Math 170S Lecture Notes Section 8.7 *[†] Best critical region

Instructor: Swee Hong Chan

NOTE: Materials that appear in the textbook but do not appear in the lecture notes might still be tested. Please send me an email if you find typos.

^{*}Version date: Tuesday 1st December, 2020, 23:34.

[†]This notes is based on Hanback Lyu's and Liza Rebrova's notes from the previous quarter, and I would like to thank them for their generosity. "*Nanos gigantum humeris insidentes* (I am but a dwarf standing on the shoulders of giants)".

1 Example: Chocolate, Level 1

Let X be the sugar content of a random chocolate bar, which is a normal random variable with unknown mean μ and variance 36.

- The company claims that $\mu = 50$ (the null hypothesis H_0);
- However, the Federal Trade Commission claims that $\mu = 55$ (the alternative hypothesis H_1).

Let X_1, \ldots, X_n be n = 16 random samples for X. Your friendly instructor wants to find a test so that the type I error α is equal to 0.05. Suppose that there are two choices of critical regions:

• The critical region C,

$$C = \{ (X_1, \dots, X_n) \mid X_1 + X_2 + \dots + X_n \ge 839.52 \}.$$

This is our usual choice of critical region.

• The critical region D,

$$D = \{ (X_1, \dots, X_n) \mid X_1 + 2X_2 + \dots + nX_n \ge 7183 \}.$$

Both critical regions have type I error $\alpha \approx 0.05$:

• For the critical region C,

$$\alpha = P[\text{reject } H_0 \text{ given that } H_0 \text{ is true}]$$

= $P[X_1 + X_2 + \ldots + X_n \ge 839.52 \text{ given that } \mu = 50].$

Note that $X_1 + \ldots + X_n$ is a normal RV with mean $n\mu_0 = (16)(50)$ and variance $n\sigma^2 = (16)(36)$, so

$$\alpha = 1 - \Phi\left(\frac{(839.52) - (16)(50)}{\sqrt{(16)(36)}}\right)$$
$$= 1 - \Phi(1.647) \approx 0.05.$$

• For the critical region D,

$$\alpha = P[\text{reject } H_0 \text{ given that } H_0 \text{ is true}]$$
$$= P[X_1 + 2X_2 + \ldots + nX_n \ge 7183 \text{ given } \mu = 50].$$

Note $X_1 + 2X_2 + \ldots + nX_n$ is a normal RV with

mean =
$$E[X_1] + 2E[X_2] + \ldots + nE[X_n]$$

= $\frac{n(n+1)}{2}\mu_0$ = 6800;
variance = $\operatorname{var}[X_1] + (2)^2 \operatorname{var}[X_2] + \ldots + (n)^2 \operatorname{var}[X_n]$
= $\frac{n(n+1)(2n+1)}{6}\sigma^2$ = 53856,

so we have

$$\alpha = 1 - \Phi\left(\frac{(7183) - (6800)}{\sqrt{53856}}\right)$$
$$= 1 - \Phi(1.65) \approx 0.05.$$

Both C and D have comparable type I error, so we choose the one with smaller the type II error β .

• For critical region C,

$$\beta = P[\text{not rejecting } H_0 \text{ given that } H_1 \text{ is true}]$$

= $P[X_1 + \ldots + X_n < 839.52 \text{ given that } \mu = 55].$

Recall that $X_1 + \ldots + X_n$ is a normal RV with mean $n\mu_1 = (16)(55)$ and variance $n\sigma^2 = (16)(36)$, so

$$\beta = \Phi\left(\frac{(839.52) - (16)(55)}{\sqrt{(16)(36)}}\right)$$
$$= \Phi(-1.69) \approx 0.0455.$$

• For the critical region D,

$$\beta = P[\text{not rejecting } H_0 \text{ given that } H_1 \text{ is true}]$$
$$= P[X_1 + 2X_2 + \ldots + nX_n < 7183 \text{ given } \mu = 55].$$

Recall $X_1 + 2X_2 + \ldots + nX_n$ is a normal RV with

mean
$$= \frac{n(n+1)}{2}\mu_1 = 7480;$$

variance $= \frac{n(n+1)(2n+1)}{6}\sigma^2 = 53856.$

$$\beta = \Phi\left(\frac{(7183) - (7480)}{\sqrt{53856}}\right)$$
$$= \Phi(-1.28) \approx 0.1003.$$

So the region C has smaller type II error, and hence a better critical region. We will see that C is actually the best critical region for significance level $\alpha = 0.05$.

2 Setting: best critical region

Object: X is a random variable with density f_{θ} with **unknown** θ .

