Math 170S Lecture Notes Section $8.8{ }^{* \dagger}$ Likelihood ratio tests

Instructor: Swee Hong Chan

NOTE: Materials that appear in the textbook but do not appear in the lecture notes might still be tested.

Please send me an email if you find typos.

[^0]
1 Example: MLE, Level 0

Let X be a normal random variable with unknown mean μ and known variance 1. Suppose that the samples for X are

$$
x_{1}=1.1 ; \quad x_{2}=-1.1 ; \quad x_{3}=2 ; \quad x_{4}=-3 .
$$

Suppose that you are being asked to guess if

- $\mu=1$; or
- $\mu=3$.

Which one would be the most rational choice?

2 Recap: likelihood function

Let X be an RV with density f_{θ}, with unknown parameter θ. The likelihood function is

$$
L(\theta):=f_{\theta}\left(x_{1}\right) f_{\theta}\left(x_{2}\right) \ldots f_{\theta}\left(x_{n}\right) .
$$

The larger the likelihood function, the more likely that θ is the correct choice.

3 Answer: MLE, Level 0

The density function for the normal random variable is

$$
f_{\mu}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) .
$$

So the likelihood function is (write this down)

$$
\begin{aligned}
& L(\mu)=f_{\mu}\left(x_{1}\right) \ldots f_{\mu}\left(x_{n}\right) \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(x_{1}-\mu\right)^{2}}{2}\right) \ldots \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(x_{n}-\mu\right)^{2}}{2 \sigma^{2}}\right) \\
& =\left(\frac{1}{2 \pi \sigma^{2}}\right)^{n / 2} \exp \left(-\frac{1}{2 \sigma^{2}}\left[\left(x_{1}-\mu\right)^{2}+\ldots+\left(x_{n}-\mu\right)^{2}\right]\right) .
\end{aligned}
$$

Since $\sigma^{2}=1$, we have

$$
L(\mu)=\left(\frac{1}{2 \pi}\right)^{n / 2} \exp \left(-\frac{1}{2}\left[\left(x_{1}-\mu\right)^{2}+\ldots+\left(x_{n}-\mu\right)^{2}\right]\right) .
$$

So we have

$$
\begin{aligned}
L(1) & =\left(\frac{1}{2 \pi}\right)^{4 / 2} \exp \left(-\frac{1}{2}\left[(1.1-1)^{2}+\ldots+(-3-1)^{2}\right]\right) \\
& =5.7 \times 10^{-7} ; \\
L(3) & =\left(\frac{1}{2 \pi}\right)^{4 / 2} \exp \left(-\frac{1}{2}\left[(1.1-3)^{2}+\ldots+(-3-3)^{2}\right]\right) \\
& =8.6 \times 10^{-15}
\end{aligned}
$$

Since $L(1)>L(3)$, the rational choice here is $\mu=1$.

4 Example: MLE, Level 1

Let X be a normal RV with unknown mean μ and known
variance 1 , with samples

$$
x_{1}=1.1 ; \quad x_{2}=-1.1 ; \quad x_{3}=2 ; \quad x_{4}=-3 .
$$

Suppose that you are being asked to guess if

- $\mu=1$; or
- $\mu \neq 1$. (Notice the difference here.)

Which one would be the most rational choice?

5 Answer: MLE, Level 1

For the case $\mu=1$, the likelihood function is

$$
\begin{aligned}
L(1) & =\left(\frac{1}{2 \pi}\right)^{4 / 2} \exp \left(-\frac{1}{2}\left[(1.1-1)^{2}+\ldots+(-3-1)^{2}\right]\right) \\
& =5.7 \times 10^{-7} .
\end{aligned}
$$

For the second case $\mu \neq 1$, which values of μ should we choose to substitute into $L(\mu)$?

Answer: Use MLE $\widehat{\mu}$.

- Recall that the MLE $\widehat{\mu}$ is the value that maximizes the likelihood function L;
- Also recall that, for normal random variables, $\widehat{\mu}$ is equal to the sample mean $\overline{\mathrm{x}}$.

