Math 170S Lecture Notes Section $8.5{ }^{* \dagger}$ Tests about median

Instructor: Swee Hong Chan

NOTE: Materials that appear in the textbook but do not appear in the lecture notes might still be tested.

Please send me an email if you find typos.
*Version date: Sunday $22^{\text {nd }}$ November, 2020, 14:53.
${ }^{\dagger}$ This notes is based on Hanbaek Lyu's and Liza Rebrova's notes from the previous quarter, and I would like to thank them for their generosity. "Nanos gigantum humeris insidentes (I am but a dwarf standing on the shoulders of giants)".

1 Example: median, one variable

The friendly instructor's sister has been very worried that her dog is gaining weight from its couch-potato lifestyle. The following is $n=10$ samples values for the weight X of her dog (ordered from smallest to largest):

$$
\begin{array}{cccccccccc}
2.0 & 2.6 & 2.8 & 3.9 & 4.3 & 5.0 & 5.0 & 5.8 & 6.1 & 6.4 .
\end{array}
$$

Before this change of lifestyle, the median of the dog's weight is 3.7 .

Assume that X is a continuous symmetric RV.
Can we conclude that the dog has been gaining weight with significance level $\alpha=0.05$?

2 Setting: median, one variable

Object: X is an continuous symmetric random variables with unknown median m.

Hypotheses:

- Null Hypothesis H_{0} : The median m is equal to m_{0}.
- Alternative Hypothesis H_{1} : One of these three forms:
(a) m is strictly greater than m_{0};
(b) m is strictly smaller than m_{0};
(c) m is not equal to m_{0}.

Input: Random samples x_{1}, \ldots, x_{n} for X and significance level α.

Methodology:

- Compute the Wilcoxon's signed rank statistic W;
- Compute the critical region that depends on α; and
- Compute the p-value that depends on W.

Output:

- Reject the null hypothesis if W is contained in the critical region. Equivalently, reject the null hypothesis if the p-value is smaller than α.
- Do not reject the null hypothesis (i.e., test is inconclusive) otherwise.

3 Answer: median, one variable

We have $m_{0}=3.7$. The Wilcoxon signed rank statistics is computed as follows:

1. Compute the difference $x_{i}-m_{0}$:

$x_{i}:$	2.0	2.6	2.8	3.9	4.3	5.0	5.0	5.8	6.1	6.4
$x_{i}-m_{0}:$	-1.7	-1.1	-0.9	0.2	0.6	1.3	1.3	2.1	2.4	2.7.

2. Take the absolute value $\left|x_{i}-m_{0}\right|$:

$x_{i}:$	2.0	2.6	2.8	3.9	4.3	5.0	5.0	5.8	6.1	6.4
$x_{i}-m_{0}:$	-1.7	-1.1	-0.9	0.2	0.6	1.3	1.3	2.1	2.4	2.7
$\left\|x_{i}-m_{0}\right\|:$	1.7	1.1	0.9	0.2	0.6	1.3	1.3	2.1	2.4	2.7.

3. Rank the samples from smallest to largest based on the value of $\left|x_{i}-m_{0}\right|$:

$x_{i}:$	2.0	2.6	2.8	3.9	4.3	5.0	5.0	5.8	6.1	6.4
$x_{i}-m_{0}:$	-1.7	-1.1	-0.9	0.2	0.6	1.3	1.3	2.1	2.4	2.7
$\left\|x_{i}-m_{0}\right\|:$	1.7	1.1	0.9	0.2	0.6	1.3	1.3	2.1	2.4	2.7
Ranks:	7	4	3	1	2	5.5	5.5	8	9	10.

4. Put plus to the ranks if $x_{i}-m_{0}$ is positive, and put minus to the ranks if $x_{i}-m_{0}$ is negative:

$x_{i}:$	2.0	2.6	2.8	3.9	4.3	5.0	5.0	5.8	6.1	6.4
$x_{i}-m_{0}:$	-1.7	-1.1	-0.9	0.2	0.6	1.3	1.3	2.1	2.4	2.7
$\left\|x_{i}-m_{0}\right\|:$	1.7	1.1	0.9	0.2	0.6	1.3	1.3	2.1	2.4	2.7
Signed ranks:	-7	-4	-3	1	2	5.5	5.5	8	9	10.

