Math 170S<br>Lecture Notes Section $8.4^{* \dagger}$<br>Tests about proportions<br>Instructor: Swee Hong Chan

NOTE: Materials that appear in the textbook but do not appear in the lecture notes might still be tested.

Please send me an email if you find typos.

[^0]
# 1 Setting: Bernoulli, one variable 

Object: $Y$ is a Bernoulli random variables with unknown parameter $p$.

Hypotheses:

- Null Hypothesis $H_{0}: p$ is equal to $p_{0}$.
- Alternative Hypothesis $H_{1}$ : The alternative hypothesis can take one of these three forms:
(a) $p$ is strictly greater than $p_{0}$;
(b) $p$ is strictly smaller than $p_{0}$;
(c) $p$ is not equal to $p_{0}$.

Input: Random samples $Y_{1}, \ldots, Y_{n}$ for $Y$ (which are either 0 or 1 ) and significance level $\alpha$.

## Methodology:

- Compute the critical region that depends on $\alpha$ (and potentially $\overline{\mathrm{Y}}$ ); and


## Output:

- Reject the null hypothesis if $\overline{\mathrm{Y}}$ is contained in the critical region.
- Do not reject the null hypothesis (i.e., test is inconclusive) otherwise.


## 2 Theorem: Bernoulli, one variable

Theorem 1. (a) For the case $p>p_{0}$,

$$
\text { critical region }=\left[p_{0}+z_{\alpha} \sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}, \infty\right) .
$$

(b) For the case $p<p_{0}$,
critical region $=\left(-\infty, p_{0}-z_{\alpha} \sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}\right]$.
(c) For the case $p \neq p_{0}$,

$$
\begin{aligned}
\text { critical region }= & \left(-\infty, p_{0}-z_{\alpha / 2} \sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}\right] \\
& {\left[p_{0}+z_{\alpha / 2} \sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}, \infty\right) . }
\end{aligned}
$$

## 3 Example: Bernoulli, one variable

Your instructor suspected that the dice used by a certain magical casino has been tampered with, so that the probability $p$ of rolling a six with these dice is strictly higher than $1 / 6$.

To validate his hypothesis, he played $n=8000$ times, and he saw that six was rolled 1375 times.

Could he reject the hypothesis that the dice is fair with significance level $\alpha=0.05$ ?

## 4 Answer: Bernoulli, one variable

Here we have

- Null Hypothesis: $p$ is equal to $\frac{1}{6}$.
- Alternative Hypothesis: The alternative hypothesis is $p>\frac{1}{6}$.

So we have case ( $a$ ), which gives us

$$
\begin{aligned}
z_{\alpha} \sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}} & =z_{0.05} \sqrt{\frac{(1 / 6)(5 / 6)}{8000}} \\
& =(1.645) \sqrt{\frac{(1 / 6)(5 / 6)}{8000}}=0.007 .
\end{aligned}
$$

So the critical region is

$$
\begin{aligned}
{\left[p_{0}+z_{\alpha} \sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}, \infty\right) } & =\left[\frac{1}{6}+0.007, \infty\right) \\
& =[0.17367, \infty)
\end{aligned}
$$

Since the sample mean $\overline{\mathrm{Y}}=\frac{1375}{8000}=0.171875$ is not contained in the critical region (albeit barely), the test is inconclusive.

Remark 2. Note that the textbook has an alternative formula for the critical region in Theorem 1, where

$$
\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}} \text { is replaced by } \sqrt{\frac{\overline{\mathrm{Y}}(1-\overline{\mathrm{Y}})}{n}}
$$

These two formulas yield approximately the same numerical result in practice.

The pros for lecture version is the critical region can be calculated without knowing the sample mean $\overline{\mathrm{Y}}$ in advance, and is consistent with Table 8.4-1 in the textbook. The cons for lecture version is the formula is slightly inconsistent with the formula in Theorem 4 from Lecture Notes 7.3.

My conclusion is that pros outweighs cons, so we will use the lecture notes formula (unless indicated otherwise).

# 5 Setting: Bernoulli, two variables 

Object: $Y_{1}$ and $Y_{2}$ are independent Bernoulli random variables with unknown parameter $p_{1}$ and $p_{2}$.

## Hypotheses:

- Null Hypothesis $H_{0}: p_{1}$ is equal to $p_{2}$.
- Alternative Hypothesis $H_{1}$ : The alternative hypothesis can take one of these three forms:
(a) $p_{1}$ is strictly greater than $p_{2}$;
(b) $p_{1}$ is strictly smaller than $p_{2}$;
(c) $p_{1}$ is not equal to $p_{2}$.

Input: Significance level $\alpha, n_{1}$ many random samples for $Y_{1}$, and $n_{2}$ many random samples for $Y_{2}$.

## Methodology:

- Compute the critical region that depends on $\alpha$ and the given random samples.


## Output:

- Reject the hypothesis if $\overline{\mathrm{Y}}_{1}-\overline{\mathrm{Y}}_{2}$ is contained in the critical region.
- Do not reject the hypothesis (i.e., test is inconclusive) otherwise.