Our sample mean here is equal to $\overline{\mathrm{x}}=-\frac{1}{4}$, so the likelihood function for $\mu \neq 1$ is

$$
\begin{aligned}
L\left(-\frac{1}{4}\right)= & \left(\frac{1}{2 \pi}\right)^{4 / 2} \exp \left(-\frac{1}{2}\left[\left(1.1-\left(-\frac{1}{4}\right)\right)^{2}+\right.\right. \\
& \left.\left.\left(-1.1-\left(-\frac{1}{4}\right)\right)^{2}+\left(2-\left(-\frac{1}{4}\right)\right)^{2}+\left(-3-\left(-\frac{1}{4}\right)\right)^{2}\right]\right) \\
= & 1 \times 10^{-5} .
\end{aligned}
$$

Since $L\left(-\frac{1}{4}\right)>L(1)$, the rational choice here is $\mu \neq 1$.

6 Settings: likelihood ratio tests

Object: X is a random variable with density function f_{θ} with unknown θ.

Hypotheses:

- $H_{0}: \theta$ comes from a given set ω.
- $H_{1}: \theta$ does not come from ω.

Input: Random samples X_{1}, \ldots, X_{n} for X and significance level α.

Methodology:

- Find the value $\widehat{\theta}_{0}$ that maximizes the likelihood function L among the θ 's in given set ω.
- Find the value $\widehat{\theta}_{1}$ that maximizes the likelihood function L among all θ. (This means $\widehat{\theta}_{1}$ is the maximum likelihood estimate.)
- Reject H_{0} if

$$
\frac{L\left(\widehat{\theta}_{0}\right)}{L\left(\widehat{\theta}_{1}\right)} \leq k
$$

Do not reject H_{0} otherwise.

- Here $k \in[0,1]$ is a number chosen so that the test has significance level α.

7 Example: likelihood ratio test, Level 1

Let X be a normal RV with unknown mean μ and known variance 1 , with samples

$$
x_{1}=1.1 ; \quad x_{2}=-1.1 ; \quad x_{3}=2 ; \quad x_{4}=-3
$$

The hypothesis are:

- The null hypothesis H_{0} is $\mu \in\{1,2\}$.
- The alternative hypothesis H_{1} is $\mu \notin\{1,2\}$.

Suppose that we reject H_{0} if $\frac{L\left(\widehat{\mu}_{0}\right)}{L\left(\widehat{\mu}_{1}\right)} \leq 0.3$. Should we reject H_{0} or not?

8 Answer: likelihood ratio test,

Level 1

We first compute the ratio $\frac{L\left(\widehat{\mu}_{0}\right)}{L\left(\widehat{\mu}_{1}\right)}$:

$$
\begin{aligned}
\frac{L\left(\widehat{\mu}_{0}\right)}{L\left(\widehat{\mu}_{1}\right)} & =\frac{\left(\frac{1}{2 \pi \sigma^{2}}\right)^{n / 2} \exp \left(-\frac{1}{2 \sigma^{2}}\left[\sum_{i=1}^{n}\left(x_{i}-\widehat{\mu}_{0}\right)^{2}\right]\right)}{\left(\frac{1}{2 \pi \sigma^{2}}\right)^{n / 2} \exp \left(-\frac{1}{2 \sigma^{2}}\left[\sum_{i=1}^{n}\left(x_{i}-\widehat{\mu}_{1}\right)^{2}\right]\right)} \\
& =\frac{\exp \left(-\frac{1}{2 \sigma^{2}}\left[\sum_{i=1}^{n}\left(x_{i}-\widehat{\mu}_{0}\right)^{2}\right]\right)}{\exp \left(-\frac{1}{2 \sigma^{2}}\left[\sum_{i=1}^{n}\left(x_{i}-\widehat{\mu}_{1}\right)^{2}\right]\right)}
\end{aligned}
$$

Now note that (BT) (write this down)

