Math 170S

Lecture Notes Section 8.2 *[†]

Tests about two means

Instructor: Swee Hong Chan

NOTE: Materials that appear in the textbook but do not appear in the lecture notes might still be tested. Please send me an email if you find typos.

^{*}Version date: Wednesday 18th November, 2020, 13:23.

[†]This notes is based on Hanbaek Lyu's and Liza Rebrova's notes from the previous quarter, and I would like to thank them for their generosity. "*Nanos gigantum humeris insidentes* (I am but a dwarf standing on the shoulders of giants)".

1 Setting: dependent X and Y

Object: X and Y are (**possibly dependent**) random variables with **unknown mean** μ_X and μ_Y , and D is the difference D := X - Y.

Hypotheses:

- Null Hypothesis H_0 : μ_X is equal to μ_Y . Equivalently $\mu_D = 0$.
- Alternative Hypothesis H_1 : The alternative hypothesis is one of these three forms:
 - (a) μ_X is strictly greater than μ_Y . Equivalently $\mu_D > 0$;
 - (b) μ_X is **strictly smaller than** μ_Y . Equivalently $\mu_D < 0$;
 - (c) μ_X is **not equal to** μ_Y . Equivalently $\mu_D \neq 0$.

The strategy is to apply tests for one mean from Section 8.1 to D.

Input: Random samples X_1, \ldots, X_n for X, random samples Y_1, \ldots, Y_n for Y, and significance level α . **Methodology:**

• Compute $\overline{D} := \frac{(X_1 - Y_1) + \dots + (X_n - Y_n)}{n}$

- Compute the critical region that depends on α ; or
- Compute the *p*-value that depends on $\overline{\mathbf{D}}$.

Output:

- Reject the hypothesis if D
 is contained in the critical region. Equivalently, reject the hypothesis if the pvalue is smaller than α.
- Do not reject the hypothesis (i.e., test is inconclusive) otherwise.

2 Example: dependent X, Y

Twenty-four students were subjected to a brainwashing program to increase their midterm scores.

- The null hypothesis is that the brainwashing program does nothing to their midterm score;
- The alternative hypothesis is that the brainwashing program increases their midterm score.

Let X be the midterm score before the program, and Y be the midterm score after the program.

Let D = X - Y be a **normal** random variable with **unknown mean** and **unknown variance**.

Suppose that sample mean \overline{D} is -0.079 and sample standard deviation s_D is 0.255.

Should we reject the null hypothesis with $\alpha = 0.05$?

3 Answer: dependent X and Y

This is the scenario of **normal** random variable with **unknown mean** and **unknown variance**.

From Section 8.1,

$$t_{\alpha}(n-1)\frac{s}{\sqrt{n}} = t_{0.05}(23)\frac{0.255}{\sqrt{24}} = (1.714)(\frac{0.255}{\sqrt{24}}) \approx 0.09.$$

So the critical region is

$$\left(-\infty, 0-t_{\alpha}(n-1)\frac{s}{\sqrt{n}}\right] = \left(-\infty, -0.09\right].$$

Since the sample mean $\overline{D} = -0.079$ is not contained in the critical region, the test is inconclusive.

4 Setting: independent X and Y with known variances

Object: X and Y are **independent** random variables with **unknown mean** μ_X and μ_Y but with **known variances** σ_X^2 and σ_Y^2 .

Hypotheses:

- Null Hypothesis H_0 : μ_X is equal to μ_Y .
- Alternative Hypothesis H_1 : It takes one of these three forms:
 - (a) μ_X is strictly greater than μ_Y ;
 - (b) μ_X is strictly smaller than μ_Y ;
 - (c) μ_X is **not equal to** μ_Y .

Input: Significance level α , random samples X_1, \ldots, X_n for X, random samples Y_1, \ldots, Y_m for Y. Note that n is not necessarily equal to m.

Methodology:

- Compute the critical region that depends on α ; or
- Compute the *p*-value that depends on $\overline{\mathbf{X}}$ and $\overline{\mathbf{Y}}$.

Output:

- Reject the hypothesis if X Y is contained in the critical region. Equivalently, reject the hypothesis if the *p*-value is smaller than α.
- Do not reject the hypothesis (i.e., test is inconclusive) otherwise.

5 Theorem: independent X and Y with known variances

Theorem 1. • For the case $\mu_X > \mu_Y$,

critical region =
$$\left[z_{\alpha}\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}, \infty\right),$$

 $p\text{-value} = 1 - \Phi\left(\frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}}\right).$

• For the case $\mu_X < \mu_Y$,

critical region =
$$\left(-\infty, -z_{\alpha}\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}\right],$$

 $p\text{-value} = \Phi\left(\frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}}\right).$

• For the case $\mu_X \neq \mu_Y$,

critical region =
$$\left(-\infty, -z_{\alpha/2}\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}\right] \cup \left[z_{\alpha/2}\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}, \infty\right),$$

 $p\text{-value} = 2\left[1 - \Phi\left(\frac{|\overline{X} - \overline{Y}|}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}}\right)\right].$

6 Example: independent *X*, *Y* with known variances

Let X be the midterm grade of a random student from Section 1, and let Y be the midterm grade of a random student from Section 2.

- The null hypothesis is that $\mu_X = \mu_Y$;
- The alternative hypothesis is that $\mu_X < \mu_Y$.

Let X be a normal random variable with standard deviation $\sigma_X = 1.08$, and let Y be a normal random variable with standard deviation $\sigma_Y = 1.55$.