5. Take the sum of the signed ranks of the samples.

This is the Wilcoxon signed rank statistic:

$$
W=(-7)+(-4)+(-3)+(1)+(2)+(5.5)+(5.5)+(8)+(9)+(10)=27
$$

On the other hand, W is known to have expectation and variance

$$
E[W]=0 ; \quad \operatorname{Var}[W]=\frac{n(n+1)(2 n+1)}{6} .
$$

In our case, this is

$$
E[W]=0 ; \quad \operatorname{Var}[W]=\frac{(10)(11)(21)}{6}=385 .
$$

We now approximate W by normal random variable,

$$
W \sim N(0,385)
$$

We now compute the p-value of this test. The alternative hypothesis is that the dog is gaining weight. So

$$
\begin{gathered}
p \text {-value }=\text { probability that } W \text { is greater than or } \\
\text { equal to } 27 .
\end{gathered}
$$

Since $W \sim N(0,385)$ and the sample value for W is 27 ,

$$
\begin{aligned}
p \text {-value } & =P[W \geq 27]=1-\Phi\left(\frac{27-E[W]}{\sqrt{\operatorname{Var}[W]}}\right) \\
& =1-\Phi\left(\frac{27-0}{\sqrt{385}}\right)=1-\Phi(1.38) \\
& =1-(0.9162)=0.0838
\end{aligned}
$$

This p-value is not smaller than $\alpha=0.05$, so this test is inconclusive.

4 Wilcoxon's signed rank statis-

tic

Definition 1. Wilcoxon's signed rank statistic is

$$
W:=\sum_{i=1}^{n} \operatorname{sign}\left(x_{i}-m_{0}\right) \operatorname{Rank}\left(\left|x_{i}-m_{0}\right|\right),
$$

where

- $\operatorname{sign}\left(x_{i}-m_{0}\right)$ is equal to +1 if $x_{i}-m_{0}$ is nonnegative, and is equal to -1 if $x_{i}-m_{0}$ is negative.
- $\operatorname{Rank}\left(\left|x_{i}-m_{0}\right|\right)$ is the rank of $\left|x_{i}-m_{0}\right|$ among the n samples, with 1 being the smallest rank and n being the largest rank. Ties receive a rank equal to the average of the ranks they span.

5 Theorem: median, one variable

Theorem 2. (a) For the case $m>m_{0}$,

$$
\begin{aligned}
\text { critical region } & =\left[z_{\alpha} \sqrt{\frac{n(n+1)(2 n+1)}{6}}, \infty\right), \\
p \text {-value } & =1-\Phi\left(\frac{W}{\sqrt{n(n+1)(2 n+1) / 6}}\right) .
\end{aligned}
$$

(b) For the case $m<m_{0}$,

$$
\begin{aligned}
\text { critical region } & =\left(-\infty,-z_{\alpha} \sqrt{\frac{n(n+1)(2 n+1)}{6}}\right] \\
p-\text { value } & =\Phi\left(\frac{W}{\sqrt{n(n+1)(2 n+1) / 6}}\right)
\end{aligned}
$$

(c) For the case $m \neq m_{0}$, we have

$$
\begin{aligned}
\text { critical region }= & \left(-\infty,-z_{\alpha / 2} \sqrt{\frac{n(n+1)(2 n+1)}{6}}\right] \\
& {\left[z_{\alpha / 2} \sqrt{\frac{n(n+1)(2 n+1)}{6}}, \infty\right) } \\
p \text {-value }= & 2\left[1-\Phi\left(\frac{|W|}{\sqrt{n(n+1)(2 n+1) / 6}}\right)\right]
\end{aligned}
$$

6 Setting: median, two variables

Object: Here X and Y are independent continuous symmetric random variables for which the $\operatorname{cdf} F_{X}$ and F_{Y} satisfies $F_{X}(x)=F_{Y}(x+c)$.

Hypotheses:

- Null Hypothesis H_{0} : The median m_{X} for X is equal to the median m_{Y} for Y.
- Alternative Hypothesis H_{1} : The alternative hypothesis can take one of these three forms:
(a) m_{X} is strictly greater than m_{Y};
(b) m_{X} is strictly smaller than m_{Y};
(c) m_{X} is not equal to m_{Y}.