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(x_{i}-\widehat{\mu}_{0}\right)^{2}=\sum_{i=1}^{n}\left(\left(x_{i}-\overline{\mathrm{x}}\right)+\left(\overline{\mathrm{x}}-\widehat{\mu}_{0}\right)\right)^{2} \\
= & \sum_{i=1}^{n}\left[\left(x_{i}-\overline{\mathrm{x}}\right)^{2}+2\left(x_{i}-\overline{\mathrm{x}}\right)\left(\overline{\mathrm{x}}-\widehat{\mu}_{0}\right)+\left(\overline{\mathrm{x}}-\widehat{\mu}_{0}\right)^{2}\right] \\
= & \sum_{i=1}^{n}\left(x_{i}-\overline{\mathrm{x}}\right)^{2}+2\left(\overline{\mathrm{x}}-\widehat{\mu}_{0}\right) \sum_{i=1}^{n}\left(x_{i}-\overline{\mathrm{x}}\right)+\sum_{i=1}^{n}\left(\overline{\mathrm{x}}-\widehat{\mu}_{0}\right)^{2} \\
= & \sum_{i=1}^{n}\left(x_{i}-\overline{\mathrm{x}}\right)^{2}+2\left(\overline{\mathrm{x}}-\widehat{\mu}_{0}\right)(n \overline{\mathrm{x}}-n \overline{\mathrm{x}})+n\left(\overline{\mathrm{x}}-\widehat{\mu}_{0}\right)^{2} \\
= & \sum_{i=1}^{n}\left(x_{i}-\overline{\mathrm{x}}\right)^{2}+n\left(\overline{\mathrm{x}}-\widehat{\mu}_{0}\right)^{2} .
\end{aligned}
$$

So we have (write this down)

$$
\begin{aligned}
\frac{L\left(\widehat{\mu}_{0}\right)}{L\left(\widehat{\mu}_{1}\right)} & =\frac{\exp \left(-\frac{1}{2 \sigma^{2}}\left[\sum_{i=1}^{n}\left(x_{i}-\widehat{\mu}_{0}\right)^{2}\right]\right)}{\exp \left(-\frac{1}{2 \sigma^{2}}\left[\sum_{i=1}^{n}\left(x_{i}-\widehat{\mu}_{1}\right)^{2}\right]\right)} \\
& =\frac{\exp \left(-\frac{1}{2 \sigma^{2}}\left[\sum_{i=1}^{n}\left(x_{i}-\overline{\mathrm{x}}\right)^{2}+n\left(\overline{\mathrm{x}}-\widehat{\mu}_{0}\right)^{2}\right]\right)}{\exp \left(-\frac{1}{2}\left[\sum_{i=1}^{n}\left(x_{i}-\widehat{\mu}_{1}\right)^{2}\right]\right)}
\end{aligned}
$$

Now recall that $\widehat{\mu}_{1}=\overline{\mathrm{x}}$ (sample mean is the the MLE for normal RV).

Also note that $n=4$ and $\sigma^{2}=1$. This means that

$$
\begin{aligned}
\frac{L\left(\widehat{\mu}_{0}\right)}{L\left(\widehat{\mu}_{1}\right)} & =\frac{\exp \left(-\frac{1}{2}\left[\sum_{i=1}^{4}\left(x_{i}-\overline{\mathrm{x}}\right)^{2}+4\left(\overline{\mathrm{x}}-\widehat{\mu}_{0}\right)^{2}\right]\right)}{\exp \left(-\frac{1}{2}\left[\sum_{i=1}^{4}\left(x_{i}-\overline{\mathrm{x}}\right)^{2}\right]\right)} \\
& =\exp \left(-2\left(\overline{\mathrm{x}}-\widehat{\mu}_{0}\right)^{2}\right)
\end{aligned}
$$

We now compute $\widehat{\mu}_{0}$.
Note that the set ω for the null hypothesis is $\omega=\{1,2\}$.
We check the value of $L(\mu)$ for these two values

$$
\begin{aligned}
L(1) & =\left(\frac{1}{2 \pi}\right)^{4 / 2} \exp \left(-\frac{1}{2}\left[(1.1-1)^{2}+\ldots+(-3-1)^{2}\right]\right) \\
& =5.7 \times 10^{-7} ; \\
L(2) & =\left(\frac{1}{2 \pi}\right)^{4 / 2} \exp \left(-\frac{1}{2}\left[(1.1-2)^{2}+\ldots+(-3-2)^{2}\right]\right) \\
& =5.2 \times 10^{-10} .
\end{aligned}
$$

So the winner is $\widehat{\mu}_{0}=1$. Hence we have

$$
\begin{aligned}
\frac{L\left(\widehat{\mu}_{0}\right)}{L\left(\widehat{\mu}_{1}\right)}=\exp \left(-2\left(\overline{\mathrm{x}}-\widehat{\mu}_{0}\right)^{2}\right) & =\exp \left(-2\left(\frac{-1}{4}-1\right)^{2}\right) \\
& =0.04
\end{aligned}
$$

This ratio is smaller than 0.3 , so we reject H_{0}.

