Math 170S Lecture Notes Section 8.5 *[†] Tests about median

Instructor: Swee Hong Chan

NOTE: Materials that appear in the textbook but do not appear in the lecture notes might still be tested. Please send me an email if you find typos.

^{*}Version date: Sunday 22nd November, 2020, 14:53.

[†]This notes is based on Hanback Lyu's and Liza Rebrova's notes from the previous quarter, and I would like to thank them for their generosity. "*Nanos gigantum humeris insidentes* (I am but a dwarf standing on the shoulders of giants)".

1 Example: median, one variable

The friendly instructor's sister has been very worried that her dog is gaining weight from its couch-potato lifestyle. The following is n = 10 samples values for the weight X of her dog (ordered from smallest to largest):

 $2.0 \quad 2.6 \quad 2.8 \quad 3.9 \quad 4.3 \quad 5.0 \quad 5.0 \quad 5.8 \quad 6.1 \quad 6.4.$

Before this change of lifestyle, the **median** of the dog's weight is 3.7.

Assume that X is a **continuous symmetric** RV.

Can we conclude that the dog has been gaining weight with significance level $\alpha = 0.05$?

2 Setting: median, one variable

Object: X is an **continuous symmetric** random variables with **unknown median** m.

Hypotheses:

- Null Hypothesis H₀: The median m is equal to m₀.
- Alternative Hypothesis *H*₁: One of these three forms:
 - (a) m is strictly greater than m_0 ;
 - (b) m is strictly smaller than m_0 ;
 - (c) m is **not equal to** m_0 .

Input: Random samples x_1, \ldots, x_n for X and significance level α .

Methodology:

- Compute the Wilcoxon's signed rank statistic W;
- Compute the critical region that depends on α ; and
- Compute the p-value that depends on W.

Output:

- Reject the null hypothesis if W is contained in the critical region. Equivalently, reject the null hypothesis if the p-value is smaller than α.
- Do not reject the null hypothesis (i.e., test is inconclusive) otherwise.

3 Answer: median, one variable

We have $m_0 = 3.7$. The Wilcoxon signed rank statistics is computed as follows:

1. Compute the difference $x_i - m_0$:

 x_i : 2.0 2.6 2.8 3.9 4.3 5.0 5.0 5.8 6.1 6.4 $x_i - m_0$: -1.7 -1.1 -0.9 0.2 0.6 1.3 1.3 2.1 2.4 2.7.

2. Take the absolute value $|x_i - m_0|$:

x_i :	2.0	2.6	2.8	3.9	4.3	5.0	5.0	5.8	6.1	6.4
$x_i - m_0$:	-1.7	-1.1	-0.9	0.2	0.6	1.3	1.3	2.1	2.4	2.7
$ x_i - m_0 $:	1.7	1.1	0.9	0.2	0.6	1.3	1.3	2.1	2.4	2.7.

3. Rank the samples from smallest to largest based on the value of $|x_i - m_0|$:

x_i :	2.0	2.6	2.8	3.9	4.3	5.0	5.0	5.8	6.1	6.4
$x_i - m_0$:	-1.7	-1.1	-0.9	0.2	0.6	1.3	1.3	2.1	2.4	2.7
$ x_i - m_0 $:	1.7	1.1	0.9	0.2	0.6	1.3	1.3	2.1	2.4	2.7
Ranks:	7	4	3	1	2	5.5	5.5	8	9	10.

4. Put plus to the ranks if $x_i - m_0$ is positive, and put

minus to the ranks if $x_i - m_0$ is negative:

x_i :	2.0	2.6	2.8	3.9	4.3	5.0	5.0	5.8	6.1	6.4
$x_i - m_0$:	-1.7	-1.1	-0.9	0.2	0.6	1.3	1.3	2.1	2.4	2.7
$ x_i - m_0 $:	1.7	1.1	0.9	0.2	0.6	1.3	1.3	2.1	2.4	2.7
Signed ranks:	-7	-4	-3	1	2	5.5	5.5	8	9	10.

5. Take the sum of the signed ranks of the samples.

This is the Wilcoxon signed rank statistic:

W = (-7) + (-4) + (-3) + (1) + (2) + (5.5) + (5.5) + (8) + (9) + (10) = 27.

On the other hand, W is known to have expectation and variance

$$E[W] = 0;$$
 $Var[W] = \frac{n(n+1)(2n+1)}{6}.$

In our case, this is

$$E[W] = 0;$$
 $Var[W] = \frac{(10)(11)(21)}{6} = 385.$

We now approximate W by normal random variable,

 $W \sim N(0, 385).$

We now compute the p-value of this test. The alternative hypothesis is that the dog is **gaining weight**. So

p-value = probability that W is greater than or equal to 27.

Since $W \sim N(0, 385)$ and the sample value for W is 27,

$$p\text{-value} = P[W \ge 27] = 1 - \Phi\left(\frac{27 - E[W]}{\sqrt{\operatorname{Var}[W]}}\right)$$
$$= 1 - \Phi\left(\frac{27 - 0}{\sqrt{385}}\right) = 1 - \Phi(1.38)$$
$$= 1 - (0.9162) = 0.0838.$$

This *p*-value is not smaller than $\alpha = 0.05$, so this test is inconclusive.

4 Wilcoxon's signed rank statistic

Definition 1. Wilcoxon's signed rank statistic is

$$W := \sum_{i=1}^{n} \operatorname{sign}(x_i - m_0) \operatorname{Rank}(|x_i - m_0|),$$

where

- $\operatorname{sign}(x_i m_0)$ is equal to +1 if $x_i m_0$ is nonnegative, and is equal to -1 if $x_i - m_0$ is negative.
- Rank(|x_i m₀|) is the rank of |x_i m₀| among the n samples, with 1 being the smallest rank and n being the largest rank. Ties receive a rank equal to the average of the ranks they span.

