Math 170S
Lecture Notes Section $9.2{ }^{* \dagger}$
Contingency tables
Instructor: Swee Hong Chan

NOTE: Materials that appear in the textbook but do not appear in the lecture notes might still be tested.

Please send me an email if you find typos.

[^0]
1 Motivating example

Two instructors are teaching Math 170S for $n=50$ students, with final grade:

	A	B	C	D	F
Friendly instructor (FI)	8	13	16	10	3
Evil instructor (EI)	4	9	14	16	7

- Null hypothesis H_{0} : The two instructors follow the same grading scheme.
- Alternative hypothesis H_{1} : The two instructors do not follow the grading scheme.

Can we reject H_{0} with significance level $\alpha=0.05$?

2 Notation: Motivating examples

$p_{1}:=$ probability to get A in FI's class;
$p_{2}:=$ probability to get B in FI's class; :
$p_{5}:=$ probability to get F in FI's class.
$p_{1}^{\prime}:=$ probability to get A in EI's class;
$p_{2}^{\prime}:=$ probability to get B in EI's class;
\vdots
$p_{5}^{\prime}:=$ probability to get F in EI's class.

These are unknown parameters.
$Y_{1}:=$ number of people getting A in FI's class;
$Y_{2}:=$ number of people getting B in FI's class; \vdots
$Y_{5}:=$ number of people getting F in FI's class.
$Y_{1}^{\prime}:=$ number of people getting A in EI's class;
$Y_{2}^{\prime}:=$ number of people getting B in EI's class;
$Y_{5}^{\prime}:=$ number of people getting F in EI's class.

These are known parameters.

The hypothesis can then be rewritten as

- $H_{0}: p_{i}=p_{i}^{\prime}$ for all $i \in\{1, \ldots, 5\}$;
- $H_{1}: p_{i} \neq p_{i}^{\prime}$ for some $i \in\{1, \ldots, 5\}$.

3 How to test the hypothesis

1. We already knew the sample mean is a good approximation for the unknown probabilities:

$$
Y_{1} \approx n p_{1} ; \quad Y_{1}^{\prime} \approx n p_{1}^{\prime}, \quad \text { and } \quad \frac{Y_{1}+Y_{1}^{\prime}}{2 n} \approx \frac{p_{1}+p_{1}^{\prime}}{2}
$$

Let us write

$$
\widehat{\mathrm{p}}_{1}:=\frac{Y_{1}+Y_{1}^{\prime}}{2 n}
$$

2. Now note that, if $p_{1} \approx p_{1}^{\prime}$, then

$$
p_{1} \approx \frac{p_{1}+p_{1}^{\prime}}{2}
$$

3. Combining all these observations, if $p_{1} \approx p_{1}^{\prime}$:

$$
Y_{1} \approx n p_{1} \approx n \frac{p_{1}+p_{1}^{\prime}}{2} \approx n \frac{Y_{1}+Y_{1}^{\prime}}{2 n}=n \widehat{\mathrm{p}}_{1}
$$

4. Hence we have, if $p_{1} \approx p_{1}^{\prime}$, then

$$
Y_{1}-n \widehat{\mathrm{p}}_{1} \approx 0
$$

By CLT, we in fact have, if $p_{1} \approx p_{1}^{\prime}$:

$$
\frac{\left(Y_{1}-n \widehat{\mathrm{p}}_{1}\right)^{2}}{n \widehat{\mathrm{p}}_{1}} \text { is small. }
$$

5. On the other hand, if p_{1} is very far away from p_{1}^{\prime},

$$
\begin{aligned}
& \text { (e.g., } p_{1}=0 \text { and } p_{1}^{\prime}=1 \text {), then } \\
& \qquad Y_{1}=0 ; \quad \widehat{\mathrm{p}}_{1}=\frac{1}{2},
\end{aligned}
$$

SO

$$
\frac{\left(Y_{1}-n \widehat{\mathrm{p}}_{1}\right)^{2}}{n \widehat{\mathrm{p}}_{1}}=\frac{(0-n / 2)^{2}}{n / 2}=n / 2=\text { very big. }
$$

6. So we conclude that

$$
\frac{\left(Y_{1}-n \widehat{\mathrm{p}}_{1}\right)^{2}}{n \widehat{\mathrm{p}}_{1}} \text { is small } \quad \text { if and only if } \quad p_{1} \approx p_{1}^{\prime}
$$

