Math 170S Lecture Notes Section $7.1^{* \dagger}$ Confidence intervals for one mean

Instructor: Swee Hong Chan

NOTE: Materials that appear in the textbook but do not appear in the lecture notes might still be tested.

Please send me an email if you find typos.
*Version date: Wednesday $28^{\text {th }}$ October, 2020, 11:19.
${ }^{\dagger}$ This notes is based on Hanbaek Lyu's and Liza Rebrova's notes from the previous quarter, and I would like to thank them for their generosity. "Nanos gigantum humeris insidentes (I am but a dwarf standing on the shoulders of giants)".

1 Funny story

The friendly instructor (FI) were hired by the casino to check if a player had cheated in a coin-flipping game. During the investigation, the FI flipped the coin 20 times; 5 of them Heads, and 15 of them Tails. So the FI declared,
"I estimate that the success probability for this coin is

$$
\widehat{p}=\frac{5}{20}=0.25 . "
$$

The casino therefore filed a lawsuit against the player. At the court, the friendly instructor gave the following expert testimony:
"The success probability of the coin is between 0.04 and 0.46 with confidence of at least 95%. There is therefore at least a chance of 95% that the player had tampered with the coin.

2 Setting of the problem

- Object: X is any random variable with unknown mean μ.
- Input: Sample values X_{1}, \ldots, X_{n} for X. Note that X_{1}, \ldots, X_{n} are random variables here.
- Output: A range of values that μ can take, with high probability.

The output is usually phrased as
"If I repeat the experiment 100 times, we would have that (approximately) 95 of the times the difference between \bar{X} and μ is less than $5 "$.

The sentence above is too long; we can rephrase the sentence above mathematically as

$$
P[\overline{\mathrm{X}}-5 \leq \mu \leq \overline{\mathrm{X}}+5] \approx 0.95
$$

Now the sentence above is too technical. We thus compromise by using the semi-mathematical sentence:
" μ is contained in the interval $[\overline{\mathrm{X}}-5, \overline{\mathrm{X}}+5]$ with 95% confidence."

3 Confidence interval

For any positive real number ε and α, the sentence

$$
\begin{aligned}
& " \mu \text { is contained in the interval }[\overline{\mathrm{X}}-\varepsilon, \overline{\mathrm{X}}+\varepsilon] \text { with } \\
& \text { confidence } 1-\alpha "
\end{aligned}
$$

means

$$
P[\overline{\mathrm{X}}-\varepsilon \leq \mu \leq \overline{\mathrm{X}}+\varepsilon] \approx 1-\alpha
$$

The interval $[\overline{\mathrm{X}}-\varepsilon, \overline{\mathrm{X}}+\varepsilon]$ is called the confidence interval, and $1-\alpha$ is called the confidence coefficient.

Note that ε and α depends on each other. The smaller ε is, the larger α is. In particular

- α is equal to 0 when ε is equal to ∞ :

$$
\begin{aligned}
& \text { " } \mu \text { is contained in the interval }[\overline{\mathrm{X}}-\infty, \overline{\mathrm{X}}+\infty] \\
& \text { with confidence } 1 \text { ". }
\end{aligned}
$$

- α is equal to 1 when ε is equal to 0 for continuous RVs:

> " μ is contained in the interval $[\overline{\mathrm{X}}-0, \overline{\mathrm{X}}+0]$ with confidence 0 ".

4 Confidence interval: Case I

Object: X is a random variable with unknown mean μ but with known variance σ^{2}.

Given: Confidence constant $1-\alpha$.
Question: Compute ε.
Solution: ε can be computed by the formula:

$$
\begin{equation*}
\varepsilon=z_{\alpha / 2} \frac{\sigma}{\sqrt{n}} \tag{1}
\end{equation*}
$$

where $z_{\alpha / 2}$ is the real number such that

$$
P\left[N(0,1) \geq z_{\alpha / 2}\right]=\alpha / 2 .
$$

The value $z_{\alpha / 2}$ can be computed from the Table V in Appendix B. (Textbook Time)

5 Confidence interval: Example

Let X be the length of life of a 60 -watt light bulb made by Friendly Instructor Company.