9 Example: likelihood ratio test, Level 2

Let X be a normal random variable with unknown mean μ and known variance σ^{2} (notice the difference here).

- H_{0} is $\mu=\mu_{0}$.
- H_{1} is $\mu \neq \mu_{0}$. (Notice the difference here.)

Suppose that we reject H_{0} if $\frac{L\left(\widehat{\mu}_{0}\right)}{L\left(\widehat{\mu}_{1}\right)} \leq k$.
Determine the value of k so that the significance level of this test is equal to α.

10 Answer: likelihood ratio test, Level 2

The ratio $\frac{L\left(\widehat{\mu}_{0}\right)}{L\left(\widehat{\mu}_{1}\right)}$ is equal to (see what you previously wrote)

$$
\frac{L\left(\widehat{\mu}_{0}\right)}{L\left(\widehat{\mu}_{1}\right)}=\frac{\exp \left(-\frac{1}{2 \sigma^{2}}\left[\sum_{i=1}^{n}\left(X_{i}-\overline{\mathrm{X}}\right)^{2}+n\left(\overline{\mathrm{X}}-\widehat{\mu}_{0}\right)^{2}\right]\right)}{\exp \left(-\frac{1}{2 \sigma^{2}}\left[\sum_{i=1}^{n}\left(X_{i}-\widehat{\mu}_{1}\right)^{2}\right]\right)}
$$

Now note that $\widehat{\mu}_{0}=\mu_{0}$ since $\omega=\left\{\mu_{0}\right\}$. Also note that $\widehat{\mu}_{1}=\overline{\mathrm{X}}$ since the MLE for normal random variable is sample mean.

So we have

$$
\begin{aligned}
\frac{L\left(\widehat{\mu}_{0}\right)}{L\left(\widehat{\mu}_{1}\right)} & =\frac{\exp \left(-\frac{1}{2 \sigma^{2}}\left[\sum_{i=1}^{n}\left(X_{i}-\overline{\mathrm{X}}\right)^{2}+n\left(\overline{\mathrm{X}}-\mu_{0}\right)^{2}\right]\right)}{\exp \left(-\frac{1}{2 \sigma^{2}}\left[\sum_{i=1}^{n}\left(X_{i}-\overline{\mathrm{X}}\right)^{2}\right]\right)} \\
& =\exp \left(-\frac{n}{2 \sigma^{2}}\left(\overline{\mathrm{X}}-\mu_{0}\right)^{2}\right)
\end{aligned}
$$

We then have (BT)

$$
\begin{aligned}
\frac{L\left(\widehat{\mu}_{0}\right)}{L\left(\widehat{\mu}_{1}\right)} & \leq k \\
\exp \left(-\frac{n}{2 \sigma^{2}}\left(\overline{\mathrm{X}}-\mu_{0}\right)^{2}\right) & \leq k \\
-\frac{n}{2 \sigma^{2}}\left(\overline{\mathrm{X}}-\mu_{0}\right)^{2} & \leq \log k \\
\frac{\left(\overline{\mathrm{X}}-\mu_{0}\right)^{2}}{\sigma^{2} / n} & \geq-2 \log k \\
\frac{\left|\overline{\mathrm{X}}-\mu_{0}\right|}{\sigma / \sqrt{n}} & \geq \sqrt{-2 \log k}
\end{aligned}
$$

The type I error for this test is then equal to

$$
\begin{aligned}
& \alpha=P\left[\frac{L\left(\widehat{\mu}_{0}\right)}{L\left(\widehat{\mu}_{1}\right)} \leq k\right] \\
& \alpha=P\left[\frac{\left|\overline{\mathrm{X}}-\mu_{0}\right|}{\sigma / \sqrt{n}} \geq \sqrt{-2 \log k}\right]
\end{aligned}
$$

Since $\frac{\overline{\mathrm{X}}-\mu_{0}}{\sigma / \sqrt{n}}$ is a normal random variable with mean 0 and variance 1 , we then have

$$
\alpha=P[|N(0,1)| \geq \sqrt{-2 \log k}]
$$

which means that

$$
\begin{aligned}
\sqrt{-2 \log k} & =z_{\alpha / 2} \\
-2 \log k & =\left(z_{\alpha / 2}\right)^{2} \\
k & =\exp \left(-\frac{\left(z_{\alpha / 2}\right)^{2}}{2}\right)
\end{aligned}
$$

which answers the question.