By the same reasoning, we have

$$
\frac{\left(Y_{1}^{\prime}-n \widehat{\mathrm{p}}_{1}\right)^{2}}{n \widehat{\mathrm{p}}_{1}} \text { is small } \quad \text { if and only if } \quad p_{1} \approx p_{1}^{\prime}
$$

7. To provide balance, we add these two tests together:

$$
\begin{aligned}
& \frac{\left(Y_{1}-n \widehat{\mathrm{p}}_{1}\right)^{2}}{n \widehat{\mathrm{p}}_{1}}+\frac{\left(Y_{1}^{\prime}-n \widehat{\mathrm{p}}_{1}\right)^{2}}{n \widehat{\mathrm{p}}_{1}} \text { is small } \\
& \text { if and only if } \quad p_{1} \approx p_{1}^{\prime}
\end{aligned}
$$

8. By the same reasoning, for all $i=\{1,2,3,4,5\}$,

$$
\begin{aligned}
& \frac{\left(Y_{i}-n \widehat{\mathrm{p}}_{i}\right)^{2}}{n \widehat{\mathrm{p}}_{i}}+\frac{\left(Y_{i}^{\prime}-n \widehat{\mathrm{p}}_{i}\right)^{2}}{n \widehat{\mathrm{p}}_{i}} \text { is small } \\
& \text { if and only if } \quad p_{i} \approx p_{i}^{\prime}
\end{aligned}
$$

9. We want to test all five parameters simultaneously. So we add all the tests up together:

$$
\begin{aligned}
Q:= & {\left[\frac{\left(Y_{1}-n \widehat{\mathrm{p}}_{1}\right)^{2}}{n \widehat{\mathrm{p}}_{1}}+\frac{\left(Y_{1}^{\prime}-n \widehat{\mathrm{p}}_{1}\right)^{2}}{n \widehat{\mathrm{p}}_{1}}\right] } \\
& +\left[\frac{\left(Y_{2}-n \widehat{\mathrm{p}}_{2}\right)^{2}}{n \widehat{\mathrm{p}}_{2}}+\frac{\left(Y_{2}^{\prime}-n \widehat{\mathrm{p}}_{2}\right)^{2}}{n \widehat{\mathrm{p}}_{2}}\right] \\
& +\ldots+\left[\frac{\left(Y_{5}-n \widehat{\mathrm{p}}_{5}\right)^{2}}{n \widehat{\mathrm{p}}_{5}}+\frac{\left(Y_{5}^{\prime}-n \widehat{\mathrm{p}}_{5}\right)^{2}}{n \widehat{\mathrm{p}}_{5}}\right] .
\end{aligned}
$$

We have
Q is small if and only if $\quad H_{0}$ is true.
10. It can be shown that Q is approximately a χ^{2} random variable with 4 degrees of freedom.

Conclusion: we reject H_{0} if and only if $Q \geq \chi_{\alpha}^{2}(4)$.

4 Answer: motivating examples

We have from the sample data that

$$
\begin{array}{lllll}
Y_{1}=8 ; & Y_{2}=13 ; & Y_{3}=16 ; & Y_{4}=10 ; & Y_{5}=3 ; \\
Y_{1}^{\prime}=4 ; & Y_{2}^{\prime}=9 ; & Y_{3}^{\prime}=14 ; & Y_{4}^{\prime}=16 ; & Y_{5}^{\prime}=7,
\end{array}
$$

and

$$
\begin{array}{lll}
\widehat{\mathrm{p}}_{1}=0.12 ; & \widehat{\mathrm{p}}_{2}=0.22 ; & \widehat{\mathrm{p}}_{3}=0.30 ; \\
\widehat{\mathrm{p}}_{4}=0.26 ; & \widehat{\mathrm{p}}_{5}=0.10 . &
\end{array}
$$

Then Q is equal to

$$
\begin{aligned}
Q= & {\left[\frac{((8)-(50)(0.12))^{2}}{(50)(0.12)}+\frac{((4)-(50)(0.12))^{2}}{(50)(0.12)}\right] } \\
& +\left[\frac{((13)-(50)(0.22))^{2}}{(50)(0.22)}+\frac{((9)-(50)(0.22))^{2}}{(50)(0.22)}\right] \\
& +\ldots+\left[\frac{((3)-(50)(0.10))^{2}}{(50)(0.10)}+\frac{((7)-(50)(0.10))^{2}}{(50)(0.10)}\right]=5.18 .
\end{aligned}
$$

On the other hand, $\chi_{\alpha}^{2}(4)$ is equal to

$$
\chi_{\alpha}^{2}(4)=\chi_{0.05}^{2}(4)=9.488
$$

Since Q is smaller than $\chi_{\alpha}^{2}(4)$, we conclude that the test is inconclusive.

