Math 170S Lecture Notes Section 9.2 *[†] Contingency tables

Instructor: Swee Hong Chan

NOTE: Materials that appear in the textbook but do not appear in the lecture notes might still be tested. Please send me an email if you find typos.

^{*}Version date: Tuesday 8th December, 2020, 22:11.

[†]This notes is based on Hanback Lyu's and Liza Rebrova's notes from the previous quarter, and I would like to thank them for their generosity. "*Nanos gigantum humeris insidentes* (I am but a dwarf standing on the shoulders of giants)".

1 Motivating example

Two instructors are teaching Math 170S for n = 50 students, with final grade:

	А	В	С	D	F
Friendly instructor (FI)	8	13	16	10	3
Evil instructor (EI)	4	9	14	16	7

- Null hypothesis H₀: The two instructors follow the same grading scheme.
- Alternative hypothesis H₁: The two instructors do
 not follow the grading scheme.

Can we reject H_0 with significance level $\alpha = 0.05$?

2 Notation: Motivating examples

- $p_1 :=$ probability to get A in FI's class;
- $p_2 :=$ probability to get B in FI's class;

:

 $p_5 :=$ probability to get F in FI's class.

 $p'_1 :=$ probability to get A in EI's class; $p'_2 :=$ probability to get B in EI's class; :

 $p'_5 :=$ probability to get F in EI's class.

These are **unknown parameters**.

 $Y_1 :=$ number of people getting A in FI's class; $Y_2 :=$ number of people getting B in FI's class; :

 $Y_5 :=$ number of people getting F in FI's class.

 Y'_1 := number of people getting A in EI's class; Y'_2 := number of people getting B in EI's class; :

 Y'_5 := number of people getting F in EI's class.

These are **known parameters**.

The hypothesis can then be rewritten as

- $H_0: p_i = p'_i \text{ for all } i \in \{1, \dots, 5\};$
- $H_1: p_i \neq p'_i \text{ for some } i \in \{1, ..., 5\}.$

3 How to test the hypothesis

1. We already knew the sample mean is a good approximation for the unknown probabilities:

$$Y_1 \approx n p_1;$$
 $Y'_1 \approx n p'_1,$ and $\frac{Y_1 + Y'_1}{2n} \approx \frac{p_1 + p'_1}{2}.$

Let us write

$$\widehat{\mathbf{p}}_1 := \frac{Y_1 + Y_1'}{2n}$$

2. Now note that, if $p_1 \approx p_1'$, then

$$p_1 \approx \frac{p_1 + p_1'}{2}$$

3. Combining all these observations, if $p_1 \approx p_1'$:

$$Y_1 \approx n p_1 \approx n \frac{p_1 + p'_1}{2} \approx n \frac{Y_1 + Y'_1}{2n} = n \,\widehat{\mathbf{p}}_1.$$

4. Hence we have, if $p_1 \approx p_1'$, then

$$Y_1 - n \,\widehat{\mathbf{p}}_1 \approx 0.$$

By CLT, we in fact have, if $p_1 \approx p_1'$:

$$\frac{(Y_1 - n\,\widehat{\mathbf{p}}_1)^2}{n\,\widehat{\mathbf{p}}_1} \quad \text{is small.}$$

5. On the other hand, if p_1 is very far away from p'_1 , (e.g., $p_1 = 0$ and $p'_1 = 1$), then

$$Y_1 = 0; \qquad \widehat{\mathbf{p}}_1 = \frac{1}{2},$$

SO

$$\frac{(Y_1 - n\,\widehat{\mathbf{p}}_1)^2}{n\,\widehat{\mathbf{p}}_1} = \frac{(0 - n/2)^2}{n/2} = n/2 = \text{very big.}$$

6. So we conclude that

$$\frac{(Y_1 - n\,\widehat{\mathbf{p}}_1)^2}{n\,\widehat{\mathbf{p}}_1} \text{ is small } \quad \text{if and only if } \quad p_1 \approx p_1'.$$

By the same reasoning, we have

$$\frac{(Y_1' - n\,\widehat{\mathbf{p}}_1)^2}{n\,\widehat{\mathbf{p}}_1} \text{ is small} \qquad \text{if and only if} \qquad p_1 \approx p_1'.$$

7. To provide balance, we add these two tests together:

$$\frac{(Y_1 - n\,\widehat{\mathbf{p}}_1)^2}{n\,\widehat{\mathbf{p}}_1} + \frac{(Y_1' - n\,\widehat{\mathbf{p}}_1)^2}{n\,\widehat{\mathbf{p}}_1} \text{ is small}$$

if and only if $p_1 \approx p_1'$.