Hypotheses:

- Null Hypothesis H_0 : θ is equal to θ_0 .
- Alternative Hypothesis H_1 : θ is equal to θ_1 .

Input: Random samples X_1, \ldots, X_n for X and significance level α .

Methodology:

Reject H_0 if (X_1, \ldots, X_n) is contained in the (to be determined) critical region C, and do not reject H_0 otherwise.

Problem:

 Find the best critical region C with significance level (type I error) α. The test that uses this C is called a uniformly most powerful test.

3 Definition: best critical region

Definition 1. C is the best critical region of size α if the type II error is the smallest among all critical regions with significance level α .

4 Theorem: Neyman-Pearson

Recall the definition of the maximum likelihood function

$$L(\theta) = f_{\theta}(x_1) \dots f_{\theta}(x_n).$$

Remember that θ is **unknown** and x_1, \ldots, x_n are **variables**.

Theorem 2 (Neyman-Pearson lemma). A critical region C of size α is the best critical region if there exists k such that (write this down)

The type I error P[(X₁,...,X_n ∈ C); θ = θ₀] is equal to α;

•
$$\frac{L(\theta_0)}{L(\theta_1)} \leq k$$
 for all (x_1, \ldots, x_n) in C; and

•
$$\frac{L(\theta_0)}{L(\theta_1)} \ge k$$
 for all (x_1, \ldots, x_n) outside of C .

5 Example: Chocolate, Level 2

Recall the chocolate example, X is a random variable with unknown mean μ and variance 36. We have n = 16random sample $X_1, \ldots X_n$ for X.

- The null hypothesis is $\mu = \mu_0 = 50;$
- The alternative hypothesis $\mu = \mu_1 = 55$.

We will show that the critical region

$$C = \{ (X_1, \dots, X_n) \mid X_1 + X_2 + \dots + X_n \ge 839.52 \}$$

is the best critical region of size 0.05.

6 Answer: Chocolate, Level 2

We first compute the maximum likelihood function $L(\mu)$. We have (BT)

$$L(\mu) = f_{\mu}(x_1) \dots f_{\mu}(x_n)$$

= $\prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(x_i - \mu)^2}{2\sigma^2}\right)$
= $(2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^{n}(x_i - \mu)^2\right)$
= $(72\pi)^{-n/2} \exp\left(-\frac{1}{72}\sum_{i=1}^{n}(x_i - \mu)^2\right).$

The ratio
$$\frac{L(\mu_0)}{L(\mu_1)}$$
 is then equal to (BT)

$$\frac{L(50)}{L(55)} = \frac{(72\pi)^{-n/2} \exp\left(-\frac{1}{72}\sum_{i=1}^n (x_i - 50)^2\right)}{(72\pi)^{-n/2} \exp\left(-\frac{1}{72}\sum_{i=1}^n (x_i - 55)^2\right)}$$

$$= \exp\left(\frac{-1}{72}\sum_{i=1}^n \left[(x_i - 50)^2 - (x_i - 55)^2\right]\right)$$

$$= \exp\left(\frac{-1}{72}\sum_{i=1}^n \left[-2x_i(50 - 55) + (50^2 - 55^2)\right]\right)$$

$$= \exp\left(\frac{-1}{72}\sum_{i=1}^n \left[10x_i - 525\right]\right)$$

$$= \exp\left(\frac{-10(x_1 + \dots + x_n) + (16)(525)}{72}\right).$$

We now check the three conditions in Neyman-Pearson lemma:

• For the first condition,

$$P[(X_1, \dots, X_n \in C); \mu = \mu_0]$$

= $P[X_1 + X_2 + \dots + X_n \ge 839.52 \text{ given that } \mu = 50]$
= $1 - \Phi\left(\frac{(839.52) - n\mu_0}{\sqrt{n\sigma^2}}\right)$
= $1 - \Phi\left(\frac{(839.52) - (16)(50)}{\sqrt{(16)(36)}}\right)$
= $1 - \Phi(1.647) \approx 0.05.$

• For the second condition, We choose k to be

$$k := \exp\left(\frac{-10(839.52) + (16)(525)}{72}\right)$$

•

Now note that

$$(x_1, \dots, x_n)$$
 in C means that
 $x_1 + \dots + x_n \ge 839.52.$

So we have

$$\frac{L(50)}{L(55)} = \exp\left(\frac{-10(x_1 + \ldots + x_n) + (16)(525)}{72}\right)$$
$$\leq \exp\left(\frac{-10(839.52) + (16)(525)}{72}\right)$$
$$= k.$$

• For the third condition,

$$(x_1, \ldots, x_n)$$
 outside of C means that
 $x_1 + \ldots + x_n < 839.52.$

So we have

$$\frac{L(50)}{L(55)} = \exp\left(\frac{-10(x_1 + \ldots + x_n) + (16)(525)}{72}\right)$$

> $\exp\left(\frac{-10(839.52) + (16)(525)}{72}\right)$
= k .