5 Settings: equality in distribution

Object:

- $X^{(1)}, X^{(2)}, \ldots, X^{(h)}$ are independent random variables with unknown distribution.
- k mutually exclusive, exhaustive events A_{1}, \ldots, A_{k}, and we write
$p_{i}^{(j)}:=$ probability of the event A_{i} to occur for $X^{(j)}$,

$$
\text { for } i \in\{1,2, \ldots, k\} \text { and } j \in\{1, \ldots, h\} \text {. }
$$

Hypotheses:

- Null Hypothesis $H_{0}: X^{(1)}, X^{(2)}, \ldots X^{(h)}$ have the same distribution, i.e.,

$$
\begin{aligned}
& p_{1}^{(1)}=p_{1}^{(2)}=\ldots=p_{1}^{(h)} ; \quad \text { and } \\
& p_{2}^{(1)}=p_{2}^{(2)}=\ldots=p_{2}^{(h)} ; \quad \text { and } \\
& \vdots \\
& \vdots \\
& p_{k}^{(1)}=p_{k}^{(2)}=\ldots=p_{k}^{(h)} .
\end{aligned}
$$

- Alternative Hypothesis H_{1} : The null hypothesis is false.

Input: $n^{(1)}$ many random samples for $X^{(1)}, n^{(2)}$ many random samples for $X^{(2)}, \ldots, n^{(h)}$ many random samples for $X^{(h)}$, and significance level α.

Methodology:

- Compute $Y_{i}^{(j)}$ for $i \in\{1,2, \ldots, k\}$ and $j \in\{1, \ldots, h\}$,
$Y_{i}^{(j)}:=$ number of times A_{i} occurs in samples for $X^{(j)}$.
- Compute $\widehat{\mathrm{p}}_{1}, \ldots \widehat{\mathrm{p}}_{k}$ given by

$$
\widehat{\mathrm{p}}_{i}:=\frac{Y_{i}^{(1)}+Y_{i}^{(2)}+\ldots+Y_{i}^{(h)}}{n^{(1)}+n^{(2)}+\ldots+n^{(h)}} .
$$

- Compute Q given by

$$
Q:=\sum_{j=1}^{h} \sum_{i=1}^{k} \frac{\left(Y_{i}^{(j)}-n^{(j)} \widehat{\mathrm{p}}_{i}\right)^{2}}{n^{(j)} \widehat{\mathrm{p}}_{i}} .
$$

- Reject H_{0} if $Q \geq \chi_{\alpha}^{2}((h-1)(k-1))$, and the test is inconclusive otherwise.

6 Example: equality in distri-

 butionA survey was conducted, asking for the education level and the media preference for news sources:

	Newspaper	Television	Radio
Grade school	45	22	6
High School	94	115	30
College	49	52	13

Let $X^{(1)}$ be the (random) media preference for grade schoolers, $X^{(2)}$ the (random) media preference for high schoolers, and $X^{(3)}$ be the (random) media preference for college schoolers.

Can we reject the hypothesis $X^{(1)}=X^{(2)}=X^{(3)}$ with significance level $\alpha=0.05$?

7 Answer: equality in distribution

From the sample data, we have

$$
\begin{aligned}
& n^{(1)}=45+22+6=73 \\
& n^{(2)}=94+115+30=239 \\
& n^{(3)}=49+52+13=114
\end{aligned}
$$

and

$$
\begin{array}{lll}
Y_{1}^{(1)}=45 ; & Y_{2}^{(1)}=22 ; & Y_{3}^{(1)}=6 \\
Y_{1}^{(2)}=94 ; & Y_{2}^{(2)}=115 ; & Y_{3}^{(2)}=30 \\
Y_{1}^{(3)}=49 ; & Y_{2}^{(3)}=52 ; & Y_{3}^{(3)}=13
\end{array}
$$

Note that here $h=k=3$.