Suppose that X has sample mean $\overline{X} = 67.01$ with n = 50, and Y has sample mean 68.41 with m = 40 students. Should we reject the null hypothesis at an $\alpha = 0.01$ significance level?

7 Answer: independent *X*, *Y* with known variances

This is case (b), so we have

$$z_{\alpha}\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}} = z_{0.01}\sqrt{\frac{(1.08)^2}{50} + \frac{(1.55)^2}{40}}$$
$$= (2.326)\sqrt{\frac{(1.08)^2}{50} + \frac{(1.55)^2}{40}} \approx 0.672$$

So the critical region is

$$\left(-\infty, 0-z_{\alpha}\sqrt{\frac{\sigma_X^2}{n}+\frac{\sigma_Y^2}{m}}\right] = \left(-\infty, -0.672\right].$$

Since $\overline{X} - \overline{Y} = 67.01 - 68.41 = -1.4$ is contained in the critical region, we reject the null hypothesis.

8 The case of independent X and Y with unknown variances

Object: X and Y are **independent** random variables with **unknown mean** μ_X and μ_Y and **unknown but** equal variances σ^2 .

Hypotheses:

- Null Hypothesis H_0 : μ_X is equal to μ_Y .
- Alternative Hypothesis H_1 : The alternative hypothesis can take one of these three forms:
 - (a) μ_X is strictly greater than μ_Y ;
 - (b) μ_X is strictly smaller than μ_Y ;
 - (c) μ_X is **not equal to** μ_Y .

Input: Significance level α , random samples X_1, \ldots, X_n for X, random samples Y_1, \ldots, Y_m for Y. Note that n is not necessarily equal to m.

Methodology:

- Compute the sample variance s_X^2 and s_Y^2 .
- Compute the pulled estimator

$$s_P := \sqrt{\frac{(n-1)s_X^2 + (m-1)s_Y^2}{n+m-2}}$$

• Compute the critical region that depends on α .

Output:

- Reject the hypothesis if X Y is contained in the critical region. Equivalently, reject the hypothesis if the *p*-value is smaller than α.
- Do not reject the hypothesis otherwise.

Theorem 2. If n + m - 2 > 30, then use the following formula:

• For the case $\mu_X > \mu_Y$,

critical region =
$$\left[z_{\alpha} \ s_{P} \sqrt{\frac{1}{n} + \frac{1}{m}}, \infty\right),$$

• For the case
$$\mu_X < \mu_Y$$
,

critical region =
$$\left(-\infty, -z_{\alpha} s_{P} \sqrt{\frac{1}{n} + \frac{1}{m}}\right],$$

• For the case $\mu_X \neq \mu_Y$,

critical region =
$$\left(-\infty, -z_{\alpha/2} \ s_P \sqrt{\frac{1}{n} + \frac{1}{m}}\right] \cup \left[z_{\alpha/2} \ s_P \sqrt{\frac{1}{n} + \frac{1}{m}}, \infty\right),$$

If $n + m - 2 \leq 30$, use the following formula:

• For the case $\mu_X > \mu_Y$,

critical region =
$$\left[t_{\alpha}(n+m-2)s_{P}\sqrt{\frac{1}{n}+\frac{1}{m}}, \infty\right).$$

• For the case $\mu_X < \mu_Y$,

critical region =
$$\left(-\infty, -t_{\alpha}(n+m-2)s_{P}\sqrt{\frac{1}{n}+\frac{1}{m}}\right]$$

• For the case
$$\mu_X \neq \mu_Y$$
,

critical region =
$$\left(-\infty, -t_{\alpha/2}(n+m-2)s_P\sqrt{\frac{1}{n}+\frac{1}{m}}\right)$$

 $\left[t_{\alpha/2}(n+m-2)s_P\sqrt{\frac{1}{n}+\frac{1}{m}}, \infty\right).$

9 Example: independent X and Y with unknown variances

Let X be the net worth of a random citizen in Atlantis, and let Y be the net worth of a random citizen in Shangrila.

- The null hypothesis is that $\mu_X = \mu_Y$;
- The alternative hypothesis is that $\mu_X \neq \mu_Y$.

Suppose that X and Y are two **normal** random variable with **same unknown variance**. Suppose that

- X has sample mean $\overline{X} = 1076.75$, sample variance $s_X^2 = 29.30$ with n = 12 citizens;
- Y has sample mean $\overline{Y} = 1072.33$, sample variance $s_Y^2 = 26.24$ with m = 12 citizens.

Should we reject the null hypothesis at an $\alpha = 0.1$ significance level?

10 Answer: independent X and Y with unknown variances

This is case (c), so we have

$$s_P = \sqrt{\frac{(n-1)s_X^2 + (m-1)s_Y^2}{n+m-2}}$$

= $\sqrt{\frac{(12-1)(29.30) + (12-1)(26.24)}{12+12-2}} = 5.267,$

which gives us

$$t_{\alpha/2}(n+m-2)s_P\sqrt{\frac{1}{n}+\frac{1}{m}} = (1.717)(5.267)\sqrt{\frac{1}{12}+\frac{1}{12}} = 3.69.$$

So the critical region is

$$\left(-\infty, -3.69\right] \cup \left[3.69, \infty\right)$$

Since $\overline{X} - \overline{Y} = 1076.75 - 1072.33 = 4.42$ is contained in the critical region, we reject the null hypothesis.