence a1, . . . , an ∈ R≥0 is log-concave if

a2k ≥ ak+1 ak−1 (1 ≤ k < n).

Equivalently,

log ak ≥
log ak+1 + log ak−1

2
(1 ≤ k < n).
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Example: binomial coefficients

ak =

(
n

k

)
k = 0, 1, . . . , n.

This sequence is log-concave because

a2k
ak+1 ak−1

=

(
n
k

)2
(

n
k+1

) (
n

k−1
) =

(
1 +

1

k

)(
1 +

1

n − k

)
,

which is greater than 1.



Example: permutations with k inversions

ak = number of π ∈ Sn with k inversions,

where inversion of π is pair i < j s.t. πi > πj .

This sequence is log-concave because
∑

0≤k≤(n
2)

ak x
k = (1 + x) . . . (1 + x + . . . + xn−1)

is a product of log-concave polynomials.
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Log-concavity appears in different objects

for different reasons.

Today we focus on reason for matroids.



Warmup: graphs and forests

Let G = (V ,E ) be a graph.

A (spanning) forest F = (V ,E ′) with E ′ ⊆ E

is a subset of edges without cycles.

G forest not forest spanning tree



Log-concavity for forests

Theorem (Huh ‘15)
For every graph and k ≥ 1,

Ik
2 ≥ Ik+1 Ik−1,

where Ik is the number of forests with k edges.

Proof used Hodge theory from algebraic geometry.

In fact, stronger inequalities for more general

objects are true.



Object: Matroids

Matroid M = (X , I) is ground set X with

collection of independent sets I ⊆ 2X .

Graphical matroids

X = edges of a graph G ,

I = forests in G .

Realizable matroids

X = finite set of vectors over field F,

I = sets of linearly independent vectors.



Matroids: Conditions

S ⊆ T and T ∈ I implies S ∈ I.

T S

If S ,T ∈ I and |S | < |T |, then there is

x ∈ T \ S such that S ∪ {x} ∈ I.

S T S ∪ {x}

Note: These are natural properties of sets of

linearly independent vectors.



Mason’s Conjecture (1972)

For every matroid and k ≥ 1,

(1) Ik
2 ≥ Ik+1 Ik−1;

(2) Ik
2 ≥

(
1 +

1

k

)
Ik+1 Ik−1;

(3) Ik
2 ≥

(
1 +

1

k

)(
1 +

1

n − k

)
Ik+1 Ik−1.

Ik is number of ind. sets of size k , and n = |X |.

Note: (3) ⇒ (2) ⇒ (1).



Why
(

1 + 1
k

) (
1 + 1

n−k
)

?

Mason (3) is equivalent to ultra/binomial log-concavity,

Ik
2

(
n
k

)2 ≥
Ik+1(
n

k+1

) Ik−1(
n

k−1
) .

Equality occurs if every (k + 1)-subset is independent.



Solution to Mason (1)

Theorem (Adiprasito-Huh-Katz ‘18)
For every matroid and k ≥ 1,

Ik
2 ≥ Ik+1 Ik−1.

Proof used combinatorial Hodge theory for

matroids.



Solution to Mason (2)

Theorem (Huh-Schröter-Wang ‘18)
For every matroid and k ≥ 1,

Ik
2 ≥

(
1 +

1

k

)
Ik+1 Ik−1.

Proof used combinatorial Hodge theory for

correlation inequality on matroids.



Solution to Mason (3)

Theorem

(Anari-Liu-Oveis Gharan-Vinzant, Brändén-Huh ‘20)
For every matroid and k ≥ 1,

Ik
2 ≥

(
1 +

1

k

)(
1 +

1

n − k

)
Ik+1 Ik−1.

Proof used theory of strong log-concave polynomials /

Lorentzian polynomials.



Solution to Mason (3)

Theorem

(Anari-Liu-Oveis Gharan-Vinzant, Brändén-Huh ‘20)
For every matroid and k ≥ 1,

Ik
2 ≥

(
1 +

1

k

)(
1 +

1

n − k

)
Ik+1 Ik−1.

Theorem (Murai-Nagaoka-Yazawa ‘21)
Equality occurs if and only if every (k + 1)-subset is

independent.



Our contribution



Method: Combinatorial atlas

Results: Log-concave inequalities, and

if and only if conditions for equality

Matroids (refined);

Morphism of matroids (refined);

Discrete polymatroids;

Stanley’s poset inequality (refined);

Poset antimatroids;

Branching greedoid (log-convex);

Interval greedoids.
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Combinatorial atlas application:

Matroids



Warmup: graphical matroids refinement

Corollary (C.-Pak)
For graphical matroid of simple connected graph

G = (V ,E ), and k = |V | − 2,

(Ik)2 ≥ 3

2

(
1 +

1

k

)
Ik+1 Ik−1,

with equality if and only if G is cycle graph.

