Math 170S Lecture Notes Section $8.7^{* \dagger}$ Best critical region

Instructor: Swee Hong Chan

NOTE: Materials that appear in the textbook but do not appear in the lecture notes might still be tested.

Please send me an email if you find typos.

[^0]
1 Example: Chocolate, Level 1

Let X be the sugar content of a random chocolate bar, which is a normal random variable with unknown mean μ and variance 36 .

- The company claims that $\mu=50$ (the null hypothesis H_{0});
- However, the Federal Trade Commission claims that $\mu=55$ (the alternative hypothesis H_{1}).

Let X_{1}, \ldots, X_{n} be $n=16$ random samples for X. Your friendly instructor wants to find a test so that the type I error α is equal to 0.05 .

Suppose that there are two choices of critical regions:

- The critical region C,
$C=\left\{\left(X_{1}, \ldots, X_{n}\right) \mid X_{1}+X_{2}+\ldots+X_{n} \geq 839.52\right\}$.

This is our usual choice of critical region.

- The critical region D,

$$
D=\left\{\left(X_{1}, \ldots, X_{n}\right) \mid X_{1}+2 X_{2}+\ldots+n X_{n} \geq 7183\right\}
$$

Both critical regions have type I error $\alpha \approx 0.05$:

- For the critical region C,

$$
\begin{aligned}
\alpha & =P\left[\text { reject } H_{0} \text { given that } H_{0} \text { is true }\right] \\
& =P\left[X_{1}+X_{2}+\ldots+X_{n} \geq 839.52 \text { given that } \mu=50\right] .
\end{aligned}
$$

Note that $X_{1}+\ldots+X_{n}$ is a normal RV with mean

$$
n \mu_{0}=(16)(50) \text { and variance } n \sigma^{2}=(16)(36) \text {, so }
$$

$$
\begin{aligned}
\alpha & =1-\Phi\left(\frac{(839.52)-(16)(50)}{\sqrt{(16)(36)}}\right) \\
& =1-\Phi(1.647) \approx 0.05 .
\end{aligned}
$$

- For the critical region D,
$\alpha=P\left[\right.$ reject H_{0} given that H_{0} is true $]$

$$
=P\left[X_{1}+2 X_{2}+\ldots+n X_{n} \geq 7183 \text { given } \mu=50\right]
$$

Note $X_{1}+2 X_{2}+\ldots+n X_{n}$ is a normal RV with

$$
\begin{aligned}
\text { mean } & =E\left[X_{1}\right]+2 E\left[X_{2}\right]+\ldots+n E\left[X_{n}\right] \\
& =\frac{n(n+1)}{2} \mu_{0}=6800
\end{aligned}
$$

$$
\text { variance }=\operatorname{var}\left[X_{1}\right]+(2)^{2} \operatorname{var}\left[X_{2}\right]+\ldots+(n)^{2} \operatorname{var}\left[X_{n}\right]
$$

$$
=\frac{n(n+1)(2 n+1)}{6} \sigma^{2}=53856
$$

so we have

$$
\begin{aligned}
\alpha & =1-\Phi\left(\frac{(7183)-(6800)}{\sqrt{53856}}\right) \\
& =1-\Phi(1.65) \approx 0.05
\end{aligned}
$$

Both C and D have comparable type I error, so we choose the one with smaller the type II error β.

- For critical region C,
$\beta=P\left[\right.$ not rejecting H_{0} given that H_{1} is true $]$

$$
=P\left[X_{1}+\ldots+X_{n}<839.52 \text { given that } \mu=55\right] .
$$

Recall that $X_{1}+\ldots+X_{n}$ is a normal RV with mean

$$
n \mu_{1}=(16)(55) \text { and variance } n \sigma^{2}=(16)(36), \text { so }
$$

$$
\begin{aligned}
\beta & =\Phi\left(\frac{(839.52)-(16)(55)}{\sqrt{(16)(36)}}\right) \\
& =\Phi(-1.69) \approx 0.0455 .
\end{aligned}
$$

- For the critical region D,

$$
\begin{aligned}
\beta & =P\left[\text { not rejecting } H_{0} \text { given that } H_{1} \text { is true }\right] \\
& =P\left[X_{1}+2 X_{2}+\ldots+n X_{n}<7183 \text { given } \mu=55\right]
\end{aligned}
$$

Recall $X_{1}+2 X_{2}+\ldots+n X_{n}$ is a normal RV with

$$
\begin{aligned}
\text { mean } & =\frac{n(n+1)}{2} \mu_{1}=7480 ; \\
\text { variance } & =\frac{n(n+1)(2 n+1)}{6} \sigma^{2}=53856 \\
\beta & =\Phi\left(\frac{(7183)-(7480)}{\sqrt{53856}}\right) \\
& =\Phi(-1.28) \approx 0.1003
\end{aligned}
$$

So the region C has smaller type II error, and hence a better critical region. We will see that C is actually the best critical region for significance level $\alpha=0.05$.