8. By the same reasoning, for all $i = \{1, 2, 3, 4, 5\}$,

$$\frac{(Y_i - n\,\widehat{\mathbf{p}}_i)^2}{n\,\widehat{\mathbf{p}}_i} + \frac{(Y'_i - n\,\widehat{\mathbf{p}}_i)^2}{n\,\widehat{\mathbf{p}}_i} \text{ is small}$$

if and only if $p_i \approx p'_i$.

9. We want to test all five parameters simultaneously. So we add all the tests up together:

$$Q := \left[\frac{(Y_1 - n\,\widehat{\mathbf{p}}_1)^2}{n\,\widehat{\mathbf{p}}_1} + \frac{(Y_1' - n\,\widehat{\mathbf{p}}_1)^2}{n\,\widehat{\mathbf{p}}_1} \right] \\ + \left[\frac{(Y_2 - n\,\widehat{\mathbf{p}}_2)^2}{n\,\widehat{\mathbf{p}}_2} + \frac{(Y_2' - n\,\widehat{\mathbf{p}}_2)^2}{n\,\widehat{\mathbf{p}}_2} \right] \\ + \dots + \left[\frac{(Y_5 - n\,\widehat{\mathbf{p}}_5)^2}{n\,\widehat{\mathbf{p}}_5} + \frac{(Y_5' - n\,\widehat{\mathbf{p}}_5)^2}{n\,\widehat{\mathbf{p}}_5} \right]$$

We have

- Q is small if and only if H_0 is true.
- 10. It can be shown that Q is approximately a χ^2 random variable with 4 degrees of freedom.

Conclusion: we reject H_0 if and only if $Q \ge \chi^2_{\alpha}(4)$.

4 Answer: motivating examples

We have from the sample data that

- $Y_1 = 8;$ $Y_2 = 13;$ $Y_3 = 16;$ $Y_4 = 10;$ $Y_5 = 3;$
- $Y'_1 = 4;$ $Y'_2 = 9;$ $Y'_3 = 14;$ $Y'_4 = 16;$ $Y'_5 = 7,$

and

 $\hat{p}_1 = 0.12;$ $\hat{p}_2 = 0.22;$ $\hat{p}_3 = 0.30;$ $\hat{p}_4 = 0.26;$ $\hat{p}_5 = 0.10.$

Then Q is equal to

$$Q = \left[\frac{((8) - (50)(0.12))^2}{(50)(0.12)} + \frac{((4) - (50)(0.12))^2}{(50)(0.12)}\right] \\ + \left[\frac{((13) - (50)(0.22))^2}{(50)(0.22)} + \frac{((9) - (50)(0.22))^2}{(50)(0.22)}\right] \\ + \ldots + \left[\frac{((3) - (50)(0.10))^2}{(50)(0.10)} + \frac{((7) - (50)(0.10))^2}{(50)(0.10)}\right] = 5.18.$$

On the other hand, $\chi^2_{\alpha}(4)$ is equal to

$$\chi^2_{\alpha}(4) = \chi^2_{0.05}(4) = 9.488.$$

Since Q is smaller than $\chi^2_{\alpha}(4)$, we conclude that the test is inconclusive.

5 Settings: equality in distribution

Object:

- X⁽¹⁾, X⁽²⁾, ..., X^(h) are **independent** random variables with **unknown distribution**.
- k mutually exclusive, exhaustive events A_1, \ldots, A_k , and we write

 $p_i^{(j)} :=$ probability of the event A_i to occur for $X^{(j)}$,

for $i \in \{1, 2, ..., k\}$ and $j \in \{1, ..., h\}$.

Hypotheses:

• Null Hypothesis H_0 : $X^{(1)}$, $X^{(2)}$, ... $X^{(h)}$ have the same distribution, i.e.,

$$p_1^{(1)} = p_1^{(2)} = \dots = p_1^{(h)};$$
 and
 $p_2^{(1)} = p_2^{(2)} = \dots = p_2^{(h)};$ and
 $\vdots \quad \vdots \quad \vdots$
 $p_k^{(1)} = p_k^{(2)} = \dots = p_k^{(h)}.$

• Alternative Hypothesis H_1 : The null hypothesis is false.

Input: $n^{(1)}$ many random samples for $X^{(1)}$, $n^{(2)}$ many random samples for $X^{(2)}$, ..., $n^{(h)}$ many random samples for $X^{(h)}$, and significance level α .