So $\widehat{\mathrm{p}}_{i}$'s are given by

$$
\begin{aligned}
& \widehat{\mathrm{p}}_{1}:=\frac{\text { first column }}{\text { total samples }}=\frac{45+94+49}{73+239+114}=\frac{188}{426} ; \\
& \widehat{\mathrm{p}}_{2}:=\frac{\text { second column }}{\text { total samples }}=\frac{22+115+52}{73+239+114}=\frac{189}{426} ; \\
& \widehat{\mathrm{p}}_{3}:=\frac{\text { third column }}{\text { total samples }}=\frac{6+30+13}{73+239+114}=\frac{49}{426} .
\end{aligned}
$$

Then Q is equal to

$$
\begin{gathered}
Q=\sum_{j=1}^{h} \sum_{i=1}^{k} \frac{\left(Y_{i}^{(j)}-n^{(j)} \widehat{\mathrm{p}}_{i}\right)^{2}}{n^{(j)} \widehat{\mathrm{p}}_{i}} \\
=\frac{\left((45)-(73)\left(\frac{188}{426}\right)\right)^{2}}{(73)\left(\frac{188}{46}\right)}+\frac{\left((22)-(73)\left(\frac{189}{426}\right)\right)^{2}}{(73)\left(\frac{189}{426}\right)}+\frac{\left((6)-(73)\left(\frac{49}{426}\right)\right)^{2}}{(73)\left(\frac{49}{426}\right)} \\
+\frac{\left((94)-(239)\left(\frac{188}{426}\right)\right)^{2}}{(239)\left(\frac{188}{426}\right)}+\frac{\left((115)-(239)\left(\frac{189}{426}\right)\right)^{2}}{(239)\left(\frac{189}{426}\right)}+\frac{\left((30)-(239)\left(\frac{49}{426}\right)\right)^{2}}{(239)\left(\frac{49}{426}\right)} \\
+\frac{\left((49)-(114)\left(\frac{188}{426}\right)\right)^{2}}{(114)\left(\frac{188}{426}\right)}+\frac{\left((52)-(114)\left(\frac{189}{426}\right)\right)^{2}}{(114)\left(\frac{189}{426}\right)}+\frac{\left((13)-(114)\left(\frac{49}{426}\right)\right)^{2}}{(114)\left(\frac{49}{426}\right)} \\
=\frac{27503239}{3026142}+\frac{235591}{105399}+\frac{354817}{4725756}=\frac{939839042381}{82450264932} \approx 11.40 .
\end{gathered}
$$

On the other hand, $\chi_{\alpha}^{2}((h-1)(k-1))$ is equal to

$$
\chi_{\alpha}^{2}((h-1)(k-1))=\chi_{0.05}^{2}(4)=9.488 .
$$

Since Q is greater than $\chi_{\alpha}^{2}(4)$, we reject the null hypothesis.

Remark 1. The textbook uses different notations. The $Y_{i}^{(j)}$ here is written $Y_{i j}$ in the textbook, $n^{(j)}$ here is written n_{j} in the textbook, and $p_{i}^{(j)}$ is written $p_{i j}$ in the textbook.

8 Example: Contingency tables

Four hundred UCLA undergraduate students are classified according to their college and their gender:
Bsns Engnrg Lib. Arts Nursing Phrmcy

Male	21	16	145	2	6
Female	14	4	175	13	4

Test at $\alpha=0.01$ whether gender and choice of college are independent.

9 Setting: Contingency tables

Object:

- X is an unknown random variables.
- Two different attributes:
- k mutually exclusive, exhaustive events A_{1}, \ldots, A_{k};
- h mutually exclusive, exhaustive events B_{1}, \ldots, B_{h};

Hypotheses:

- Null Hypothesis H_{0} : The two attributes are independent, i.e., for $i \in\{1, \ldots, k\}, j \in\{1, \ldots, h\}$:

$$
P\left[A_{i} \cap B_{j}\right]=P\left[A_{i}\right] P\left[B_{j}\right] .
$$

- Alternative Hypothesis H_{1} : The two attributes are not independent.

Input: n many random samples for X, and significance level α.

Methodology:

- Compute $Y\left(A_{i}, B_{j}\right)$ for $i \in\{1,2, \ldots, k\}$ and $j \in$ $\{1, \ldots, h\}$ by
$Y\left(A_{i}, B_{j}\right):=$ number of times A_{i} and B_{j} occurs in samples.
- Compute $a_{1}, \ldots a_{k}$ given by

$$
a_{i}:=\frac{1}{n} \text { (number of times } A_{i} \text { occurs in the samples). }
$$

- Compute $b_{1}, \ldots b_{h}$ given by

$$
b_{j}:=\frac{1}{n} \text { (number of times } B_{j} \text { occurs in the samples). }
$$

- Compute Q given by

$$
Q:=\sum_{j=1}^{h} \sum_{i=1}^{k} \frac{\left(Y\left(A_{i}, B_{j}\right)-n a_{i} b_{j}\right)^{2}}{n a_{i} b_{j}}
$$

- Reject H_{0} if $Q \geq \chi_{\alpha}^{2}((h-1)(k-1))$, and the test is inconclusive otherwise.