Numerically better than Mason (3), because

3

2
≥ 1 +

1

n − k
= 1 +

1

|E | − |V |+ 2

for G that is not tree.



Comparison with Mason (3)

Our bound gives

(Ik)2

Ik+1 Ik−1
≥ 3

2
when |E | − |V | → ∞,

Meanwhile, Mason (3) bound only gives

(Ik)2

Ik+1 Ik−1
≥ 1 when |E | − |V | → ∞.

Our bound is better numerically and asymptotically.



Refinement for Mason (3)

Theorem 1 (C.-Pak)
For every matroid and k ≥ 1,

Ik
2 ≥

(
1 +

1

k

)(
1 +

1

prlM(k − 1)− 1

)
Ik+1 Ik−1.

This refines Mason (3),

Ik
2 ≥

(
1 +

1

k

)(
1 +

1

n − k

)
Ik+1 Ik−1,

since

prlM(k − 1) ≤ n − k + 1.



Refinement for different matroids

For all matroids,

Ik
2 ≥

(
1 + 1

k

) (
1 + 1

n−k
)
Ik+1 Ik−1.

Graphical matroids and k = |V | − 2,

Ik
2 ≥

(
1 + 1

k

)
3
2 Ik+1 Ik−1.

Realizable matroids over Fq,

Ik
2 ≥

(
1 + 1

k

) (
1 + 1

qm−k+1−2
)
Ik+1 Ik−1.

(k ,m, n)-Steiner system matroid,

Ik
2 ≥

(
1 + 1

k

)
n−k+1
n−m Ik+1 Ik−1.



Refinement for Mason (3)

Theorem 2 (C.-Pak)
For every matroid and k ≥ 1,

Ik
2 ≥

(
1 +

1

k

)(
1 +

1

prlM(k − 1)− 1

)
Ik+1 Ik−1.

This refines Mason (3),

Ik
2 ≥

(
1 +

1

k

)(
1 +

1

n − k

)
Ik+1 Ik−1,

since

prlM(k − 1) ≤ n − k + 1.



Parallel classes of matroid M

Loop is x ∈ X such that {x} /∈ I.

Non-loops x , y are parallel if {x , y} /∈ I.

Parallelship equiv. relation: x ∼ y if {x , y} /∈ I.

Parallel class = equivalence class of ∼.



Matroid contraction

Contraction of S ∈ I is matroid MS with

XS = X \ S , IS = {T \ S : S ⊆ T}.

prl(S) := number of parallel classes of MS



Parallel number

The k-parallel number is

prlM(k) := max{prl(S) | S ∈ I with |S | = k}.

prl(S) = 2 prl(S) = 2 prl(S) = 2 prl(S) = 3

prlM(1) = 3



Refinement for Mason (3)

Theorem 3 (C.-Pak)
For every matroid and k ≥ 1,

Ik
2 ≥

(
1 +

1

k

)(
1 +

1

prlM(k − 1)− 1

)
Ik+1 Ik−1.

This refines Mason (3),

Ik
2 ≥

(
1 +

1

k

)(
1 +

1

n − k

)
Ik+1 Ik−1,

since

prlM(k − 1) ≤ n − k + 1.



When is equality achieved?

When every (k + 1)-subset is independent,

prlM(k − 1) = n − k + 1.

Graphical matroid when G is a cycle,

prlM(k − 1) = 3.

Realizable matroids of every m-vectors over Fq,

prlM(k − 1) = qm−k+1 − 1.

(k ,m, n)-Steiner system matroid,

prlM(k − 1) =
n − k + 1

m − k + 1
.



Equality conditions

Theorem 4 (C.-Pak)
For every matroid and k ≥ 1,

Ik
2 ===

(
1 +

1

k

)(
1 +

1

prlM(k − 1)− 1

)
Ik+1 Ik−1

if and only if

for every S ∈ I with |S | = k − 1,

MS has prlM(k − 1) parallel classes; and

Every parallel class of MS has same size.



Combinatorial atlas: the method



Combinatorial atlas

Input: Acyclic digraph A, where each vertex v is

associated with

Symmetric matrix M with nonnegative entries;

Vector g ,h with nonnegative entries.

Goal: Show every M has hyperbolic inequality.