Methodology:

• Compute $Y_i^{(j)}$ for $i \in \{1, 2, ..., k\}$ and $j \in \{1, ..., h\}$,

$$\widehat{\mathbf{p}}_i := \frac{Y_i^{(1)} + Y_i^{(2)} + \ldots + Y_i^{(h)}}{n^{(1)} + n^{(2)} + \ldots + n^{(h)}}.$$

• Compute Q given by

$$Q := \sum_{j=1}^{h} \sum_{i=1}^{k} \frac{(Y_i^{(j)} - n^{(j)} \,\widehat{\mathbf{p}}_i)^2}{n^{(j)} \,\widehat{\mathbf{p}}_i}$$

• Reject H_0 if $Q \ge \chi^2_{\alpha}((h-1)(k-1))$, and the test is inconclusive otherwise.

6 Example: equality in distribution

A survey was conducted, asking for the education level and the media preference for news sources:

	Newspaper	Television	Radio
Grade school	45	22	6
High School	94	115	30
College	49	52	13

Let $X^{(1)}$ be the (random) media preference for grade schoolers, $X^{(2)}$ the (random) media preference for high schoolers, and $X^{(3)}$ be the (random) media preference for college schoolers.

Can we reject the hypothesis $X^{(1)} = X^{(2)} = X^{(3)}$ with significance level $\alpha = 0.05$?

7 Answer: equality in distribution

From the sample data, we have

$$n^{(1)} = 45 + 22 + 6 = 73;$$

 $n^{(2)} = 94 + 115 + 30 = 239;$
 $n^{(3)} = 49 + 52 + 13 = 114,$

and

$$Y_1^{(1)} = 45;$$
 $Y_2^{(1)} = 22;$ $Y_3^{(1)} = 6;$
 $Y_1^{(2)} = 94;$ $Y_2^{(2)} = 115;$ $Y_3^{(2)} = 30;$
 $Y_1^{(3)} = 49;$ $Y_2^{(3)} = 52;$ $Y_3^{(3)} = 13.$

Note that here h = k = 3.

So $\hat{\mathbf{p}}_i$'s are given by

$$\widehat{p}_{1} := \frac{\text{first column}}{\text{total samples}} = \frac{45 + 94 + 49}{73 + 239 + 114} = \frac{188}{426};$$

$$\widehat{p}_{2} := \frac{\text{second column}}{\text{total samples}} = \frac{22 + 115 + 52}{73 + 239 + 114} = \frac{189}{426};$$

$$\widehat{p}_{3} := \frac{\text{third column}}{\text{total samples}} = \frac{6 + 30 + 13}{73 + 239 + 114} = \frac{49}{426}.$$

Then Q is equal to

$$Q = \sum_{j=1}^{h} \sum_{i=1}^{k} \frac{(Y_i^{(j)} - n^{(j)} \,\widehat{\mathbf{p}}_i)^2}{n^{(j)} \,\widehat{\mathbf{p}}_i}$$

$$= \frac{((45) - (73)(\frac{188}{426}))^2}{(73)(\frac{188}{426})} + \frac{((22) - (73)(\frac{189}{426}))^2}{(73)(\frac{189}{426})} + \frac{((6) - (73)(\frac{49}{426}))^2}{(73)(\frac{49}{426})} \\ + \frac{((94) - (239)(\frac{188}{426}))^2}{(239)(\frac{188}{426})} + \frac{((115) - (239)(\frac{189}{426}))^2}{(239)(\frac{189}{426})} + \frac{((30) - (239)(\frac{49}{426}))^2}{(239)(\frac{49}{426})} \\ + \frac{((49) - (114)(\frac{188}{426}))^2}{(114)(\frac{188}{426})} + \frac{((52) - (114)(\frac{189}{426}))^2}{(114)(\frac{189}{426})} + \frac{((13) - (114)(\frac{49}{426}))^2}{(114)(\frac{49}{426})} \\ = \frac{27503239}{3026142} + \frac{235591}{105399} + \frac{354817}{4725756} = \frac{939839042381}{82450264932} \approx 11.40.$$

On the other hand, $\chi^2_{\alpha}((h-1)(k-1))$ is equal to

$$\chi^2_{\alpha}((h-1)(k-1)) = \chi^2_{0.05}(4) = 9.488.$$

Since Q is greater than $\chi^2_{\alpha}(4)$, we reject the null hypothesis.

Remark 1. The textbook uses different notations. The $Y_i^{(j)}$ here is written Y_{ij} in the textbook, $n^{(j)}$ here is written n_j in the textbook, and $p_i^{(j)}$ is written p_{ij} in the textbook.