2 Setting: best critical region

Object: X is a random variable with density f_{θ} with unknown θ.

Hypotheses:

- Null Hypothesis $H_{0}: \theta$ is equal to θ_{0}.
- Alternative Hypothesis $H_{1}: \theta$ is equal to θ_{1}.

Input: Random samples X_{1}, \ldots, X_{n} for X and signifirance level α.

Methodology:

Reject H_{0} if $\left(X_{1}, \ldots, X_{n}\right)$ is contained in the (to be determined) critical region C, and do not reject H_{0} otherwise.

Problem:

- Find the best critical region C with significance level (type I error) α. The test that uses this C is called a uniformly most powerful test.

3 Definition: best critical region

Definition 1. C is the best critical region of size α if the type II error is the smallest among all critical regions with significance level α.

4 Theorem: Neyman-Pearson

Recall the definition of the maximum likelihood function

$$
L(\theta)=f_{\theta}\left(x_{1}\right) \ldots f_{\theta}\left(x_{n}\right)
$$

Remember that θ is unknown and x_{1}, \ldots, x_{n} are variables.

Theorem 2 (Neyman-Pearson lemma). A critical region C of size α is the best critical region if there exists k such that (write this down)

- The type I error $P\left[\left(X_{1}, \ldots, X_{n} \in C\right) ; \theta=\theta_{0}\right]$ is equal to α;
- $\frac{L\left(\theta_{0}\right)}{L\left(\theta_{1}\right)} \leq k$ for all $\left(x_{1}, \ldots, x_{n}\right)$ in C; and
- $\frac{L\left(\theta_{0}\right)}{L\left(\theta_{1}\right)} \geq k$ for all $\left(x_{1}, \ldots, x_{n}\right)$ outside of C.

5 Example: Chocolate, Level 2

Recall the chocolate example, X is a random variable with unknown mean μ and variance 36. We have $n=16$ random sample $X_{1}, \ldots X_{n}$ for X.

- The null hypothesis is $\mu=\mu_{0}=50$;
- The alternative hypothesis $\mu=\mu_{1}=55$.

We will show that the critical region

$$
C=\left\{\left(X_{1}, \ldots, X_{n}\right) \mid X_{1}+X_{2}+\ldots+X_{n} \geq 839.52\right\}
$$

is the best critical region of size 0.05 .

6 Answer: Chocolate, Level 2

We first compute the maximum likelihood function $L(\mu)$.
We have (BT)

$$
\begin{aligned}
L(\mu) & =f_{\mu}\left(x_{1}\right) \ldots f_{\mu}\left(x_{n}\right) \\
& =\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(\frac{-\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right) \\
& =\left(2 \pi \sigma^{2}\right)^{-n / 2} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right) \\
& =(72 \pi)^{-n / 2} \exp \left(-\frac{1}{72} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right) .
\end{aligned}
$$

The ratio $\frac{L\left(\mu_{0}\right)}{L\left(\mu_{1}\right)}$ is then equal to (BT)

$$
\begin{aligned}
\frac{L(50)}{L(55)} & =\frac{(72 \pi)^{-n / 2} \exp \left(-\frac{1}{72} \sum_{i=1}^{n}\left(x_{i}-50\right)^{2}\right)}{(72 \pi)^{-n / 2} \exp \left(-\frac{1}{72} \sum_{i=1}^{n}\left(x_{i}-55\right)^{2}\right)} \\
& =\exp \left(\frac{-1}{72} \sum_{i=1}^{n}\left[\left(x_{i}-50\right)^{2}-\left(x_{i}-55\right)^{2}\right]\right) \\
& =\exp \left(\frac{-1}{72} \sum_{i=1}^{n}\left[-2 x_{i}(50-55)+\left(50^{2}-55^{2}\right)\right]\right) \\
& =\exp \left(\frac{-1}{72} \sum_{i=1}^{n}\left[10 x_{i}-525\right]\right) \\
& =\exp \left(\frac{-10\left(x_{1}+\ldots+x_{n}\right)+(16)(525)}{72}\right)
\end{aligned}
$$

We now check the three conditions in Neyman-Pearson lemma:

- For the first condition,

$$
\begin{aligned}
& P\left[\left(X_{1}, \ldots, X_{n} \in C\right) ; \mu=\mu_{0}\right] \\
= & P\left[X_{1}+X_{2}+\ldots+X_{n} \geq 839.52 \text { given that } \mu=50\right] \\
= & 1-\Phi\left(\frac{(839.52)-n \mu_{0}}{\sqrt{n \sigma^{2}}}\right) \\
= & 1-\Phi\left(\frac{(839.52)-(16)(50)}{\sqrt{(16)(36)}}\right) \\
= & 1-\Phi(1.647) \approx 0.05 .
\end{aligned}
$$

- For the second condition, We choose k to be

$$
k:=\exp \left(\frac{-10(839.52)+(16)(525)}{72}\right) .
$$

Now note that

$$
\begin{gathered}
\left(x_{1}, \ldots, x_{n}\right) \text { in } C \quad \text { means that } \\
x_{1}+\ldots+x_{n} \geq 839.52 .
\end{gathered}
$$

So we have

$$
\begin{aligned}
\frac{L(50)}{L(55)} & =\exp \left(\frac{-10\left(x_{1}+\ldots+x_{n}\right)+(16)(525)}{72}\right) \\
& \leq \exp \left(\frac{-10(839.52)+(16)(525)}{72}\right) \\
& =k
\end{aligned}
$$

- For the third condition,

$$
\begin{gathered}
\left(x_{1}, \ldots, x_{n}\right) \text { outside of } C \quad \text { means that } \\
x_{1}+\ldots+x_{n}<839.52
\end{gathered}
$$

So we have

$$
\begin{aligned}
\frac{L(50)}{L(55)} & =\exp \left(\frac{-10\left(x_{1}+\ldots+x_{n}\right)+(16)(525)}{72}\right) \\
& >\exp \left(\frac{-10(839.52)+(16)(525)}{72}\right) \\
& =k
\end{aligned}
$$

Hence we conclude that C is indeed the best critical region of size 0.05 .

7 Example: Chocolate, Level 3

Let X be a normal RV with unknown mean μ and variance 36 . We have n random sample $X_{1}, \ldots X_{n}$ for X.

- The null hypothesis is $\mu=\mu_{0}$;
- The alternative hypothesis $\mu=\mu_{1}$.

Assume that $\mu_{0}<\mu_{1}$. Find a best critical region C of size α.

8 Answer: Chocolate, Level 3

Recall the maximum likelihood function:

$$
L(\mu)==(72 \pi)^{-n / 2} \exp \left(-\frac{1}{72} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right) .
$$

We can then compute the ratio $\frac{L\left(\mu_{0}\right)}{L\left(\mu_{1}\right)}$ by (BT)

$$
\begin{aligned}
\frac{L\left(\mu_{0}\right)}{L\left(\mu_{1}\right)} & =\frac{(72 \pi)^{-n / 2} \exp \left(-\frac{1}{72} \sum_{i=1}^{n}\left(x_{i}-\mu_{0}\right)^{2}\right)}{(72 \pi)^{-n / 2} \exp \left(-\frac{1}{72} \sum_{i=1}^{n}\left(x_{i}-\mu_{1}\right)^{2}\right)} \\
& =\exp \left(\frac{-1}{72} \sum_{i=1}^{n}\left[-2 x_{i}\left(\mu_{0}-\mu_{1}\right)+\left(\mu_{0}^{2}-\mu_{1}^{2}\right)\right]\right) \\
& =\exp \left(\frac{2\left(\mu_{0}-\mu_{1}\right)\left(\sum_{i=1}^{n} x_{i}\right)-n\left(\mu_{0}^{2}-\mu_{1}^{2}\right)}{72}\right) \\
& =\exp \left(\frac{2 n\left(\mu_{0}-\mu_{1}\right) \overline{\mathrm{x}}-n\left(\mu_{0}^{2}-\mu_{1}^{2}\right)}{72}\right) .
\end{aligned}
$$

For C to be a best critical region, we need to find k so that

- (2nd conc.) For all $\left(x_{1}, \ldots, x_{n}\right)$ in C, we need (BT)

$$
\begin{aligned}
\frac{L\left(\mu_{0}\right)}{L\left(\mu_{1}\right)} & \leq k \\
\exp \left(\frac{2 n\left(\mu_{0}-\mu_{1}\right) \overline{\mathrm{x}}-n\left(\mu_{0}^{2}-\mu_{\mathrm{1}}^{2}\right)}{72}\right) & \leq k \\
\frac{2 n\left(\mu_{0}-\mu_{1}\right) \overline{\mathrm{x}}-n\left(\mu_{0}^{2}-\mu_{1}^{2}\right)}{72} & \leq \log k .
\end{aligned}
$$