Suppose that X is a normal random variable with mean μ and variance 1296.

If a random sample of $n=25$ bulbs is tested until they
burn out, yielding sample mean of $\overline{\mathrm{x}}=1478$ hours, compute the 60% confidence interval.

Answer:

Given: α is 0.4 since it is for 60% confidence.
$\varepsilon=z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}=z_{0.2} \frac{\sqrt{1296}}{\sqrt{25}}=0.842 \frac{36}{5}=6.0624$.

The confidence interval is then

$$
\begin{aligned}
{[\overline{\mathrm{x}}-\varepsilon, \overline{\mathrm{x}}+\varepsilon] } & =[1478-6.0624,1478+6.0624] \\
& =[1471.9376,1484.0624]
\end{aligned}
$$

Remark 1. To be confident of the confidence interval, we need n to be fairly large, and $n \geq 30$ is usually sufficient for all purposes. When we know that X is a nice random variable (e.g., normal), $n \geq 5$ is sufficient.

Remark 2. The formula for ε in (3) comes from the central limit theorem (from Math 170E), see the textbook for the detailed proof.

6 Confidence interval: Case II

Object: X is a normal random variable with unknown mean μ and unknown variance.

Given: Confidence constant $1-\alpha$.
Question: Compute ε.

7 The error ε : Case II-a

Assumption: $n-1 \leq 30$.
Solution: Compute the sample variance

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\overline{\mathrm{x}}\right)^{2} .
$$

Then ε can be computed by

$$
\begin{equation*}
\varepsilon=t_{\alpha / 2}(n-1) \frac{s}{\sqrt{n}}, \tag{2}
\end{equation*}
$$

where $t_{\alpha / 2}(n-1)$ is the real number such that

$$
P\left[T \geq t_{\alpha / 2}(n-1)\right]=\alpha / 2,
$$

where T is the student's t distribution with $n-1$ degrees of freedom, and can be computed from Table VI in Appendix B. (Textbook time)

8 The error ε : Case II-b

Assumption: $n-1>30$.
Solution: ε can be computed by the formula:

$$
\begin{equation*}
\varepsilon=z_{\alpha / 2} \frac{s}{\sqrt{n}} \tag{3}
\end{equation*}
$$

where s^{2} is the sample variance and $z_{\alpha / 2}$ is the real number such that

$$
P\left[N(0,1) \geq z_{\alpha / 2}\right]=\alpha / 2 .
$$

9 Confidence interval: Example

Let X be the amount of butterfat (in pounds) produced by a typical cow in Mikage farm.

Assume that X is a normal random variable with unknown mean μ and unknown variance σ^{2}.

The following is butter fat production for $n=20$ cows:

$$
\begin{array}{llllllllll}
481 & 537 & 513 & 583 & 453 & 510 & 570 & 500 & 457 & 555 \\
618 & 327 & 350 & 643 & 499 & 421 & 505 & 637 & 599 & 392 .
\end{array}
$$

Give a 90% confidence interval for μ.

Answer: We first compute the sample mean $\overline{\mathrm{X}}$ and sample variance s^{2} (Exercise time)

$$
\overline{\mathrm{x}}=507.50 ; \quad s=89.75 ; \quad \alpha=0.10
$$

So our estimate for μ is the sample mean 507.50. Then

$$
t_{\alpha / 2}(n-1)=t_{0.05}(19)=1.729
$$

The constant ε is then given by

$$
\begin{equation*}
\varepsilon=t_{\alpha / 2}(n-1) \frac{s}{\sqrt{n}}=1.729 \frac{89.75}{\sqrt{20}} \approx 34.70 \tag{4}
\end{equation*}
$$

So our confidence interval is

$$
\begin{aligned}
{[\overline{\mathrm{x}}-\varepsilon, \overline{\mathrm{x}}+\varepsilon] } & =[507.50-34.70,507.50+34.70] \\
& =[472.80,542.20]
\end{aligned}
$$

Remark 3. The formula for ε is derived using student's t distribution, see the textbook for the proof.

