
Math 170S

Lecture Notes Section 6.8 ∗†

Bayesian estimate

Instructor: Swee Hong Chan

NOTE: The notes is a summary for materials discussed

in the class and is not supposed to substitute the text-

book. Please send me an email if you find typos.

∗Version date: Saturday 19th December, 2020, 21:58.
†This notes is based on Hanbaek Lyu’s and Liza Rebrova’s notes from the

previous quarter, and I would like to thank them for their generosity. “Nanos
gigantum humeris insidentes (I am but a dwarf standing on the shoulders of
giants)”.
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1 Conditional probability: Re-

view

Let A and B be two events. The conditional proba-

bility of A given that B has already happened is

P [A | B] :=
P (A ∩B)

P [B]
.
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2 Problem: coin toss

The friendly instructor has three coins in his drawer, with

success probability 0.2, 0.5, and 0.8 respectively. He picks

one coin uniformly at random, and flips the coin twice.

Compute the probability that both tosses are head.

Answer. Let Θ be the success probability of the chosen

coin. Let X1 and X2 be the result of the first and second

coin toss, respectively.

Then X1 and X2 are Bernoulli random variables with

success probability Θ, and

P [Θ = 0.2] =
1

3
; P [Θ = 0.5] =

1

3
; P [Θ = 0.8] =

1

3
.
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Note that

P [X1, X2 = 1 | Θ = 0.2] = (0.2)2;

P [X1, X2 = 1 | Θ = 0.5] = (0.5)2;

P [X1, X2 = 1 | Θ = 0.8] = (0.8)2.

So we have (BT)

P [X1, X2 = 1] = P [X1, X2 = 1 | Θ = 0.2]P [Θ = 0.2] +

P [X1, X2 = 1 | Θ = 0.5]P [Θ = 0.5] +

P [X1, X2 = 1 | Θ = 0.8]P [Θ = 0.8]

= (0.2)2

(
1

3

)
+ (0.5)2

(
1

3

)
+ (0.8)2

(
1

3

)
= 0.31,

as desired.
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3 Bayes theorem: Review

Theorem 1. For any event A and B,

P [A | B] =
P [B | A]P [A]

P [B]
.
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4 Problem: Coin toss again

Compute the probability

P [Θ = 0.2 | X1, X2 = 1]; P [Θ = 0.5 | X1, X2 = 1];

P [Θ = 0.8 | X1, X2 = 1].

Answer: By Bayes theorem (BT)

P [Θ = 0.2 | X1, X2 = 1] =
P [X1, X2 = 1 | Θ = 0.2]P [Θ = 0.2]

P [X1, X2 = 1]

=
(0.2)2(1/3)

0.31
≈ 0.044;

P [Θ = 0.5 | X1, X2 = 1] =
P [X1, X2 = 1 | Θ = 0.5]P [Θ = 0.5]

P [X1, X2 = 1]

=
(0.5)2(1/3)

0.31
≈ 0.268;

P [Θ = 0.8 | X1, X2 = 1] =
P [X1, X2 = 1 | Θ = 0.8]P [Θ = 0.8]

P [X1, X2 = 1]

=
(0.8)2(1/3)

0.31
≈ 0.688 .
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5 Bayesian inference: COVID-

19

Consider the forecasting models for COVID-19.

• On March 2020, one model suggested that the total

fatalities in US might reach up to 240,000 people.

• However, on April 2020, as more data is collected,

the estimates (by using the same model) was revised

to up to 85,000 fatalities.

This is one instance where we revise our estimate to give

the best prediction, based on the most up-to-date infor-

mation. This revision is done by Bayesian inference.
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6 Bayesian inference (discrete)

1. Let X be a random variable with distribution fθ for

some parameter Θ.

2. Θ is a discrete random variable on Ω with an un-

known pmf π.

3. Problem: Estimate the unknown pmf π.

4. Input:

• Sample values x1, . . . , xn from n experiments.

• A prior pmf πprior which we think is the best

estimate for π before we run the experiments.

5. Output: A posterior pmf πpost that we think

is the best estimate for π after we observe the ex-

periments.
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6. Method:

(a) Compute the quantity

K :=
∑
θ∈Ω

fθ(x1) . . . fθ(xn)πprior[Θ = θ].

(b) Compute the posterior pmf πpost by

πpost[Θ = θ] =
fθ(x1) . . . fθ(xn) πprior[Θ = θ]

K
.

(c) That is it, you are done!
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7 Example: coin toss again

The friendly instructor has three coins, with success prob-

ability 0.2, 0.5, and 0.8. He picks one coin at random

following an unknown pmf. In the language of Bayesian

inference,

• X is a Bernoulli random variable with success prob-

ability Θ;

• Θ is randomly picked from the set {0.2, 0.5, 0.8}

following some unknown pmf π.

• Since we have no information regarding π, our best

guess would be πprior is the uniform distribution,

πprior[Θ = 0.2] = πprior[Θ = 0.5] = πprior[Θ = 0.8] =
1

3
.