5 Theorem: median, one variable

Theorem 2. (a) For the case $m > m_0$,

critical region =
$$\left[z_{\alpha}\sqrt{\frac{n(n+1)(2n+1)}{6}}, \infty\right),$$

 p -value = $1 - \Phi\left(\frac{W}{\sqrt{n(n+1)(2n+1)/6}}\right)$

(b) For the case $m < m_0$,

critical region =
$$\left(-\infty, -z_{\alpha}\sqrt{\frac{n(n+1)(2n+1)}{6}}\right)$$
,
 p -value = $\Phi\left(\frac{W}{\sqrt{n(n+1)(2n+1)/6}}\right)$.

(c) For the case $m \neq m_0$, we have

critical region =
$$\left(-\infty, -z_{\alpha/2}\sqrt{\frac{n(n+1)(2n+1)}{6}}\right] \cup \left[\frac{z_{\alpha/2}\sqrt{\frac{n(n+1)(2n+1)}{6}}, \infty}{}\right],$$

 $p\text{-value} = 2\left[1 - \Phi\left(\frac{|W|}{\sqrt{n(n+1)(2n+1)/6}}\right)\right].$

6 Setting: median, two variables

Object: Here X and Y are **independent continuous symmetric** random variables for which the cdf F_X and F_Y satisfies $F_X(x) = F_Y(x + c)$.

Hypotheses:

- Null Hypothesis H_0 : The median m_X for X is equal to the median m_Y for Y.
- Alternative Hypothesis H_1 : The alternative hypothesis can take one of these three forms:

(a) m_X is strictly greater than m_Y ;

(b) m_X is strictly smaller than m_Y ;

(c) m_X is **not equal to** m_Y .

Input: Random samples x_1, \ldots, x_n for X and y_1, \ldots, y_m for Y and significance level α . Note that n can be different from m.

Methodology:

- Compute the Wilcoxon's rank sum statistic
 W';
- Compute the critical region that depends on α ; or
- Compute the *p*-value that depends on W'.

Output:

- Reject the null hypothesis if W' is contained in the critical region. Equivalently, reject the null hypothesis if the p-value is smaller than α.
- Do not reject the null hypothesis (i.e., test is inconclusive) otherwise.

7 Wilcoxon's rank sum statistic

Definition 3. Wilcoxon's rank sum statistic is

$$W' := \sum_{i=1}^{n} \operatorname{Rank}(x_i),$$

where

Rank(x_i) ∈ {1,...,n+m} is the rank of x_i among the n + m joint samples of X and Y, with 1 being the smallest rank and n+m being the largest rank. Ties receive a rank equal to the average of the ranks they span.

8 Theorem: median, two variables

Theorem 4. (a) For the case $m_X > m_Y$,

critical region =
$$\left[\frac{n(n+m+1)}{2} + z_{\alpha}\sqrt{\frac{nm(n+m+1)}{12}}, \infty\right),$$

 $p\text{-value} = 1 - \Phi\left(\frac{W' - \frac{n(n+m+1)}{2}}{\sqrt{\frac{nm(n+m+1)}{12}}}\right).$

(b) For the case
$$m_X < m_Y$$
,

critical region =
$$\left(-\infty, \frac{n(n+m+1)}{2} - z_{\alpha}\sqrt{\frac{nm(n+m+1)}{12}}\right]$$
,
 $p\text{-value} = \Phi\left(\frac{W' - \frac{n(n+m+1)}{2}}{\sqrt{\frac{nm(n+m+1)}{12}}}\right)$.

(c) For the case $m_X \neq m_Y$, we have

$$\begin{array}{l} \mbox{critical region} \ = \left(-\infty \ , \ \frac{n(n+m+1)}{2} - z_{\alpha/2} \sqrt{\frac{nm(n+m+1)}{12}} \right] \cup \\ & \left[\frac{n(n+m+1)}{2} + z_{\alpha/2} \sqrt{\frac{nm(n+m+1)}{12}} \ , \ \infty \right), \\ p\mbox{-value} \ = 2 \left[1 - \Phi \left(\frac{|W' - \frac{n(n+m+1)}{2}|}{\sqrt{\frac{nm(n+m+1)}{12}}} \right) \right]. \end{array}$$

9 Example: median, two variables

The weights of the contents of n = 8 and m = 8 tins of cinnamons packaged by Friendly Instructor Company and Evil Tyrant Company, respectively, is as follows:

115.1 117.1 119.5 121.3 122.1 124.5127.8 x_i : 117.4 117.2 122.1 123.5 125.3 125.6 126.5127.9 129.8. y_i : Can we reject the hypothesis that the weight of two (random) tins of cinnamons have the same median with significance level $\alpha = 0.05$?

10 Answer: median, two variables

Let's compute the joint rank of the samples:

x_i :	115.1	117.1	117.4	119.5	121.3	122.1	124.5	127.8
Ranks :	1	2	4	5	6	7.5	10	14
y_i :	117.2	122.1	123.5	125.3	125.6	126.5	127.9	129.8
Ranks :	3	7.5	9	11	12	13	15	16.

Therefore W' is equal to

W' = 1 + 2 + 4 + 5 + 6 + 7.5 + 10 + 14 = 49.5.

This is case (c), so we have

$$z_{\alpha/2}\sqrt{\frac{nm(n+m+1)}{12}} = (1.960)\sqrt{\frac{(8)(8)(8+8+1)}{12}} = 18.663.$$

So the critical region is

$$\left(-\infty, 49.337\right] \cup \left[86.663, \infty\right).$$

Since 49.5 is not contained in the critical region, the test is inconclusive.