## 6 Theorem: Bernoulli, two variables

Theorem 3. (a) For the case $p_{1}>p_{2}$, the critical region is

$$
\left[z_{\alpha} \sqrt{\left(\frac{\bar{Y}_{1}+\bar{Y}_{2}}{n_{1}+n_{2}}\right)\left(1-\frac{\overline{\mathrm{Y}}_{1}+\overline{\mathrm{Y}}_{2}}{n_{1}+n_{2}}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}, \infty\right) .
$$

(b) For the case $p_{1}<p_{2}$, the critical region is

$$
\left(-\infty,-z_{\alpha} \sqrt{\left(\frac{\bar{Y}_{1}+\overline{\mathrm{Y}}_{2}}{n_{1}+n_{2}}\right)\left(1-\frac{\overline{\mathrm{Y}}_{1}+\overline{\mathrm{Y}}_{2}}{n_{1}+n_{2}}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}\right]
$$

(c) For the case $p_{1} \neq p_{2}$, the critical region is

$$
\begin{aligned}
& \left(-\infty,-z_{\alpha / 2} \sqrt{\left(\frac{\overline{\mathrm{Y}}_{1}+\overline{\mathrm{Y}}_{2}}{n_{1}+n_{2}}\right)\left(1-\frac{\overline{\mathrm{Y}}_{1}+\overline{\mathrm{Y}}_{2}}{n_{1}+n_{2}}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}\right] \\
& {\left[z_{\alpha / 2} \sqrt{\left(\frac{\overline{\mathrm{Y}}_{1}+\overline{\mathrm{Y}}_{2}}{n_{1}+n_{2}}\right)\left(1-\frac{\overline{\mathrm{Y}}_{1}+\overline{\mathrm{Y}}_{2}}{n_{1}+n_{2}}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}, \infty\right) .}
\end{aligned}
$$

## 7 Example: Bernoulli, two vari-

 ablesThere is a superstition among Dungeons and Dragons players that one needs to "pre-roll" the dice to get bad rolls out of the way.

The friendly instructor performed an experiment with one pre-rolled die and one new die.

- For the pre-rolled die, six was rolled 137 out of 800 observations.
- For the new die, that six was rolled 99 out of 600 observations.

Can he reject that the pre-rolling ritual is a mere superstition with significance level $\alpha=0.05$ ?

## 8 Answer: Bernoulli, two variables

We are in case $(c)$, so we have

$$
\begin{aligned}
& \overline{\mathrm{Y}}_{1}=\frac{137}{800} ; \quad \overline{\mathrm{Y}}_{2}=\frac{99}{600} ; \\
& z_{\alpha / 2} \sqrt{\left(\frac{\overline{\mathrm{Y}}_{1}+\overline{\mathrm{Y}}_{2}}{n_{1}+n_{2}}\right)\left(1-\frac{\overline{\mathrm{Y}}_{1}+\overline{\mathrm{Y}}_{2}}{n_{1}+n_{2}}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)} \\
= & (1.96) \sqrt{\left(\frac{\frac{137}{800}+\frac{99}{600}}{800+600}\right)\left(1-\frac{\frac{137}{800}+\frac{99}{600}}{800+600}\right)\left(\frac{1}{800}+\frac{1}{600}\right)} \\
= & 0.0016 .
\end{aligned}
$$

So the critical region is

$$
(-\infty,-0.0016] \cup[0.0016, \infty)
$$

Since $\bar{Y}_{1}-\bar{Y}_{2}=\frac{137}{800}-\frac{99}{600}=0.00625$ is contained in the critical region, we reject the null hypothesis.

Remark 4. Note that the textbook has an alternative formula for the critical region in Theorem 3, where

$$
\sqrt{\left(\frac{\overline{\mathrm{Y}}_{1}+\overline{\mathrm{Y}}_{2}}{n_{1}+n_{2}}\right)\left(1-\frac{\overline{\mathrm{Y}}_{1}+\overline{\mathrm{Y}}_{2}}{n_{1}+n_{2}}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}
$$

is replaced by

$$
\sqrt{\frac{\overline{\mathrm{Y}}_{1}\left(1-\overline{\mathrm{Y}}_{1}\right)}{n_{1}}+\frac{\overline{\mathrm{Y}}_{2}\left(1-\overline{\mathrm{Y}}_{2}\right)}{n_{2}}}
$$

These two formulas yield approximately the same numerical result in practice.

The lecture version is chosen to be consistent with Table 8.4-2.

This choice is slightly inconsistent with the formula in Theorem 6 from Lecture Notes 7.3.

My conclusion is that being consistent with the textbook will reduce logistical problems in the long run; hence the decision.


[^0]:    *Version date: Thursday $19^{\text {th }}$ November, 2020, 23:50.
    ${ }^{\dagger}$ This notes is based on Hanbaek Lyu's and Liza Rebrova's notes from the previous quarter, and I would like to thank them for their generosity. "Nanos gigantum humeris insidentes (I am but a dwarf standing on the shoulders of giants)".