Remark 4. For this unknown variance case, X must be normal RVs. The same conclusion cannot be made for general RVs.

Remark 5. For the approximation to be decent, we need $n \geq 50$ even for specialized purpose.

10 One-sided confidence interval: lower bound

One-sided confidence interval can come in two flavors, lower and upper bound.

For the lower bound, we say
" μ is greater than $\bar{X}-\varepsilon$ with confidence $1-\alpha$ "
to mean

$$
P[\mu \geq \overline{\mathrm{X}}-\varepsilon] \approx 1-\alpha
$$

In this case, the one-sided confidence interval is $[\overline{\mathrm{X}}-\varepsilon, \infty)$.

11 One-sided confidence interval: upper bound

For the upper bound, we say

$$
" \mu \text { is less than } \bar{X}+\varepsilon \text { with confidence } 1-\alpha "
$$

to mean

$$
P[\mu \leq \overline{\mathrm{X}}+\varepsilon] \approx 1-\alpha
$$

In this case, the one-sided confidence interval is $(-\infty, \bar{X}+\varepsilon]$.

12 One-sided confidence interval: Formulas

Object: X is any random variable with unknown mean μ and known variance σ^{2}

Formula: ε is given by

$$
\varepsilon=z_{\alpha} \frac{\sigma}{\sqrt{n}}
$$

Pay attention: $z_{\alpha / 2}$ for two sided confidence intervals is replaced with z_{α} here.

Object: X is a normal random variable with unknown mean μ and unknown variance σ^{2}

Formula: ε is given by

$$
\varepsilon= \begin{cases}t_{\alpha}(n-1) \frac{s}{\sqrt{n}} ; & \text { if } n-1 \leq 30 \\ z_{\alpha} \frac{s}{\sqrt{n}} ; & \text { if } n-1>30\end{cases}
$$

Pay attention: $t_{\alpha / 2}(n-1)$ for two sided confidence intervals is replaced with $t_{\alpha}(n-1)$. The same with $z_{\alpha / 2}$ and z_{α}.

13 One-sided confidence interval: Example

Let X be the length of life of a 60 -watt light bulb made by Friendly Instructor Company.

Suppose that X is a normal random variable with mean μ and variance 1296.

If a random sample of $n=25$ bulbs is tested until they
burn out, yielding sample mean of 1478 hours, compute the lower bound for μ with 60% confidence interval.

Answer: The variance is known, so

$$
\varepsilon=z_{\alpha} \frac{\sigma}{\sqrt{n}}=z_{0.4} \frac{\sqrt{1296}}{\sqrt{25}}=(0.253) \frac{36}{5}=1.8216
$$

and the one-sided confidence interval is

$$
[\overline{\mathrm{x}}-\varepsilon,+\infty)=[1478-1.8216,+\infty)=[1476.1784,+\infty)
$$

14 One-sided confidence interval: Example

Let us return to the Mikage farm example.
Give an upper bound for μ and a 90% confidence interval for μ.

Answer: Mikage farm example is normal with unknown variance.

Given: $\overline{\mathrm{x}}=507.50, s=89.75, \alpha=0.1$.
So

$$
t_{\alpha}(n-1)=t_{0.10}(19)=1.328 .
$$

The constant ε is then given by

$$
\varepsilon=t_{\alpha}(n-1) \frac{s}{\sqrt{n}}=(1.328) \frac{89.75}{\sqrt{20}} \approx 26.65 .
$$

The one-sided confidence interval for upper bound is
$(-\infty, \overline{\mathrm{x}}+\varepsilon]=(-\infty, 507.50+26.65]=(-\infty, 534.15]$,
as desired.