Continuing the calculation,

$$
\begin{aligned}
2 n\left(\mu_{0}-\mu_{1}\right) \overline{\mathrm{x}} & \leq 72 \log k+n\left(\mu_{0}^{2}-\mu_{1}^{2}\right) \\
\overline{\mathrm{x}} & \geq \frac{72 \log k+n\left(\mu_{0}^{2}-\mu_{1}^{2}\right)}{2 n\left(\mu_{0}-\mu_{1}\right)} \\
\overline{\mathrm{x}} & \geq \frac{72 \log k}{2 n\left(\mu_{0}-\mu_{1}\right)}+\frac{\mu_{0}+\mu_{1}}{2} .
\end{aligned}
$$

- (3rd cond.) For all $\left(x_{1}, \ldots, x_{n}\right)$ outside of C, we need (ST)

$$
\begin{aligned}
\frac{L\left(\mu_{0}\right)}{L\left(\mu_{1}\right)} & \geq k \\
\exp \left(\frac{2 n\left(\mu_{0}-\mu_{1}\right) \overline{\mathrm{x}}-n\left(\mu_{0}^{2}-\mu_{1}^{2}\right)}{72}\right) & \geq k
\end{aligned}
$$

$$
\frac{2 n\left(\mu_{0}-\mu_{1}\right) \overline{\mathrm{x}}-n\left(\mu_{0}^{2}-\mu_{1}^{2}\right)}{72} \geq \log k
$$

$$
\begin{aligned}
2 n\left(\mu_{0}-\mu_{1}\right) \overline{\mathrm{x}} & \geq 72 \log k+n\left(\mu_{0}^{2}-\mu_{1}^{2}\right) \\
\overline{\mathrm{x}} & \leq \frac{72 \log k+n\left(\mu_{0}^{2}-\mu_{1}^{2}\right)}{2 n\left(\mu_{0}-\mu_{1}\right)} \\
\overline{\mathrm{x}} & \leq \frac{72 \log k}{2 n\left(\mu_{0}-\mu_{1}\right)}+\frac{\mu_{0}+\mu_{1}}{2} .
\end{aligned}
$$

Remark 3. A shorter way to do this: "By the same argument as before, we conclude that ...".

So we conclude

- For $\left(x_{1}, \ldots, x_{n}\right)$ in C, we need

$$
\overline{\mathrm{x}} \geq \frac{72 \log k}{2 n\left(\mu_{0}-\mu_{1}\right)}+\frac{\mu_{0}+\mu_{1}}{2}
$$

- For $\left(x_{1}, \ldots, x_{n}\right)$ outside of C, we need

$$
\overline{\mathrm{x}} \leq \frac{72 \log k}{2 n\left(\mu_{0}-\mu_{1}\right)}+\frac{\mu_{0}+\mu_{1}}{2}
$$

Thus the best critical region C is of the form (write this down)

$$
C=\left\{\left(X_{1}, \ldots, X_{n}\right) \left\lvert\, \overline{\mathrm{X}} \geq \frac{72 \log k}{2 n\left(\mu_{0}-\mu_{1}\right)}+\frac{\mu_{0}+\mu_{1}}{2}\right.\right\}
$$

where k is to be determined.

We can determine k with the 1 st cond.,

$$
\begin{aligned}
P\left[\left(X_{1}, \ldots, X_{n}\right) \in C ; \mu=\mu_{0}\right] & =\alpha \\
P\left[\overline{\mathrm{X}} \geq \frac{72 \log k}{2 n\left(\mu_{0}-\mu_{1}\right)}+\frac{\mu_{0}+\mu_{1}}{2} ; \mu=\mu_{0}\right] & =\alpha
\end{aligned}
$$

We write the term in the probability above as

$$
\text { Scary }:=\frac{72 \log k}{2 n\left(\mu_{0}-\mu_{1}\right)}+\frac{\mu_{0}+\mu_{1}}{2}
$$

