Math 170S
Lecture Notes Section 9.1 *†
Chi-square tests
Instructor: Swee Hong Chan

NOTE: Materials that appear in the textbook but do not appear in the lecture notes might still be tested.

Please send me an email if you find typos.

[^0]
1 Motivating example

Your friendly instructor was asked by a casino to determine if a die is fair. So he rolled the die n times, and
$Y_{i}:=$ number of times the outcome of the die roll is i.

Note that, for $i \in\{1,2,3,4,5,6\}$,

- Y_{i} is a binomial random variable with a known number of trials n unknown success probability p_{i}.
- Y_{1}, \ldots, Y_{6} are not independent random variables since $Y_{1}+Y_{2}+\ldots+Y_{6}=n$.
- Also note that $p_{1}+\ldots+p_{6}=1$.

The friendly instructor makes these two hypothesis:

- Null Hyp. $H_{0}: p_{1}=p_{2}=\ldots=p_{6}=\frac{1}{6}$;
- Alternative Hyp. H_{1} : there is i with $p_{i} \neq \frac{1}{6}$.

2 The difference: Level 1

How should the friendly instructor test this hypothesis?

- What we usually dealt with: Usually we have one unknown parameter, e.g., mean only, median only, or variance only.
- What we are dealing with now: We now care about six unknown parameters together: p_{1}, \ldots, p_{6}.

3 Rationale: Chi-square tests

- If $p_{1}=\frac{1}{6}$, then Y_{1} has mean $n p_{1}=\frac{n}{6}$.

So the (random) square difference $\left(Y_{1}-\frac{n}{6}\right)^{2}$ is very close to 0 if $p_{1}=\frac{1}{6}$.

Then, by the central limit theorem, the rescaled

$$
\frac{\left(Y_{1}-\frac{n}{6}\right)^{2}}{n / 6} \quad \text { is still very small. }
$$

- If $p_{1} \neq \frac{1}{6}$ (e.g., $p_{1}=0$), then the (random) ratio

$$
\frac{\left(Y_{1}-\frac{n}{6}\right)^{2}}{n / 6} \approx \frac{\left(0-\frac{n}{6}\right)^{2}}{n / 6} \approx \frac{n}{6} \quad \text { is very big. }
$$

- So we conclude that

$$
\frac{\left(Y_{1}-\frac{n}{6}\right)^{2}}{n / 6} \begin{cases}\text { is very small } & \text { if } \quad p_{1} \approx \frac{1}{6} \\ \text { is very big } & \text { if } \\ p_{1} \text { is far from } \frac{1}{6}\end{cases}
$$

- By the same reasoning, for every $i \in\{1, \ldots, 6\}$,

$$
\frac{\left(Y_{i}-\frac{n}{6}\right)^{2}}{n / 6} \begin{cases}\text { is very small } & \text { if } \quad p_{i} \approx \frac{1}{6} \\ \text { is very big } & \text { if } \\ p_{i} \text { is far from } \frac{1}{6}\end{cases}
$$

- We add them up so we can track all these parameters simultaneously:

$$
Q_{5}:=\frac{\left(Y_{1}-\frac{n}{6}\right)^{2}}{n / 6}+\frac{\left(Y_{2}-\frac{n}{6}\right)^{2}}{n / 6}+\ldots+\frac{\left(Y_{6}-\frac{n}{6}\right)^{2}}{n / 6}
$$

Since each term in the sum is nonnegative, we have
$Q_{5}\left\{\begin{array}{lll}\text { is very small } & \text { if } & p_{1}, \ldots, p_{6} \approx \frac{1}{6} ; \\ \text { is very big } & \text { if } & \text { some } p_{i} \text { are far from } \frac{1}{6} .\end{array}\right.$

- Here Q_{5} has (six - one) degrees of freedom.

The six degrees is because we have six parameters $p_{1}, p_{2}, \ldots, p_{6}$.

The minus one degree is because these parameters satisfy one equation $p_{1}+\ldots+p_{6}=1$.

- It can be shown that Q_{5} is approximately a χ^{2} random variable with 5 degrees of freedom.