Remark 1. In particular, the critical region for this test is

$$
\begin{aligned}
C & =\left\{\left(X_{1}, \ldots, X_{n}\right) \left\lvert\, \frac{L\left(\widehat{\mu}_{0}\right)}{L\left(\hat{\mu}_{1}\right)} \leq k\right.\right\} \\
& =\left\{\left(X_{1}, \ldots, X_{n}\right) \left\lvert\, \frac{\left|\overline{\mathrm{X}}-\mu_{0}\right|}{\sigma / \sqrt{n}} \geq \sqrt{-2 \log k}\right.\right\} \\
& =\left\{\left(X_{1}, \ldots, X_{n}\right) \left\lvert\, \frac{\left|\overline{\mathrm{X}}-\mu_{0}\right|}{\sigma / \sqrt{n}} \geq z_{\alpha / 2}\right.\right\},
\end{aligned}
$$

which is the critical region that we have seen from Section 8.1.

11 Example: likelihood ratio test, Level 3

Let X be a normal random variable with unknown mean μ and unknown variance σ^{2} (notice the difference here).

- The null hypothesis H_{0} is $\mu=\mu_{0}, \sigma^{2} \in[0, \infty)$.
- The alternative hypothesis H_{0} is $\mu \neq \mu_{0}, \sigma^{2} \in$ $[0, \infty)$.

Compute the critical region for this likelihood ratio test with significance level α.

12 Answer: likelihood ratio test, Level 3

Recalll that the likelihood function for normal RV is (see what you wrote).

$$
L\left(\mu, \sigma^{2}\right)=\left(\frac{1}{2 \pi \sigma^{2}}\right)^{n / 2} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}\right) .
$$

For the null hypothesis $H_{0}, \mu=\mu_{0}, \sigma^{2} \in[0, \infty)$.
The MLEs for this regime are (write this down)

$$
\widehat{\mu}_{0}=\mu_{0} ; \quad \widehat{\sigma}_{0}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu_{0}\right)^{2} .
$$

Therefore we get

$$
\begin{aligned}
L\left(\widehat{\mu}_{0}, \widehat{\sigma}_{0}^{2}\right) & =\left(\frac{1}{2 \pi \widehat{\sigma}_{0}^{2}}\right)^{n / 2} \exp \left(-\frac{1}{2 \widehat{\sigma}_{0}^{2}} \sum_{i=1}^{n}\left(X_{i}-\mu_{0}\right)^{2}\right) \\
& =\left(\frac{1}{2 \pi \widehat{\sigma}_{0}^{2}}\right)^{n / 2} \exp \left(\frac{-n}{2}\right) .
\end{aligned}
$$

For the alternative hypothesis $H_{1}, \mu \in(-\infty, \infty), \sigma^{2} \in$ $[0, \infty)$. The MLEs for this regime is (write this down)

$$
\widehat{\mu}_{1}=\overline{\mathrm{X}} ; \quad \widehat{\sigma}_{1}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\overline{\mathrm{X}}\right)^{2}
$$

(Important: Here we use the variance of the sample distribution, not the sample variance.)