Since $\overline{\mathrm{X}}$ is normal RV with mean μ_{0} and variance $\frac{\sigma^{2}}{n}=\frac{36}{n}$, (write this down)

$$
P\left[\left(X_{1}, \ldots, X_{n}\right) \in C ; \mu=\mu_{0}\right]=\alpha
$$

$$
P\left[\overline{\mathrm{X}} \geq \text { Scary } ; \mu=\mu_{0}\right]=\alpha
$$

$$
1-\Phi\left(\frac{\text { Scary }-\mu_{0}}{6 / \sqrt{n}}\right)=\alpha
$$

$$
\frac{\text { Scary }-\mu_{0}}{6 / \sqrt{n}}=\Phi^{-1}(1-\alpha)
$$

$$
\text { Scary }-\mu_{0}=\left(\frac{6}{\sqrt{n}}\right) \Phi^{-1}(1-\alpha)
$$

$$
\text { Scary }=\mu_{0}+\left(\frac{6}{\sqrt{n}}\right) \Phi^{-1}(1-\alpha)
$$

Substituting the last equation into the formula for critical region, we get

$$
C=\left\{\left(X_{1}, \ldots, X_{n}\right) \left\lvert\, \overline{\mathrm{X}} \geq \mu_{0}+\left(\frac{6}{\sqrt{n}}\right) \Phi^{-1}(1-\alpha)\right.\right\}
$$

which is our answer. (Write this down.)

9 Re-example: Chocolate, Level 2

Let X be a normal random variable with unknown mean μ and variance 36 . We have $n=16$ random sample $X_{1}, \ldots X_{n}$ for X.

- The null hypothesis is $\mu=50$;
- The alternative hypothesis $\mu=55$.

Find a best critical region C of size 0.05 .

10 Re-answer: Chocolate, Level

2

Here we have

$$
n=16 ; \quad \mu_{0}=50 ; \quad \alpha=0.05
$$

So we have

$$
\begin{aligned}
\mu_{0}+\left(\frac{6}{\sqrt{n}}\right) \Phi^{-1}(1-\alpha) & =(50)+\left(\frac{6}{\sqrt{16}}\right) \Phi^{-1}(1-0.05) \\
& \approx 52.47
\end{aligned}
$$

and therefore the critical region is

$$
C=\left\{\left(X_{1}, \ldots, X_{n}\right) \mid \overline{\mathrm{X}} \geq 52.47\right\}
$$

which is equivalent to the critical region from Level 2.

11 Example: Chocolate, Level 4

Let X be a normal random variable with unknown mean μ and variance 36 . We have n random sample $X_{1}, \ldots X_{n}$.

- The null hypothesis is $\mu=50$;
- The alternative hypothesis $\mu>50$.

Find a best critical region C of size 0.05 .

12 Answer: Chocolate, Level 4

The key observation here is that the best critical region C from Level 3

$$
C=\left\{\left(X_{1}, \ldots, X_{n}\right) \left\lvert\, \overline{\mathrm{X}} \geq \mu_{0}+\left(\frac{6}{\sqrt{n}}\right) \Phi^{-1}(1-\alpha)\right.\right\}
$$

does not depend on the mean μ_{1} from the alternative hypothesis. We can therefore use C for the best critical region for all $\mu>50$.

By the same calculation as in Level 2, we conclude that

$$
C=\left\{\left(X_{1}, \ldots, X_{n}\right) \mid \overline{\mathrm{X}} \geq 52.47\right\} .
$$

Remark 4. Recall the definition of sufficient statistics $u:=u\left(x_{1}, \ldots, x_{n}\right)$ from Section 6. If a sufficient statistics u exists, then the ratio $\frac{L\left(\theta_{0}\right)}{L\left(\theta_{1}\right)}$ is

$$
\frac{L\left(\theta_{0}\right)}{L\left(\theta_{1}\right)}=\frac{\phi\left(u, \theta_{0}\right) h\left(x_{1}, \ldots, x_{n}\right)}{\phi\left(u, \theta_{1}\right) h\left(x_{1}, \ldots, x_{n}\right)}=\frac{\phi\left(u, \theta_{0}\right)}{\phi\left(u, \theta_{1}\right)}
$$

By the Neyman-Pearson lemma, this means that the best critical region are usually based on the sufficient statistics when they exist, e.g.,

$$
\begin{aligned}
& C=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid u\left(x_{1}, \ldots, x_{n}\right) \geq 42\right\}, \quad \text { or } \\
& C=\left\{\left(x_{1}, \ldots, x_{n}\right)| | u\left(x_{1}, \ldots, x_{n}\right)-2 \mid \geq 67\right\} .
\end{aligned}
$$

[^0]: *Version date: Tuesday $1^{\text {st }}$ December, 2020, 23:34.
 †This notes is based on Hanbaek Lyu's and Liza Rebrova's notes from the previous quarter, and I would like to thank them for their generosity. "Nanos gigantum humeris insidentes (I am but a dwarf standing on the shoulders of giants)".

