Math 170S

Lecture Notes Section 7.3 *[†] Confidence intervals for proportions

Instructor: Swee Hong Chan

NOTE: Materials that appear in the textbook but do not appear in the lecture notes might still be tested. Please send me an email if you find typos.

^{*}Version date: Saturday 31st October, 2020, 23:23.

[†]This notes is based on Hanback Lyu's and Liza Rebrova's notes from the previous quarter, and I would like to thank them for their generosity. "*Nanos gigantum humeris insidentes* (I am but a dwarf standing on the shoulders of giants)".

1 Confidence intervals for proportions: Example

In a certain political campaign, one candidate conducted a poll for which 185 out of 351 voters favor this candidate. This candidate then calculates the percentage of people who voted for them, which is

 $\frac{185}{351} \approx 0.527.$

This is higher than 50%, and the candidate now feels confident about winning. Is the candidate's confidence justified?

2 CI for proportions: Settings

- **Object:** *Y* is a **Bernoulli** random variables with **unknown parameter** *p*.
- Input:
 - Random samples y_1, \ldots, y_n for Y. Note that each y_i is either 0 or 1.
 - Confidence constant 1α
- **Output:** The value ε that allows us to say

"p is contained in the interval $\left[\overline{y} - \varepsilon, \overline{y} + \varepsilon\right]$ with confidence (approximately) 1- α ."

The interval $[\overline{y} - \varepsilon, \overline{y} + \varepsilon]$ is the **confidence interval** for p. This interval is centered at \overline{y} , and the length of the interval is 2ε .

3 The value ε

Theorem 1. In this case, the value ε is given by

$$\varepsilon = z_{\alpha/2} \sqrt{\frac{\overline{\mathbf{y}}(1-\overline{\mathbf{y}})}{n}},$$

where $z_{\alpha/2}$ is the real number such that

 $P[N(0,1) \ge z_{\alpha/2}] = \alpha/2.$

The value $z_{\alpha/2}$ can be computed from the Table V in Appendix B.

4 Answer for Example

Suppose that confidence constant $1 - \alpha$ is 0.95. Then

$$\overline{\mathbf{y}} = \frac{185}{351} = 0.527;$$

$$\varepsilon = z_{\alpha/2} \sqrt{\frac{\overline{\mathbf{y}}(1 - \overline{\mathbf{y}})}{n}} = (1.96) \sqrt{\frac{(0.527)(0.473)}{351}} \approx 0.052.$$

The 95% confidence interval is equal to

$$\left[(0.527) - 0.052, (0.527) + 0.052 \right] = \left[0.475, 0.579 \right]$$

Hence there is some possibility that p is less than 0.5, so the candidate should be very careful when campaigning as we **cannot say that we are 95% sure that they will win the election**. **Remark 2.** Note that textbook has two other formulas ((7.3.4) and (7.3.5) in the textbook) for estimating ε . We will only focus on the formula provided in the lecture notes for now.

5 Settings: One-sided intervals

- **Object:** *Y* is a **Bernoulli** random variables with **unknown parameter** *p*.
- Input:
 - Random samples y_1, \ldots, y_n for Y. Note that each y_i is either 0 or 1.
 - Confidence constant $1-\alpha$
- **Output:** The value ε that allows us to say

"p is contained in the interval $[0, \overline{y} + \varepsilon]$ with confidence 1- α ,"

or

"*p* is contained in the interval $[\overline{y} - \varepsilon, 1]$ with confidence 1- α ."

6 Value of ε : One-sided

Theorem 3. In this case, the value ε is given by

$$\varepsilon = z_{\alpha} \sqrt{\frac{\overline{\mathrm{y}}(1-\overline{\mathrm{y}})}{n}},$$

where z_{α} is the real number such that

$$P[N(0,1) \ge z_{\alpha}] = \alpha.$$

The value z_{α} can be computed from the Table V in Appendix B.