Therefore we get

$$
\begin{aligned}
L\left(\widehat{\mu}_{1}, \widehat{\sigma}_{1}^{2}\right) & =\left(\frac{1}{2 \pi \widehat{\sigma}_{1}^{2}}\right)^{n / 2} \exp \left(-\frac{1}{2 \widehat{\sigma}_{1}^{2}} \sum_{i=1}^{n}\left(X_{i}-\overline{\mathrm{X}}\right)^{2}\right) \\
& =\left(\frac{1}{2 \pi \widehat{\sigma}_{1}^{2}}\right)^{n / 2} \exp \left(\frac{-n}{2}\right)
\end{aligned}
$$

Therefore the ratio $\frac{L\left(\widehat{\mu}_{0}, \widehat{\sigma}_{0}^{2}\right)}{L\left(\widehat{\mu}_{1}, \widehat{\sigma}_{1}^{2}\right)}$ is (BT)

$$
\begin{aligned}
\frac{L\left(\widehat{\mu}_{0}, \widehat{\sigma}_{0}^{2}\right)}{L\left(\widehat{\mu}_{1}, \widehat{\sigma}_{1}^{2}\right)} & =\frac{\left(\frac{1}{2 \pi \widehat{\sigma}_{0}^{2}}\right)^{n / 2} \exp \left(\frac{-n}{2}\right)}{\left(\frac{1}{2 \pi \widehat{\sigma}_{1}^{2}}\right)^{n / 2} \exp \left(\frac{-n}{2}\right)} \\
& =\left(\frac{\widehat{\sigma}_{1}^{2}}{\widehat{\sigma}_{0}^{2}}\right)^{n / 2} \\
& =\left(\frac{\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\overline{\mathrm{X}}\right)^{2}}{\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu_{0}\right)^{2}}\right)^{n / 2} \\
& =\left(\frac{\sum_{i=1}^{n}\left(X_{i}-\overline{\mathrm{X}}\right)^{2}}{\sum_{i=1}^{n}\left(X_{i}-\mu_{0}\right)^{2}}\right)^{n / 2}
\end{aligned}
$$

Now recall (see what you wrote)

$$
\sum_{i=1}^{n}\left(X_{i}-\mu_{0}\right)^{2}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}+n\left(\overline{\mathrm{X}}-\mu_{0}\right)^{2}
$$

so we have

$$
\begin{aligned}
\frac{L\left(\widehat{\mu}_{0}, \widehat{\sigma}_{0}^{2}\right)}{L\left(\widehat{\mu}_{1}, \widehat{\sigma}_{1}^{2}\right)} & =\left(\frac{\sum_{i=1}^{n}\left(X_{i}-\overline{\mathrm{X}}\right)^{2}}{\sum_{i=1}^{n}\left(X_{i}-\mu_{0}\right)^{2}}\right)^{n / 2} \\
& =\left(\frac{\sum_{i=1}^{n}\left(X_{i}-\overline{\mathrm{X}}\right)^{2}}{\sum_{i=1}^{n}\left(X_{i}-\overline{\mathrm{X}}\right)^{2}+n\left(\overline{\mathrm{X}}-\mu_{0}\right)^{2}}\right)^{n / 2} \\
& =\left(\frac{1}{1+\frac{n\left(\overline{\mathrm{X}}-\mu_{0}\right)^{2}}{\sum_{i=1}^{n}\left(X_{i}-\overline{\mathrm{X}}\right)^{2}}}\right)^{n / 2}
\end{aligned}
$$

Now note that, the likelihood ratio test is checking if

$$
\frac{L\left(\widehat{\mu}_{0}, \widehat{\sigma}_{0}^{2}\right)}{L\left(\widehat{\mu}_{1}, \widehat{\sigma}_{1}^{2}\right)} \leq k .
$$

This is equivalent to (BT) (write this down)

$$
\begin{aligned}
\left(\frac{1}{1+\frac{n\left(\overline{\mathrm{X}}-\mu_{0}\right)^{2}}{\sum_{i=1}^{n}\left(X_{i}-\overline{\mathrm{X}}\right)^{2}}}\right)^{n / 2} & \leq k \\
\frac{1}{1+\frac{n\left(\overline{\mathrm{X}}-\mu_{0}\right)^{2}}{\sum_{i=1}^{n}\left(X_{i}-\overline{\mathrm{X}}\right)^{2}}} & \leq k^{2 / n} \\
\frac{1}{k^{2 / n}} & \leq 1+\frac{n\left(\overline{\mathrm{X}}-\mu_{0}\right)^{2}}{\sum_{i=1}^{n}\left(X_{i}-\overline{\mathrm{X}}\right)^{2}} \\
k^{-2 / n}-1 & \leq \frac{n\left(\overline{\mathrm{X}}-\mu_{0}\right)^{2}}{\sum_{i=1}^{n}\left(X_{i}-\overline{\mathrm{X}}\right)^{2}} \\
(n-1)\left(k^{-2 / n}-1\right) & \leq \frac{n\left(\overline{\mathrm{X}}-\mu_{0}\right)^{2}}{\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\overline{\mathrm{X}}\right)^{2}} .
\end{aligned}
$$