Method: Verify two conditions:

Inheritance conditions

Subdivergence conditions



Atlas: example

a b

c d e f

g h i j k `



Atlas: example (zoomed in)
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Atlas example: matroid (simplified)

Consider the graphical matroid for

a

b

c
d

The corresponding combinatorial atlas is

∅

a b c d null



Atlas example: matroid (simplified)

a b c d null







0 3
2 × 1 3

2 × 1 3
2 × 2 3 a

3
2 × 1 0 3

2 × 1 3
2 × 2 3 b

3
2 × 1 3

2 × 1 0 3
2 × 2 3 c

3
2 × 2 3

2 × 2 3
2 × 2 0 3 d

3 3 3 3 4 null

Ma,b =
3

2
× numbers of 3-forests containing a, b

Ma,null = number of 2-forests containing a

Mnull,null = number of 1-forests

Here 3
2 is the contribution from 1 + 1

prlM(k−1)−1 .



Combinatorial atlas

Input: Acyclic digraph A, where each vertex v is

associated with

Symmetric matrix M with nonnegative entries;

Vector g ,h with nonnegative entries.

Goal: Show every M has hyperbolic inequality.

Method: Verify two conditions:

Inheritance conditions

Subdivergence conditions



Hyperbolic inequality

M has hyperbolic inequality property if

〈x ,My〉2 ≥ 〈x ,Mx〉 〈y ,My〉,
for every x ∈ Rr , y ∈ Rr

≥0.

This condition is equivalent to

M has at most one positive eigenvalue.

Note: Already known to be important in Lorentzian

polynomials and Bochner’s method proof of

Aleksandrov-Fenchel inequality.



How to get log-concave inequalities?

Assume ak−1, ak , ak+1 can be computed by

ak = 〈g ,Mh〉, ak+1 = 〈g ,Mg〉, ak−1 = 〈h,Mh〉,
for specific M ,g ,h in the atlas.

〈g ,Mh〉2 ≥ 〈g ,Mg〉 〈h,Mh〉 (hyperbolic ineq.)

then implies

a2k ≥ ak+1ak−1 (log-concave ineq.)



Combinatorial atlas

Input: Acyclic digraph A, where each vertex v is

associated with

Symmetric matrix M with nonnegative entries;

Vector g ,h with nonnegative entries.

Goal: Show every M has hyperbolic inequality.

Method: Verify three conditions:

Irreducibility condition;

Inheritance condition;

Subdivergence condition.



Irreducibility condition

Matrix M associated to v is irreducible

when restricted to its support;

Vector h is associated to v is a positive vector.

Note: For matroids, this means that the

base-exchange graph is connected.

Note: Similar tools were used to prove

rapid mixing for base-exchange graph.



Inheritance condition

The i -th edge e = (v , vi) of v is associated with

linear map Ti : Rr → Rr

such that, for every x ∈ Rr ,

i -th coordinate of Mx = 〈Tix ,M iTih〉,
where M and h are associated to v , while M i is

associated to vi .

M

M1 M2 M3



Subdivergence condition

For every x ∈ Rr ,
r∑

i=1

hi 〈Tix ,M iTix〉 ≥ 〈x ,Mx〉,

where hi = i -th coordinate of h.

Note: Equality occurs for matroids.

Note: Often hardest condition to check, usually

Note: done through injective arguments.



Bottom-to-top principle for hyperbolic inequalities

Proposition
Assume irreducibility, inheritance, subdivergence.

If every child vertex has hyperbolic inequality

property, then so does the parent vertex.

Bottom-to-top principle reduces Goal to checking

hyperbolic inequality only for sink vertices.



Bottom-to-top principle

a b

c d e f

g h i j k `
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Bottom-to-top principle
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Moral of the story

Problem: Log-concave inequalities and equalities.

Strategy:

Build a combinatorial atlas;

Verify the required conditions;

Use hyperbolic inequality property to derive

log-concave inequalities;

Use hyperbolic equality property to derive

log-concave equalities.



Other applications

Paper: Log-concave inequality for posets

arXiv: 2110.10740 (71 pages)

Results: Log-concave inequalities and equalities for

Matroids (refined);

Morphism of matroids (refined);

Discrete polymatroids;

Stanley’s poset inequality (refined);

Poset antimatroids;

Branching greedoid (log-convex);

Interval greedoids.



What is next?



Log-concavity for chromatic polynomials

Theorem (Huh ‘12)
For every graph G and k ≥ 1,

Ck
2 ≥ Ck+1Ck−1,

where C0,C1, . . . are absolute coefficients of the

chromatic polynomial of G .

Comparison to Mason (1):

(Ik)k≥0 is f-vector of independence complex;

(Ck)k≥0 is f-vector of broken circuit complex.