7 Answer for Example: Onesided

We again take the confidence constant $1 - \alpha$ to be 0.95. In an election, we only care if the candidate gets more than 50% of the vote, so we want

"p is contained in the interval $\left[\overline{y} - \varepsilon, 1\right]$ with confidence (approximately) 1- α ,"

Then we have

$$\overline{\mathbf{y}} = \frac{185}{351} = 0.527;$$

$$\varepsilon = z_{\alpha} \sqrt{\frac{\overline{\mathbf{y}}(1 - \overline{\mathbf{y}})}{n}} = (1.645) \sqrt{\frac{(0.527)(0.473)}{351}} \approx 0.044.$$

The confidence interval is then equal to

$$[(0.527) - 0.044, 1] = [0.483, 1].$$

Again we see that p can be less than 0.5 in this confidence interval, so we cannot say that we are 95% sure that they will win the election. Let's try to calculate the winning probability of our candidate, i.e., we want to find α so that

"p is contained in the interval [0.5, 1] with confidence (approximately) 1- α ."

This implies that (BT)

$$\overline{y} - \varepsilon = 0.5$$

$$z_{\alpha} \sqrt{\frac{\overline{y}(1 - \overline{y})}{n}} = \overline{y} - 0.5$$

$$z_{\alpha} = \frac{(\overline{y} - 0.5)\sqrt{n}}{\sqrt{\overline{y}(1 - \overline{y})}}$$

$$z_{\alpha} = \frac{(0.527 - 0.5)\sqrt{351}}{\sqrt{(0.527)(1 - 0.527)}}$$

$$z_{\alpha} \approx 1.01.$$

By Table V, $1 - \alpha$ is approximately 0.8438. So the candidate's chance of winning is 84.38%.

8 Example: Comparing two proportions

Two disinfectants were tested for their ability to remove coronavirus from a dry surface.

- The first detergent is successful on 63 out of 91 trials;
- The second detergent is successful on 42 out of 79 trials.

Can we say that one detergent is stronger than the other confidently?

9 Two proportions: Settings

- **Object:** *Y*₁, *Y*₂ are **independent Bernoulli** random variables with **unknown parameter** *p*₁, *p*₂.
- Input:
 - Sample mean \overline{y}_1 for Y_1 from n_1 many samples, and sample mean \overline{y}_2 for Y_2 from n_2 many samples;
 - Confidence constant 1α .
- **Output:** The value ε that allows us to say

" $p_1 - p_2$ is contained in the interval $[(\overline{y}_1 - \overline{y}_2) - \varepsilon, (\overline{y}_1 - \overline{y}_2) + \varepsilon]$ with confidence (approximately) 1- α ."

10 The value ε : Two proportions

Theorem 4. In this case, the value ε is given by

$$\varepsilon = z_{\alpha/2} \sqrt{\frac{\overline{\mathbf{y}}_1(1-\overline{\mathbf{y}}_1)}{n_1}} + \frac{\overline{\mathbf{y}}_2(1-\overline{\mathbf{y}}_2)}{n_2},$$

where $z_{\alpha/2}$ is the real number such that

$$P[N(0,1) \ge z_{\alpha/2}] = \alpha/2.$$

The value $z_{\alpha/2}$ can be computed from the Table V in Appendix B.

11 Answer for Example: Two proportions

Suppose that confidence constant $1 - \alpha$ is 0.9. Then (BT)

$$\begin{aligned} \overline{\mathbf{y}}_1 - \overline{\mathbf{y}}_2 &= \frac{63}{91} - \frac{42}{79} = 0.16; \\ \varepsilon &= z_{\alpha/2} \sqrt{\frac{\overline{\mathbf{y}}_1 (1 - \overline{\mathbf{y}}_1)}{n_1} + \frac{\overline{\mathbf{y}}_2 (1 - \overline{\mathbf{y}}_2)}{n_2}} \\ &= (1.645) \sqrt{\frac{(0.692)(0.308)}{91} + \frac{(0.532)(0.468)}{79}} \approx 0.12192. \end{aligned}$$

The confidence interval is then equal to

$$\left[(0.16) - 0.12192, (0.16) + 0.12192 \right] = \left[0.03808, 0.28192 \right].$$

Because the interval lies entirely to the right of zero, we can say that the first disinfectant is better than the second one with at least 90% confidence.