This is equal to

$$
\frac{n\left(\overline{\mathrm{X}}-\mu_{0}\right)^{2}}{\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\overline{\mathrm{X}}\right)^{2}} \geq(n-1)\left(k^{-2 / n}-1\right) .
$$

Now recall that the sample variance s is

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\overline{\mathrm{X}}\right)^{2}
$$

So our inequality becomes

$$
\begin{aligned}
\frac{n\left(\overline{\mathrm{X}}-\mu_{0}\right)^{2}}{s^{2}} & \geq(n-1)\left(k^{-2 / n}-1\right) \\
\frac{\sqrt{n}\left|\overline{\mathrm{X}}-\mu_{0}\right|}{s} & \geq \sqrt{(n-1)\left(k^{-2 / n}-1\right)}
\end{aligned}
$$

Hence the type I error for this test is

$$
\begin{aligned}
\alpha & =P\left[\frac{L\left(\widehat{\mu}_{0}, \widehat{\sigma}_{0}^{2}\right)}{L\left(\widehat{\mu}_{1}, \widehat{\sigma}_{1}^{2}\right)} \leq k\right] \\
& =P\left[\frac{\sqrt{n}\left|\overline{\mathrm{X}}-\mu_{0}\right|}{s} \geq \sqrt{(n-1)\left(k^{-2 / n}-1\right)}\right]
\end{aligned}
$$

Since X is a normal random variable, we have

$$
T:=\frac{\sqrt{n}\left(\overline{\mathrm{X}}-\mu_{0}\right)}{s}
$$

is a t-student random variable with $n-1$ degrees of freedom. So we have

$$
\alpha=P\left[|T| \geq \sqrt{(n-1)\left(k^{-2 / n}-1\right)}\right]
$$

which is equivalent to

$$
\begin{aligned}
\sqrt{(n-1)\left(k^{-2 / n}-1\right)} & =t_{\alpha / 2}(n-1) \\
(n-1)\left(k^{-2 / n}-1\right) & =\left(t_{\alpha / 2}(n-1)\right)^{2} \\
k^{-2 / n} & =\frac{\left(t_{\alpha / 2}(n-1)\right)^{2}}{n-1}+1 \\
k & =\left[\frac{\left(t_{\alpha / 2}(n-1)\right)^{2}}{n-1}+1\right]^{-n / 2}
\end{aligned}
$$

which is our answer.

Remark 2. In particular, the critical region for this test 1S

$$
\begin{aligned}
C & =\left\{\left(X_{1}, \ldots, X_{n}\right) \left\lvert\, \frac{L\left(\widehat{\mu}_{0}, \widehat{\sigma}_{0}^{2}\right)}{L\left(\widehat{\mu}_{1}, \widehat{\sigma}_{1}^{2}\right)} \leq k\right.\right\} \\
& =\left\{\left(X_{1}, \ldots, X_{n}\right) \left\lvert\, \frac{\sqrt{n}\left|\overline{\mathrm{X}}-\mu_{0}\right|}{s} \geq \sqrt{(n-1)\left(k^{-2 / n}-1\right)}\right.\right\} \\
& =\left\{\left(X_{1}, \ldots, X_{n}\right) \left\lvert\, \frac{\sqrt{n}\left|\overline{\mathrm{X}}-\mu_{0}\right|}{s} \geq t_{\alpha / 2}(n-1)\right.\right\},
\end{aligned}
$$

which is the critical region that we have seen from Section 8.2.

[^0]: *Version date: Friday 4 ${ }^{\text {th }}$ December, 2020, 11:14.
 ${ }^{\dagger}$ This notes is based on Hanbaek Lyu's and Liza Rebrova's notes from the previous quarter, and I would like to thank them for their generosity. "Nanos gigantum humeris insidentes (I am but a dwarf standing on the shoulders of giants)".

