Math 170S Lecture Notes Section $8.6{ }^{* \dagger}$ Power function

Instructor: Swee Hong Chan

NOTE: Materials that appear in the textbook but do not appear in the lecture notes might still be tested.

Please send me an email if you find typos.
*Version date: Tuesday $24^{\text {th }}$ November, 2020, 21:26.
${ }^{\dagger}$ This notes is based on Hanbaek Lyu's and Liza Rebrova's notes from the previous quarter, and I would like to thank them for their generosity. "Nanos gigantum humeris insidentes (I am but a dwarf standing on the shoulders of giants)".

1 Example: Type I and type II error (recap)

A detective is investigating if the friendly instructor likes cheesy romance movies. Let X be the hatred indicator for a random romance movie.

- X is equal to 0 if the friendly instructor likes the romance movie;
- X is equal to 1 if the friendly instructor hates the romance movie.

The expert team told you that X is Bernoulli RV with parameter p

- If the friendly instructor is innocent (the null hypothesis H_{0}), then $p=1 / 2$.
- If the friendly instructor is guilty (the alternative hypothesis H_{1}), then $p=1 / 4$.

You then hacked into the friendly instructor's Netflix account and get the sample values X_{1}, \ldots, X_{20} for X from 20 romance movies he watched.

- If $\overline{\mathrm{X}} \leq 0.3$, then the friendly instructor is guilty and he will be roasted by the whole class for his interest;
- If $\overline{\mathrm{X}}>0.3$, then no actions will be taken against the friendly instructor.

We are interested in two questions:

- What is the probability that you make a false accusation against the friendly instructor? (i.e., reject H_{0} when H_{0} is true).
- What is the probability that the friendly instructor gets away scot-free from his crime? (i.e., do not reject H_{0} when H_{0} is false).

2 Definition: Type I and Type II error (recap)

Type I error, denoted by α, is the probability of rejecting H_{0} when H_{0} is true, sometimes also called statistical significance.

Type II error, denoted by β, is the probability of not rejecting H_{0} when H_{0} is false.

It is usually thought that Type I error is more important, as we do not want to falsely accuse people of a crime. However, in this section we will care about both Type I and Type II error.

3 Answer: Type I and type II error (recap)

We first compute α. Let Y be the random variable

$$
Y:=X_{1}+X_{2}+\ldots+X_{20}=n \overline{\mathrm{X}}
$$

Note that

- We reject H_{0} if $Y \leq 20(0.3)=6$, and we do not reject H_{0} if $Y>6$.
- Y is the binomial random variable with parameter p and $n=20$.

We can then compute the Type I error α by

$$
\begin{aligned}
\alpha & =P\left[\text { Reject } H_{0} \mid H_{0} \text { is true }\right]=P\left[Y \leq 6 \left\lvert\, p=\frac{1}{2}\right.\right] \\
& =\sum_{y=0}^{6}\binom{20}{y}\left(\frac{1}{2}\right)^{y}\left(\frac{1}{2}\right)^{20-y}=0.0577 .
\end{aligned}
$$

We now compute the type II error β by

$$
\begin{aligned}
\beta & =P\left[\text { Not rejecting } H_{0} \mid H_{0} \text { is false }\right] \\
& =1-P\left[\text { rejecting } H_{0} \mid H_{0} \text { is false }\right] \\
& =1-P\left[Y \leq 6 \left\lvert\, p=\frac{1}{4}\right.\right] \\
& =1-\sum_{y=0}^{6}\binom{20}{y}\left(\frac{1}{4}\right)^{y}\left(\frac{3}{4}\right)^{20-y}=0.2142 .
\end{aligned}
$$

4 Example: Type I and Type

II error, composite alternative hypothesis

Consider the Netflix example, but with the alternative hypothesis changed,

- The null hypothesis H_{0} : X is a Bernoulli random variable with $p=1 / 2$.
- The alternative hypothesis $H_{1}: \quad X$ is a Bernoulli random variable with $\mathrm{p}<\mathbf{1 / 2}$.

Compute the type I error α and type II error β.