Stronger log-concavity for chromatic polynomials

Conjecture (Brylawski ‘82)
For every connected graph G = (V ,E ) and k ≥ 1,

Ck
2 ≥

(
1+

1

|V | − k

) (
1+

1

|E | − |V |+ k

)
Ck+1Ck−1,

Note: Brylawski conjectured the inequality for

characteristic polynomial of all matroids.



THANK YOU!

Preprint: www.arxiv.org/abs/2110.10740

Webpage: www.math.ucla.edu/~sweehong/

Email: sweehong@math.ucla.edu

www.arxiv.org/abs/2110.10740
www.math.ucla.edu/~sweehong/


How about equalities?



Combinatorial atlas equality

Input:

An acyclic digraph A := (V,E) satisfying

previous conditions;

Vectors g ,h ∈ R≥0;

Goal: Show “every” M has hyperbolic equality,

〈g ,Mh〉2 === 〈g ,Mg〉 〈h,Mh〉.



Top-to-bottom principle for equalities

Proposition
Assume regularity condition. If parent vertex has

hyperbolic equality property, then so does children

vertices.

Top-to-bottom principle expands hyperbolic equality to

sink vertices, and gives combinatorial characterizations.



Top-to-bottom principle

a b

c d e f

g h i j k `
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Combinatorial atlas application:

Stanley’s poset inequality



Partially ordered sets

A poset P is a set X with a partial order ≺ on X .

d

cb

a



Linear extension

A linear extension L is a complete order of ≺.

d

cb

a

a b c d

a c b d

We write L(x) = k if x is k-th smallest in L.



Stanley’s inequality

Fix z ∈ P .

Nk is number of linear extensions with L(z) = k .

Theorem (Stanley ‘81)
For every poset and k ≥ 1,

Nk
2 ≥ Nk+1Nk−1.

Proof used Aleksandrov-Fenchel inequality for mixed

volumes.



When is equality achieved?

Theorem (Shenfeld-van Handel)
Suppose Nk > 0. Then

Nk
2 === Nk+1Nk−1

if and only if

Nk = Nk+1 = Nk−1.

Proof used classifications of extremals of

Aleksandrov-Fenchel inequality for convex polytopes.



Our contribution

Open Problem (Folklore)
Give a combinatorial proof to Stanley’s inequality.

Answer (C.–Pak)
We give new combinatorial proof for Stanley’s ineq.

and extend to weighted version.



Order-reversing weight

A weight w : X → R>0 is order-reversing if

w(x) ≥ w(y) whenever x ≺ y .

Weight of linear extension L is

w(L) :=
∏

L(x)<L(z)

w(x).

c

zb

a

a z b c

w(L) = w(a)

a b z c

w(L) = w(a)w(b)



Weighted Stanley’s inequality

Fix z ∈ P .

Nw ,k is w -weight of linear extensions with L(z) = k .

Theorem 5 (C. Pak)
For every poset and k ≥ 1,

Nw ,k
2 ≥ Nw ,k+1Nw ,k−1.



When is equality achieved?

Theorem 6 (C.-Pak)
Suppose Nw ,k > 0. Then

Nw ,k
2 === Nw ,k+1Nw ,k−1

if and only if

for every linear extension L with L(z) = k ,

w(L−1(k + 1)) = w(L−1(k − 1)) =: s,

and
Nw ,k

sk
=

Nw ,k+1

sk+1
=

Nw ,k−1
sk−1

.



Combinatorial atlas application:

Poset antimatroids



Feasible words of a poset

A word α ∈ X ∗ is feasible if no repeating elements, and

y occurs in α and x ≺ y ⇒ x occurs in α before y .

d

cb

a

Feasible: ∅, a, ab, ac , abc , acb, abcd , acbd .

Not feasible: aa, bc , ba.



Chain weight

For x ∈ P , chain weight is

ω(x) = number of maximal chains that starts with x .

d

cb

a

ω(a) = 2

a b d

a c d

ω(b) = 1 b d

ω(c) = 1 c d

ω(d) = 1 d

Weight of word α is ω(α) := ω(α1) . . . ω(α`).



Log-concave inequality for poset antimatroids

Fω,k is sum of ω-weight of feasible words of length k .

Theorem 7 (C.-Pak)
For every poset and k ≥ 1,

Fω,k
2 ≥ Fω,k+1 Fω,k−1.



When is equality achieved?

Theorem 8 (C.-Pak)
Equality occurs for k = 1, . . . , height(P)− 1

if and only if

Hasse diagram of P is a forest where every leaf is of

the same level.

a

b c

d e f