Input: Random samples x_{1}, \ldots, x_{n} for X and y_{1}, \ldots, y_{m} for Y and significance level α. Note that n can be different from m.

Methodology:

- Compute the Wilcoxon's rank sum statistic W^{\prime};
- Compute the critical region that depends on α; or
- Compute the p-value that depends on W^{\prime}.

Output:

- Reject the null hypothesis if W^{\prime} is contained in the critical region. Equivalently, reject the null hypothesis if the p-value is smaller than α.
- Do not reject the null hypothesis (i.e., test is inconclusive) otherwise.

7 Wilcoxon's rank sum statistic

Definition 3. Wilcoxon's rank sum statistic is

$$
W^{\prime}:=\sum_{i=1}^{n} \operatorname{Rank}\left(x_{i}\right)
$$

where

- $\operatorname{Rank}\left(x_{i}\right) \in\{1, \ldots, n+m\}$ is the rank of x_{i} among the $n+m$ joint samples of X and Y, with 1 being the smallest rank and $n+m$ being the largest rank. Ties receive a rank equal to the average of the ranks they span.

8 Theorem: median, two variables

Theorem 4. (a) For the case $m_{X}>m_{Y}$, $\begin{aligned} \text { critical region } & =\left[\frac{n(n+m+1)}{2}+z_{\alpha} \sqrt{\frac{n m(n+m+1)}{12}}, \infty\right), \\ p \text {-value } & =1-\Phi\left(\frac{W^{\prime}-\frac{n(n+m+1)}{2}}{\sqrt{\frac{n m(n+m+1)}{12}}}\right) .\end{aligned}$
(b) For the case $m_{X}<m_{Y}$,
critical region $=\left(-\infty, \frac{n(n+m+1)}{2}-z_{\alpha} \sqrt{\frac{n m(n+m+1)}{12}}\right]$,

$$
p \text {-value }=\Phi\left(\frac{W^{\prime}-\frac{n(n+m+1)}{2}}{\sqrt{\frac{n m(n+m+1)}{12}}}\right) .
$$

(c) For the case $m_{X} \neq m_{Y}$, we have

$$
\begin{aligned}
\text { critical region }= & \left(-\infty, \frac{n(n+m+1)}{2}-z_{\alpha / 2} \sqrt{\frac{n m(n+m+1)}{12}}\right] \cup \\
& {\left[\frac{n(n+m+1)}{2}+z_{\alpha / 2} \sqrt{\frac{n m(n+m+1)}{12}}, \infty\right), } \\
p \text {-value }= & 2\left[1-\Phi\left(\frac{\left|W^{\prime}-\frac{n(n+m+1)}{2}\right|}{\sqrt{\frac{n m(n+m+1)}{12}}}\right)\right] .
\end{aligned}
$$

9 Example: median, two variables

The weights of the contents of $n=8$ and $m=8$ tins of cinnamons packaged by Friendly Instructor Company and Evil Tyrant Company, respectively, is as follows:
$\begin{array}{lllllllll}x_{i}: & 115.1 & 117.1 & 117.4 & 119.5 & 121.3 & 122.1 & 124.5 & 127.8\end{array}$
$\begin{array}{lllllllll}y_{i}: & 117.2 & 122.1 & 123.5 & 125.3 & 125.6 & 126.5 & 127.9 & 129.8 .\end{array}$
Can we reject the hypothesis that the weight of two (random) tins of cinnamons have the same median with significance level $\alpha=0.05$?

10 Answer: median, two variables

Let's compute the joint rank of the samples:

$x_{i}:$	115.1	117.1	117.4	119.5	121.3	122.1	124.5	127.8
Ranks :	1	2	4	5	6	7.5	10	14
$y_{i}:$	117.2	122.1	123.5	125.3	125.6	126.5	127.9	129.8
Ranks:	3	7.5	9	11	12	13	15	16.

Therefore W^{\prime} is equal to

$$
W^{\prime}=1+2+4+5+6+7.5+10+14=49.5
$$

This is case (c), so we have
$z_{\alpha / 2} \sqrt{\frac{n m(n+m+1)}{12}}=(1.960) \sqrt{\frac{(8)(8)(8+8+1)}{12}}=18.663$.

So the critical region is

$$
(-\infty, 49.337] \cup[86.663, \infty)
$$

Since 49.5 is not contained in the critical region, the test is inconclusive.