10 Answer: Contingency tables

Let A_{1}, \ldots, A_{5} be the event that a student is in the college of business, engineering, liberal arts, nursing, pharmacy, respectively.

Let B_{1} be the event that the student is male, and let B_{2} is the event that the student is female.

We have from the sample data that

$$
\begin{aligned}
& a_{1}=\frac{35}{400} ; \quad a_{2}=\frac{20}{400} ; \quad a_{3}=\frac{320}{400} ; \quad a_{4}=\frac{15}{400} ; \quad a_{5}=\frac{10}{400} ; \\
& \quad \text { and }
\end{aligned}
$$

$$
b_{1}=\frac{190}{400} ; \quad b_{2}=\frac{210}{400} .
$$

So Q is equal to

$$
\begin{aligned}
Q & =\frac{\left((21)-(400)\left(\frac{35}{400}\right)\left(\frac{190}{400}\right)\right)^{2}}{(400)\left(\frac{35}{400}\right)\left(\frac{190}{400}\right)}+\frac{\left((16)-(400)\left(\frac{20}{400}\right)\left(\frac{190}{400}\right)\right)^{2}}{(400)\left(\frac{20}{400}\right)\left(\frac{190}{400}\right)} \\
& +\frac{\left((145)-(400)\left(\frac{320}{400}\right)\left(\frac{190}{400}\right)\right)^{2}}{(400)\left(\frac{320}{400}\right)\left(\frac{190}{400}\right)}+\frac{\left((2)-(400)\left(\frac{15}{400}\right)\left(\frac{190}{400}\right)\right)^{2}}{(400)\left(\frac{15}{400}\right)\left(\frac{190}{400}\right)} \\
& +\frac{\left((6)-(400)\left(\frac{10}{400}\right)\left(\frac{190}{400}\right)\right)^{2}}{(400)\left(\frac{10}{400}\right)\left(\frac{190}{400}\right)}+\frac{\left((14)-(400)\left(\frac{35}{400}\right)\left(\frac{210}{400}\right)\right)^{2}}{(400)\left(\frac{35}{400}\right)\left(\frac{210}{400}\right)} \\
& +\frac{\left((4)-(400)\left(\frac{20}{400}\right)\left(\frac{210}{400}\right)\right)^{2}}{(400)\left(\frac{20}{400}\right)\left(\frac{210}{400}\right)}+\frac{\left((175)-(400)\left(\frac{230}{400}\right)\left(\frac{210}{400}\right)\right)^{2}}{(400)\left(\frac{320}{400}\right)\left(\frac{210}{400}\right)} \\
& +\frac{\left((13)-(400)\left(\frac{15}{400}\right)\left(\frac{210}{400}\right)\right)^{2}}{(400)\left(\frac{15}{400}\right)\left(\frac{210}{400}\right)}+\frac{\left((4)-(400)\left(\frac{10}{400}\right)\left(\frac{210}{400}\right)\right)^{2}}{(400)\left(\frac{10}{400}\right)\left(\frac{210}{400}\right)} \\
& =18.93 .
\end{aligned}
$$

On the other hand, $\chi_{\alpha}^{2}((h-1)(k-1))$ is equal to

$$
\chi_{\alpha}^{2}((h-1)(k-1))=\chi_{0.01}^{2}(4)=13.28
$$

Since Q is greater than $\chi_{\alpha}^{2}(4)$, we reject the null hypothesis.

Remark 2. This test can be extended to test more than two attributes. Check the textbook for exercises.

Remark 3. The textbook uses different notations. The $Y\left(A_{i}, B_{j}\right)$ here is written $Y_{i j}$ in the textbook, a_{i} here is written $Y_{i .} / n$ in the textbook, and b_{j} is written $Y_{. j} / n$ in the textbook.

[^0]: *Version date: Tuesday $8^{\text {th }}$ December, 2020, 22:11.
 ${ }^{\dagger}$ This notes is based on Hanbaek Lyu's and Liza Rebrova's notes from the previous quarter, and I would like to thank them for their generosity. "Nanos gigantum humeris insidentes (I am but a dwarf standing on the shoulders of giants)".