8 Example: Contingency tables

Four hundred UCLA undergraduate students are classified according to their college and their gender:

	Bsns	Engnrg	Lib. Arts	Nursing	Phrmcy	
Male	21	16	145	2	6	
Female	14	4	175	13	4	

Test at $\alpha = 0.01$ whether gender and choice of college are independent.

9 Setting: Contingency tables

Object:

- X is an **unknown** random variables.
- Two different attributes:
 - -k mutually exclusive, exhaustive events A_1, \ldots, A_k ;
 - -h mutually exclusive, exhaustive events B_1, \ldots, B_h ;

Hypotheses:

Null Hypothesis H₀: The two attributes are
 independent, i.e., for i ∈ {1,...,k}, j ∈ {1,...,h}:

$$P[A_i \cap B_j] = P[A_i]P[B_j].$$

Alternative Hypothesis H₁: The two attributes
 are not independent.

Input: n many random samples for X, and significance level α .

Methodology:

• Compute $Y(A_i, B_j)$ for $i \in \{1, 2, \dots, k\}$ and $j \in \{1, \dots, h\}$ by

 $Y(A_i, B_j) :=$ number of times A_i and B_j occurs in samples.

• Compute $a_1, \ldots a_k$ given by

 $a_i := \frac{1}{n}$ (number of times A_i occurs in the samples).

• Compute $b_1, \ldots b_h$ given by

 $b_j := \frac{1}{n}$ (number of times B_j occurs in the samples).

• Compute Q given by

$$Q := \sum_{j=1}^{h} \sum_{i=1}^{k} \frac{(Y(A_i, B_j) - na_i b_j)^2}{na_i b_j}.$$

• Reject H_0 if $Q \ge \chi^2_{\alpha}((h-1)(k-1))$, and the test is inconclusive otherwise.

10 Answer: Contingency tables

Let A_1, \ldots, A_5 be the event that a student is in the college of business, engineering, liberal arts, nursing, pharmacy, respectively.

Let B_1 be the event that the student is male, and let B_2 is the event that the student is female.

We have from the sample data that

$$a_1 = \frac{35}{400};$$
 $a_2 = \frac{20}{400};$ $a_3 = \frac{320}{400};$ $a_4 = \frac{15}{400};$ $a_5 = \frac{10}{400};$
and

$$b_1 = \frac{190}{400}; \qquad b_2 = \frac{210}{400}.$$

$$\begin{split} Q &= \frac{((21) - (400)(\frac{35}{400})(\frac{190}{400}))^2}{(400)(\frac{35}{400})(\frac{190}{400})} + \frac{((16) - (400)(\frac{20}{400})(\frac{190}{400}))^2}{(400)(\frac{20}{400})(\frac{190}{400})} \\ &+ \frac{((145) - (400)(\frac{320}{400})(\frac{190}{400}))^2}{(400)(\frac{320}{400})(\frac{190}{400})} + \frac{((2) - (400)(\frac{15}{400})(\frac{190}{400}))^2}{(400)(\frac{15}{400})(\frac{190}{400})} \\ &+ \frac{((6) - (400)(\frac{10}{400})(\frac{190}{400}))^2}{(400)(\frac{10}{400})(\frac{190}{400})} + \frac{((14) - (400)(\frac{35}{400})(\frac{210}{400}))^2}{(400)(\frac{35}{400})(\frac{210}{400})} \\ &+ \frac{((4) - (400)(\frac{20}{400})(\frac{210}{400}))^2}{(400)(\frac{15}{400})(\frac{210}{400})} + \frac{((175) - (400)(\frac{320}{400})(\frac{210}{400}))^2}{(400)(\frac{320}{400})(\frac{210}{400})} \\ &+ \frac{((13) - (400)(\frac{15}{400})(\frac{210}{400}))^2}{(400)(\frac{15}{400})(\frac{210}{400})} + \frac{((4) - (400)(\frac{10}{400})(\frac{210}{400}))^2}{(400)(\frac{10}{400})(\frac{210}{400})} \\ &= 18.93. \end{split}$$

On the other hand, $\chi^2_{\alpha}((h-1)(k-1))$ is equal to

$$\chi^2_{\alpha}((h-1)(k-1)) = \chi^2_{0.01}(4) = 13.28.$$

Since Q is greater than $\chi^2_{\alpha}(4)$, we reject the null hypothesis.

Remark 2. This test can be extended to test more than two attributes. Check the textbook for exercises.

Remark 3. The textbook uses different notations. The $Y(A_i, B_j)$ here is written Y_{ij} in the textbook, a_i here is written $Y_{i.}/n$ in the textbook, and b_j is written $Y_{.j}/n$ in the textbook.