
Math 170S

Lecture Notes Section 8.4 ∗†

Tests about proportions

Instructor: Swee Hong Chan

NOTE: Materials that appear in the textbook but do

not appear in the lecture notes might still be tested.

Please send me an email if you find typos.

∗Version date: Thursday 19th November, 2020, 23:50.
†This notes is based on Hanbaek Lyu’s and Liza Rebrova’s notes from the

previous quarter, and I would like to thank them for their generosity. “Nanos
gigantum humeris insidentes (I am but a dwarf standing on the shoulders of
giants)”.
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1 Setting: Bernoulli, one vari-

able

Object: Y is a Bernoulli random variables with un-

known parameter p.

Hypotheses:

• Null Hypothesis H0: p is equal to p0.

• Alternative Hypothesis H1: The alternative

hypothesis can take one of these three forms:

(a) p is strictly greater than p0;

(b) p is strictly smaller than p0;

(c) p is not equal to p0.

Input: Random samples Y1, . . . , Yn for Y (which are

either 0 or 1) and significance level α.
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Methodology:

• Compute the critical region that depends on α (and

potentially Y); and

Output:

• Reject the null hypothesis if Y is contained in the

critical region.

• Do not reject the null hypothesis (i.e., test is incon-

clusive) otherwise.
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2 Theorem: Bernoulli, one vari-

able

Theorem 1. (a) For the case p > p0,

critical region =

[
p0 + zα

√
p0(1− p0)

n
, ∞

)
.

(b) For the case p < p0,

critical region =

(
−∞ , p0 − zα

√
p0(1− p0)

n

]
.

(c) For the case p 6= p0,

critical region =

(
−∞ , p0 − zα/2

√
p0(1− p0)

n

]
∪[

p0 + zα/2

√
p0(1− p0)

n
, ∞

)
.
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3 Example: Bernoulli, one vari-

able

Your instructor suspected that the dice used by a certain

magical casino has been tampered with, so that the prob-

ability p of rolling a six with these dice is strictly higher

than 1/6.

To validate his hypothesis, he played n = 8000 times, and

he saw that six was rolled 1375 times.

Could he reject the hypothesis that the dice is fair with

significance level α = 0.05?
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4 Answer: Bernoulli, one vari-

able

Here we have

• Null Hypothesis: p is equal to 1
6.

• Alternative Hypothesis: The alternative hy-

pothesis is p > 1
6.

So we have case (a), which gives us

zα

√
p0(1− p0)

n
= z0.05

√
(1/6)(5/6)

8000

=(1.645)

√
(1/6)(5/6)

8000
= 0.007.
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So the critical region is[
p0 + zα

√
p0(1− p0)

n
, ∞

)
=

[
1

6
+ 0.007 , ∞

)
=

[
0.17367 , ∞

)
Since the sample mean Y = 1375

8000 = 0.171875 is not con-

tained in the critical region (albeit barely), the test is

inconclusive.
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Remark 2. Note that the textbook has an alternative

formula for the critical region in Theorem 1, where

√
p0(1− p0)

n
is replaced by

√
Y(1− Y)

n
.

These two formulas yield approximately the same numer-

ical result in practice.

The pros for lecture version is the critical region can be

calculated without knowing the sample mean Y in ad-

vance, and is consistent with Table 8.4-1 in the textbook.

The cons for lecture version is the formula is slightly in-

consistent with the formula in Theorem 4 from Lecture

Notes 7.3.

My conclusion is that pros outweighs cons, so we will use

the lecture notes formula (unless indicated otherwise).
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5 Setting: Bernoulli, two vari-

ables

Object: Y1 and Y2 are independent Bernoulli ran-

dom variables with unknown parameter p1 and p2.

Hypotheses:

• Null Hypothesis H0: p1 is equal to p2.

• Alternative Hypothesis H1: The alternative

hypothesis can take one of these three forms:

(a) p1 is strictly greater than p2;

(b) p1 is strictly smaller than p2;

(c) p1 is not equal to p2.
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Input: Significance level α, n1 many random samples

for Y1, and n2 many random samples for Y2.

Methodology:

• Compute the critical region that depends on α and

the given random samples.

Output:

• Reject the hypothesis if Y1−Y2 is contained in the

critical region.

• Do not reject the hypothesis (i.e., test is inconclu-

sive) otherwise.
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6 Theorem: Bernoulli, two vari-

ables

Theorem 3. (a) For the case p1 > p2, the critical

region is

[
zα

√(
Y1 + Y2

n1 + n2

)(
1− Y1 + Y2

n1 + n2

)(
1

n1
+

1

n2

)
, ∞

)
.

(b) For the case p1 < p2, the critical region is

(
−∞ , −zα

√(
Y1 + Y2

n1 + n2

)(
1− Y1 + Y2

n1 + n2

)(
1

n1
+

1

n2

)]
.

(c) For the case p1 6= p2, the critical region is

(
−∞ ,−zα/2

√(
Y1 + Y2

n1 + n2

)(
1− Y1 + Y2

n1 + n2

)(
1

n1
+

1

n2

)]
∪[

zα/2

√(
Y1 + Y2

n1 + n2

)(
1− Y1 + Y2

n1 + n2

)(
1

n1
+

1

n2

)
, ∞

)
.
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7 Example: Bernoulli, two vari-

ables

There is a superstition among Dungeons and Dragons

players that one needs to “pre-roll” the dice to get bad

rolls out of the way.

The friendly instructor performed an experiment with one

pre-rolled die and one new die.

• For the pre-rolled die, six was rolled 137 out of 800

observations.

• For the new die, that six was rolled 99 out of 600

observations.

Can he reject that the pre-rolling ritual is a mere super-

stition with significance level α = 0.05?
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8 Answer: Bernoulli, two vari-

ables

We are in case (c), so we have

Y1 =
137

800
; Y2 =

99

600
;

zα/2

√(
Y1 + Y2

n1 + n2

)(
1− Y1 + Y2

n1 + n2

)(
1

n1
+

1

n2

)

= (1.96)

√√√√( 137
800 + 99

600

800 + 600

)(
1−

137
800 + 99

600

800 + 600

)(
1

800
+

1

600

)
= 0.0016.

So the critical region is(
−∞ , −0.0016

]
∪
[

0.0016 , ∞
)
.

Since Y1−Y2 = 137
800 −

99
600 = 0.00625 is contained in the

critical region, we reject the null hypothesis.
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Remark 4. Note that the textbook has an alternative

formula for the critical region in Theorem 3, where√(
Y1 + Y2

n1 + n2

)(
1− Y1 + Y2

n1 + n2

)(
1

n1
+

1

n2

)
is replaced by√

Y1(1− Y1)

n1
+

Y2(1− Y2)

n2
.

These two formulas yield approximately the same numer-

ical result in practice.

The lecture version is chosen to be consistent with Table

8.4-2.

This choice is slightly inconsistent with the formula in

Theorem 6 from Lecture Notes 7.3.

My conclusion is that being consistent with the textbook

will reduce logistical problems in the long run; hence the

decision.
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