Hence we conclude that C is indeed the best critical region of size 0.05.

7 Example: Chocolate, Level 3

Let X be a normal RV with unknown mean μ and variance 36. We have n random sample $X_1, \ldots X_n$ for X.

- The null hypothesis is $\mu = \mu_0$;
- The alternative hypothesis $\mu = \mu_1$.

Assume that $\mu_0 < \mu_1$. Find a best critical region C of size α .

8 Answer: Chocolate, Level 3

Recall the maximum likelihood function:

$$L(\mu) = = (72\pi)^{-n/2} \exp\left(-\frac{1}{72} \sum_{i=1}^{n} (x_i - \mu)^2\right).$$

We can then compute the ratio $\frac{L(\mu_0)}{L(\mu_1)}$ by (BT)

$$\frac{L(\mu_0)}{L(\mu_1)} = \frac{(72\pi)^{-n/2} \exp\left(-\frac{1}{72} \sum_{i=1}^n (x_i - \mu_0)^2\right)}{(72\pi)^{-n/2} \exp\left(-\frac{1}{72} \sum_{i=1}^n (x_i - \mu_1)^2\right)} \\
= \exp\left(\frac{-1}{72} \sum_{i=1}^n \left[-2x_i(\mu_0 - \mu_1) + (\mu_0^2 - \mu_1^2)\right]\right) \\
= \exp\left(\frac{2(\mu_0 - \mu_1)(\sum_{i=1}^n x_i) - n(\mu_0^2 - \mu_1^2)}{72}\right) \\
= \exp\left(\frac{2n(\mu_0 - \mu_1)\overline{x} - n(\mu_0^2 - \mu_1^2)}{72}\right).$$

For C to be a best critical region, we need to find k so that

• (2nd cond.) For all (x_1, \ldots, x_n) in C, we need (BT)

$$\begin{aligned} \frac{L(\mu_0)}{L(\mu_1)} &\leq k\\ \exp\left(\frac{2n(\mu_0 - \mu_1)\,\overline{\mathbf{x}} - n(\mu_0^2 - \mu_1^2)}{72}\right) &\leq k\\ \frac{2n(\mu_0 - \mu_1)\,\overline{\mathbf{x}} - n(\mu_0^2 - \mu_1^2)}{72} &\leq \log k. \end{aligned}$$

Continuing the calculation,

$$2n(\mu_0 - \mu_1)\overline{x} \leq 72\log k + n(\mu_0^2 - \mu_1^2)$$

$$\overline{x} \geq \frac{72\log k + n(\mu_0^2 - \mu_1^2)}{2n(\mu_0 - \mu_1)}$$

$$\overline{x} \geq \frac{72\log k}{2n(\mu_0 - \mu_1)} + \frac{\mu_0 + \mu_1}{2}.$$

• (3rd cond.) For all (x_1, \ldots, x_n) outside of C, we need (ST)

$$\begin{aligned} \frac{L(\mu_0)}{L(\mu_1)} &\geq k \\ \exp\left(\frac{2n(\mu_0-\mu_1)\,\overline{\mathbf{x}}-n(\mu_0^2-\mu_1^2)}{72}\right) &\geq k. \end{aligned}$$

$$\frac{2n(\mu_0 - \mu_1)\overline{x} - n(\mu_0^2 - \mu_1^2)}{72} \ge \log k$$

$$2n(\mu_0 - \mu_1)\overline{x} \ge 72\log k + n(\mu_0^2 - \mu_1^2)$$

$$\overline{x} \le \frac{72\log k + n(\mu_0^2 - \mu_1^2)}{2n(\mu_0 - \mu_1)}$$

$$\overline{x} \le \frac{72\log k}{2n(\mu_0 - \mu_1)} + \frac{\mu_0 + \mu_1}{2}$$

Remark 3. A shorter way to do this: "By the same argument as before, we conclude that ...".

So we conclude

• For (x_1, \ldots, x_n) in C, we need

$$\overline{\mathbf{x}} \geq \frac{72\log k}{2n(\mu_0 - \mu_1)} + \frac{\mu_0 + \mu_1}{2}.$$

• For (x_1, \ldots, x_n) outside of C, we need

$$\overline{\mathbf{x}} \leq \frac{72\log k}{2n(\mu_0 - \mu_1)} + \frac{\mu_0 + \mu_1}{2}.$$

Thus the best critical region C is of the form (write this down)

$$C = \left\{ (X_1, \dots, X_n) \mid \overline{\mathbf{X}} \ge \frac{72 \log k}{2n(\mu_0 - \mu_1)} + \frac{\mu_0 + \mu_1}{2} \right\},\$$

where k is to be determined.