4 Setting: Chi-square tests

Object:

- X is an RV with unknown distribution.
- There are k mutually exclusive events A_{1}, \ldots, A_{k},

$$
p_{i}:=P\left[A_{i}\right] \quad i \in\{1, \ldots, k\}, \quad p_{1}+\ldots+p_{k}=1,
$$

where p_{1}, \ldots, p_{k} are unknown constants.
Hypotheses: Given c_{1}, \ldots, c_{k},

- Null Hypothesis H_{0} :

$$
p_{1}=c_{1}, \quad p_{2}=c_{2}, \quad \ldots, \quad p_{k}=c_{k} .
$$

- Alternative Hypothesis H_{1} :

$$
p_{i} \neq c_{i} \quad \text { for some } i .
$$

Input: Random samples X_{1}, \ldots, X_{n} for X and significance level α.

Methodology:

- Compute Y_{1}, \ldots, Y_{k} by
$Y_{i}:=$ number of times A_{i} occurs in X_{1}, \ldots, X_{n}.
- Compute Q_{k-1} by

$$
Q_{k-1}:=\sum_{i=1}^{k} \frac{\left(Y_{i}-n c_{i}\right)^{2}}{n c_{i}}
$$

- Reject H_{0} if $Q_{k-1} \geq \chi_{\alpha}^{2}(k-1)$, and the test is inconclusive otherwise.

The value $\chi_{\alpha}^{2}(k-1)$ can be found from the Table IV Appendix B in the textbook.

5 Example: Chi-square tests, Level 1

The friendly instructor rolls the dice 60 times, and get

$$
\begin{array}{lll}
Y_{1}=12 ; & Y_{2}=11 ; & Y_{3}=9 \\
Y_{4}=7 ; & Y_{5}=10 ; & Y_{6}=11
\end{array}
$$

Can the instructor reject the null hypothesis with significance level $\alpha=0.05$?

6 Answer: Chi-square tests

We have

$$
\begin{aligned}
Q_{k-1}= & \sum_{i=1}^{6} \frac{\left(Y_{i}-n c_{i}\right)^{2}}{n c_{i}} \\
= & \frac{(12-10)^{2}}{10}+\frac{(11-10)^{2}}{10}+\frac{(9-10)^{2}}{10}+\frac{(7-10)^{2}}{10} \\
& +\frac{(10-10)^{2}}{10}+\frac{(11-10)^{2}}{10} \\
= & \frac{8}{5}=1.6
\end{aligned}
$$

On the other hand,

$$
\chi_{\alpha}^{2}(k-1)=\chi_{0.05}^{2}(5)=11.07
$$

The test is therefore inconclusive.

7 The difference: Level 2

- What we usually dealt with: X is a known random variable (e.g., normal, Bernoulli, chi-square).
- What we are dealing with now: X is a random variable with unknown distribution, which we want to guess.

8 Setting: Chi-square tests, Level

 2
Object:

- X is an RV with unknown distribution.
- There are k mutually exclusive events A_{1}, \ldots, A_{k}

$$
P\left[A_{1} \cup A_{2} \cup \ldots \cup A_{k}\right]=1 .
$$

Hypotheses: Given some density function f_{θ},

- Null Hypothesis H_{0} : density of X is f_{θ} for some θ.
- Alternative Hypothesis H_{1} : density of X is not f_{θ} for any θ.

Input: Random samples X_{1}, \ldots, X_{n} for X and significance level α.

Methodology:

- Compute the best guess $\widehat{\theta}$ for θ. (This is usually the MLE $\widehat{\theta}$ for the density f_{θ}.)
- Compute the probability of the events A_{1}, \ldots, A_{k} :

$$
c_{i}:=P\left[A_{i}\right]= \begin{cases}\sum_{x \in A_{i}} f_{\widehat{\theta}}(x) & \text { if discrete } ; \\ \int_{x \in A_{i}} f_{\widehat{\theta}}(x) d x & \text { if continuous } .\end{cases}
$$

- Compute Y_{1}, \ldots, Y_{k} given by
$Y_{i}:=$ number of times A_{i} occurs in X_{1}, \ldots, X_{n}.
- Compute Q_{k-1} given by

$$
Q_{k-1}:=\sum_{i=1}^{k} \frac{\left(Y_{i}-n c_{i}\right)^{2}}{n c_{i}}
$$

14

- Reject H_{0} if $Q_{k-1} \geq \chi_{\alpha}^{2}(k-\mathbf{2})$, and the test is inconclusive otherwise. Note that the degree of freedom drops by another one degree because we spent it on estimating $\widehat{\theta}$.