5 Answer: Type I and Type II

 error, composite alternative
hypothesis

Type I error α is the same as before.

$$
\begin{aligned}
\alpha & =P\left[\text { Reject } H_{0} \mid H_{0} \text { is true }\right]=P\left[Y \leq 6 \left\lvert\, p=\frac{1}{2}\right.\right] \\
& =\sum_{y=0}^{6}\binom{20}{y}\left(\frac{1}{2}\right)^{y}\left(\frac{1}{2}\right)^{20-y}=0.0577 .
\end{aligned}
$$

However, β now depends on the unknown parameter p :

$$
\begin{aligned}
\beta & =1-P\left[\text { rejecting } H_{0} \mid H_{0} \text { is false }\right] \\
& =1-P[Y \leq 6 \text { given the unknown } p] \\
& =1-\sum_{y=0}^{6}\binom{20}{y}(p)^{y}(1-p)^{20-y},
\end{aligned}
$$

which is a function of p.

6 Definition: power function

Let X be a random variable with unknown parameter μ.

- Null hypothesis $H_{0}: \mu=\mu_{0}$;
- Alternative hypothesis H_{1}.

Definition 1. The power function $K(\mu)$ is
$K(\mu):=P\left[\right.$ rejecting H_{0} given the unknown $\left.\mu\right]$.
$K(\mu)$ depends on the rule of rejecting H_{0}.

Remark 2. Some other textbooks define the power function as

$$
K(\mu):=1-P\left[\text { rejecting } H_{0} \text { given the unknown } \mu\right] .
$$

We will follow the definition in our textbook and uses the formula in Definition 1.

7 Theorem: power function

Theorem 3. The type I error α and the type II error β are given by

$$
\alpha=K\left(\mu_{0}\right) ; \quad \beta=1-K(\mu) .
$$

> The power function can be used to both determine β and to determine the critical region.

8 Example: power function

Let X be a chi-square random variable with unknown r degrees of freedom. Suppose that:

- The null hypothesis H_{0} is $r=r_{0}=1$;
- The alternative hypothesis H_{1} is $r>1$.

Let $X_{1}, X_{2}, X_{3}, X_{4}$ be 4 random samples for X.

1. Compute the critical region for the sample mean $\overline{\mathrm{X}}$ with significance level 0.025 .
2. Compute the type II error β given that $r=5$.

9 Answer: chi-square random variable

We are in case (a), so the critical region is of the form

$$
\left[r_{0}+c, \infty\right)=[1+c, \infty)
$$

for some error c that we want to compute. We now compute the power function $K(r)$,

$$
\begin{aligned}
K(r) & =P\left[\text { rejecting } H_{0} \text { given the unknown } r\right] \\
& =P[\overline{\mathrm{X}} \geq 1+c \quad \text { given } r] \\
& =P\left[X_{1}+X_{2}+X_{3}+X_{4} \geq 4(1+c) \quad \text { given } r\right]
\end{aligned}
$$

Now note that $X_{1}+X_{2}+X_{3}+X_{4}$ is a chi-square random variable with $4 r$ degrees of freedom, so

$$
K(r)=P\left[\chi^{2}(4 r) \geq 4(1+c)\right] .
$$

We can compute $K(r)$ using Table IV in textbook Appendix B. For the type I error α,

$$
\alpha=K\left(r_{0}\right)=P\left[\chi^{2}(4) \geq 4(1+c)\right] .
$$

To get significance level 0.025 , we need $\alpha=0.025$, so

$$
P\left[\chi^{2}(4) \geq 4(1+c)\right]=0.025
$$

By the power of Table IV, we have $4(1+c)=11.14$, so $c=1.785$, and the critical region is

$$
[2.785, \infty)
$$

We now compute the type II error β when $r=5$. We have

$$
\beta=1-K(5)=1-P\left[\chi^{2}(20) \geq 11.14\right] \approx 1-0.943=0.057
$$

as desired.