We can determine k with the 1st cond.,

$$P[(X_1, \dots, X_n) \in C; \mu = \mu_0] = \alpha$$
$$P\left[\overline{X} \ge \frac{72 \log k}{2n(\mu_0 - \mu_1)} + \frac{\mu_0 + \mu_1}{2}; \mu = \mu_0\right] = \alpha.$$

We write the term in the probability above as

Scary :=
$$\frac{72 \log k}{2n(\mu_0 - \mu_1)} + \frac{\mu_0 + \mu_1}{2}$$

Since \overline{X} is normal RV with mean μ_0 and variance $\frac{\sigma^2}{n} = \frac{36}{n}$, (write this down)

$$P[(X_1, \dots, X_n) \in C; \mu = \mu_0] = \alpha$$

$$P\left[\overline{X} \ge \text{Scary}; \mu = \mu_0\right] = \alpha$$

$$1 - \Phi\left(\frac{\text{Scary} - \mu_0}{6/\sqrt{n}}\right) = \alpha$$

$$\frac{\text{Scary} - \mu_0}{6/\sqrt{n}} = \Phi^{-1}(1 - \alpha)$$

$$\text{Scary} - \mu_0 = \left(\frac{6}{\sqrt{n}}\right)\Phi^{-1}(1 - \alpha)$$

$$\text{Scary} = \mu_0 + \left(\frac{6}{\sqrt{n}}\right)\Phi^{-1}(1 - \alpha).$$

Substituting the last equation into the formula for critical region, we get

$$C = \left\{ (X_1, \dots, X_n) \mid \overline{X} \ge \mu_0 + (\frac{6}{\sqrt{n}}) \Phi^{-1}(1 - \alpha) \right\},\$$

which is our answer. (Write this down.)

9 Re-example: Chocolate, Level 2

Let X be a normal random variable with unknown mean μ and variance 36. We have n = 16 random sample X_1, \ldots, X_n for X.

- The null hypothesis is $\mu = 50$;
- The alternative hypothesis $\mu = 55$.

Find a best critical region C of size 0.05.

10 Re-answer: Chocolate, Level 2

Here we have

n = 16; $\mu_0 = 50;$ $\alpha = 0.05.$

So we have

$$\mu_0 + \left(\frac{6}{\sqrt{n}}\right) \Phi^{-1}(1-\alpha) = (50) + \left(\frac{6}{\sqrt{16}}\right) \Phi^{-1}(1-0.05)$$

\$\approx 52.47\$,

and therefore the critical region is

$$C = \{ (X_1, \dots, X_n) \mid \overline{\mathbf{X}} \ge 52.47 \},\$$

which is equivalent to the critical region from Level 2.

11 Example: Chocolate, Level 4

Let X be a normal random variable with unknown mean μ and variance 36. We have n random sample $X_1, \ldots X_n$.

- The null hypothesis is $\mu = 50;$
- The alternative hypothesis $\mu > 50$.

Find a best critical region C of size 0.05.

12 Answer: Chocolate, Level 4

The key observation here is that the best critical region C from Level 3

$$C = \left\{ (X_1, \dots, X_n) \mid \overline{X} \ge \mu_0 + (\frac{6}{\sqrt{n}}) \Phi^{-1}(1 - \alpha) \right\},\$$

does not depend on the mean μ_1 from the alternative hypothesis. We can therefore use C for the best critical region for all $\mu > 50$.

By the same calculation as in Level 2, we conclude that

$$C = \{ (X_1, \dots, X_n) \mid \overline{X} \ge 52.47 \}.$$

Remark 4. Recall the definition of sufficient statistics $u := u(x_1, \ldots, x_n)$ from Section 6. If a sufficient statistics u exists, then the ratio $\frac{L(\theta_0)}{L(\theta_1)}$ is

$$\frac{L(\theta_0)}{L(\theta_1)} = \frac{\phi(u,\theta_0)h(x_1,\ldots,x_n)}{\phi(u,\theta_1)h(x_1,\ldots,x_n)} = \frac{\phi(u,\theta_0)}{\phi(u,\theta_1)}$$

By the Neyman-Pearson lemma, this means that the best critical region are usually based on the sufficient statistics when they exist, e.g.,

$$C = \{ (x_1, \dots, x_n) \mid u(x_1, \dots, x_n) \ge 42 \}, \text{ or}$$
$$C = \{ (x_1, \dots, x_n) \mid |u(x_1, \dots, x_n) - 2| \ge 67 \}.$$