9 Example: Level 2

Let X be an RV with the following $n=50$ samples:

$$
\begin{array}{llllllllll}
7 & 4 & 3 & 6 & 4 & 4 & 5 & 3 & 5 & 3 \\
5 & 5 & 3 & 2 & 5 & 4 & 3 & 3 & 7 & 6 \\
6 & 4 & 3 & 11 & 9 & 6 & 7 & 4 & 5 & 4 \\
7 & 3 & 2 & 8 & 6 & 7 & 4 & 1 & 9 & 8 \\
4 & 8 & 9 & 3 & 9 & 7 & 7 & 9 & 3 & 10
\end{array}
$$

The hypothesis are:

- Null hypotheses H_{0} : X is a Poisson RV;
- Alternative hypotheses H_{1} : X is not a Poisson RV.

The $k=6$ events we want to test are

- $A_{1}=\{0,1,2,3\} ;$
- $A_{2}=\{4\} ;$
- $A_{3}=\{5\} ;$
- $A_{4}=\{6\}$;
- $A_{5}=\{7\} ;$
- $A_{6}=\{8,9,10, \ldots\}$.

Can we reject the null hypothesis at $\alpha=0.05$ significance level?

10 Answer: Level 2

Recall that the Poisson RV with mean λ has density

$$
f_{\lambda}(x)=\frac{\lambda^{x} e^{-\lambda}}{x!} .
$$

Also recall that the MLE $\hat{\lambda}$ for the Poisson RV is the sample mean, so

$$
\widehat{\lambda}=\bar{x}=5.4 .
$$

We now compute the probability of the events A_{1}, \ldots, A_{6} :

$$
\begin{aligned}
& c_{1}=P\left[A_{1}\right]=\sum_{x=0}^{3} \frac{(5.4)^{x} e^{-(5.4)}}{x!}=0.213 \\
& c_{2}=P\left[A_{2}\right]=\frac{(5.4)^{4} e^{-(5.4)}}{4!}=0.160 \\
& c_{3}=P\left[A_{3}\right]=\frac{(5.4)^{5} e^{-(5.4)}}{5!}=0.173 \\
& c_{4}=P\left[A_{4}\right]=\frac{(5.4)^{6} e^{-(5.4)}}{6!}=0.156 \\
& c_{5}=P\left[A_{5}\right]=\frac{(5.4)^{7} e^{-(5.4)}}{7!}=0.120 \\
& c_{6}=P\left[A_{6}\right]=\sum_{x=8}^{\infty} \frac{(5.4)^{x} e^{-(5.4)}}{x!}=0.178
\end{aligned}
$$

We now compute Y_{1}, \ldots, Y_{6} from the sample mean:

$$
\begin{array}{llr}
Y_{1}=13 ; & Y_{2}=9 ; & Y_{3}=6 \\
Y_{4}=5 ; & Y_{5}=7 ; & Y_{6}=10
\end{array}
$$

We now compute Q_{k-1} given by

$$
\begin{aligned}
Q_{k-1}= & \sum_{i=1}^{k} \frac{\left(Y_{i}-n c_{i}\right)^{2}}{n c_{i}} \\
= & \frac{(13-(50)(0.213))^{2}}{(50)(0.213)}+\frac{(9-(50)(0.160))^{2}}{(50)(0.160)} \\
& +\frac{(6-(50)(0.173))^{2}}{(50)(0.173)}+\frac{(5-(50)(0.156))^{2}}{(50)(0.156)} \\
& +\frac{(7-(50)(0.120))^{2}}{(50)(0.120)}+\frac{(10-(50)(0.178))^{2}}{(50)(0.178)} \\
= & 2.763
\end{aligned}
$$

On the other hand,

$$
\chi_{\alpha}^{2}(k-2)=\chi_{0.05}^{2}(4)=9.488
$$

The test is therefore inconclusive.

Remark 1. If X has density determined by d parameters (e.g., normal random variable $N\left(\mu, \sigma^{2}\right)$ with $d=2$ parameter), then the degree of freedom of the chi-square random variable will drop to $k-1-d$.

[^0]: *Version date: Monday $7^{\text {th }}$ December, 2020, 08:29.
 ${ }^{\dagger}$ This notes is based on Hanbaek Lyu's and Liza Rebrova's notes from the previous quarter, and I would like to thank them for their generosity. "Nanos gigantum humeris insidentes (I am but a dwarf standing on the shoulders of giants)".