10 Example: normal RV

Let X be a normal random variable with unknown mean μ and variance 100. Suppose that:

- The null hypothesis H_{0} is $\mu=\mu_{0}=60$;
- The alternative hypothesis H_{1} is $\mu>60$.

Find the number of samples n so that

1. The type I error α is equal to 0.025 ; and
2. The type II error β, given that $\mu=65$, is equal to 0.05 .

11 Answer: normal RV

We are in case (a), so the critical region is of the form

$$
\left[\mu_{0}+c, \infty\right)=[60+c, \infty)
$$

for some error c that we want to compute. We now compute the power function $K(\mu)$,

$$
\begin{aligned}
K(\mu) & =P\left[\text { rejecting } H_{0} \text { given the unknown } \mu\right] \\
& =P[\overline{\mathrm{X}} \geq 60+c \quad \text { given the unknown } \mu] .
\end{aligned}
$$

Since \bar{X} is a normal $R V$ with mean μ and variance $\frac{100}{n}$, so

$$
K(\mu)=1-\Phi\left(\frac{60+c-\mu}{10 / \sqrt{n}}\right)
$$

where Φ is the cdf of the standard normal RV.

We now compute the type I error by using the power function. We have

$$
\alpha=K(60)=1-\Phi\left(\frac{c}{10 / \sqrt{n}}\right) .
$$

We now compute the type II error β when $\mu=65$. We have

$$
\beta=1-K(65)=\Phi\left(\frac{c-5}{10 / \sqrt{n}}\right) .
$$

Plugging $\alpha=0.025$ and $\beta=0.05$ from the question,
$1-\Phi\left(\frac{c}{10 / \sqrt{n}}\right)=0.025 \quad$ and $\quad \Phi\left(\frac{c-5}{10 / \sqrt{n}}\right)=0.05$.

By the power of the magical table, we then have

$$
\begin{aligned}
& \frac{c}{10 / \sqrt{n}}=\Phi^{-1}(1-0.025)=1.96 \\
& \frac{c-5}{10 / \sqrt{n}}=\Phi^{-1}(0.05)=-1.645
\end{aligned}
$$

Solving these inequalities simultaneously, we obtain

$$
\begin{aligned}
1.96-\frac{5}{10 / \sqrt{n}} & =-1.645 \\
\frac{10}{\sqrt{n}} & =\frac{5}{3.605} \\
n & \approx 51.98
\end{aligned}
$$

so we will take $n=52$ as our answer.

12 Example: Bernoulli RV

Let X be a Bernoulli random variable with un-
known parameter p.

- The null hypothesis H_{0} is $p=p_{0}=\frac{1}{2}$;
- The alternative hypothesis H_{1} is $p<\frac{1}{2}$.

We have $n=31$ samples.

- Reject the null hypothesis H_{0} if $X_{1}+\ldots+X_{31} \leq 11$;
- Test is inconclusive if $X_{1}+\ldots+X_{31}>11$.

Approximate the type II error β if $p=\frac{1}{4}$.

13 Answer: Bernoulli RV

The power function $K(p)$ is given by

$$
K(p)=P\left[X_{1}+\ldots+X_{31} \leq 11 \text { given unknown } p\right]
$$

Let Y be the random variable $X_{1}+\ldots+X_{31}$. We approximate Y by the normal RV with mean and variance

$$
E[Y]=n p ; \quad \operatorname{Var}[Y]=n p(1-p)
$$

so we have

$$
\begin{aligned}
K(p) & =P[Y \leq 11 \text { given unknown } p] \\
& =\Phi\left(\frac{11+0.5-n p}{\sqrt{n p(1-p)}}\right) .
\end{aligned}
$$

Plugging $n=31$ and $p=\frac{1}{4}$, we have

$$
K\left(\frac{1}{4}\right)=\Phi\left(\frac{11+0.5-(31)\left(\frac{1}{4}\right)}{\sqrt{(31)\left(\frac{3}{4}\right)\left(\frac{1}{4}\right)}}\right)=\Phi(1.28)=0.8997
$$

so the Type II error is

$$
\beta=1-K\left(\frac{1}{4}\right)=0.1003
$$

as desired.