Now the chosen coin is flipped twice, and both outcomes
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are equal to head, so x1 = x2 = 1.

After observing these experiments, we update our pre-

diction on π by the given method and compute K: (BT)

K =
∑
θ∈Ω

fθ(x1) . . . fθ(xn)πprior[Θ = θ]

=f0.2(1)f0.2(1)πprior[Θ = 0.2] + f0.5(1)f0.5(1)πprior[Θ = 0.5] + f0.8(1)f0.8(1)πprior[Θ = 0.8]

=(0.2)(0.2)(1/3) + (0.5)(0.5)(1/3) + (0.8)(0.8)(1/3)

=0.31.
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The posterior pmf is then given by

πpost[Θ = 0.2] =
fθ(x1) . . . fθ(xn) πprior[Θ = θ]

K

=
f0.2(1)f0.2(1) πprior[Θ = 0.2]

K

=
(0.2)(0.2)(1/3)

0.31
≈ 0.044;

πpost[Θ = 0.5] =
f0.5(x1)f0.5(x2) πprior[Θ = 0.5]

K

=
(0.5)(0.5)(1/3)

0.31
≈ 0.268;

πpost[Θ = 0.8] =
f0.8(1)f0.8(1) πprior[Θ = 0.8]

K

=
(0.8)(0.8)(1/3)

0.31
≈ 0.688;

This is our posterior pmf.
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8 Bayesian inference (continu-

ous)

Bayesian inference for the continuous case works the same

way with discrete case, except that sum in the formula

for K is replaced with integrals.

K :=

∫ ∞
−∞

fθ(x1) . . . fθ(xn)πprior[θ] dθ.
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Remark 2. Some of our notations here are different from

the textbook:

• The random variable X with distribution fθ in our

notes is the random variable Y with distribution

g(· | θ) in the textbook;

• The prior pdf πprior in our notes is h(θ) in the text-

book;

• The posterior pdf πpost in our notes is k(θ) in the

textbook;

• The quantity K in our notes is the quantity k1(y)

in the textbook.
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9 Problem: Binomial and beta

Let X be binomial distribution with parameters n and θ,

fθ(x) =

(
n

x

)
θx(1− θ)n−x x = 0, 1, . . . , n.

Suppose that πprior is the beta pdf with parameter α, β,

πprior[θ] =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1 0 < θ < 1,

where Γ is the gamma function. Suppose that we have

performed one experiment with outcome equal to x. Com-

pute πpost.
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Answer: We first compute K, (BT)

K =

∫ ∞
−∞

fθ(x1) . . . fθ(xn)πprior[θ] dθ

=

∫ 1

0

(
n

x

)
θx(1− θ)n−x

Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1 dθ

=

(
n

x

)
Γ(α + β)

Γ(α)Γ(β)

∫ 1

0

θx(1− θ)n−x θα−1(1− θ)β−1 dθ

=

(
n

x

)
Γ(α + β)

Γ(α)Γ(β)

∫ 1

0

θx+α−1(1− θ)n−x+β−1 dθ

=

(
n

x

)
Γ(α + β)

Γ(α)Γ(β)

Γ(α + x)Γ(n + β − x)

Γ(n + α + β)∫ 1

0

Γ(n + α + β)

Γ(α + x)Γ(n + β − x)
θx+α−1(1− θ)n−x+β−1 dθ.

The term inside the integral is exactly the pdf of the beta

random variable with parameter α+x and n+β−α, so

this integral is equal to 1, and

K =

(
n

x

)
Γ(α + β)

Γ(α)Γ(β)

Γ(α + x)Γ(n + β − x)

Γ(n + α + β)
.
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Therefore, the posterior distribution is

πpost[θ] =
fθ(x1) . . . fθ(xn)πprior[θ]

K

=
1

K

(
n

x

)
θx(1− θ)n−x

Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1

=
1

K

(
n

x

)
Γ(α + β)

Γ(α)Γ(β)
θx(1− θ)n−x θα−1(1− θ)β−1

=
Γ(n + α + β)

Γ(α + x)Γ(n + β − x)
θx+α−1(1− θ)n−x+β−1,

which is the pdf of the beta random variable with param-

eter α + x and n + β − x.
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Second solution: The posterior distribution is given by

πpost[θ] =
fθ(x1) . . . fθ(xn)πprior[θ]

K

=
1

K

(
n

x

)
θx(1− θ)n−x

Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1

=
1

K

(
n

x

)
Γ(α + β)

Γ(α)Γ(β)
θx+α−1(1− θ)n−x+β−1

= C θx+α−1(1− θ)n−x+β−1 ,

where C := 1
K

(
n
x

) Γ(α+β)
Γ(α)Γ(β). so πpost is equal to a constant

multiple of the pdf beta(x + α, n + β − x).
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Key observation:

• πpost is a constant multiple of the pdf beta(x+α,

n + β − x);

• πpost is a pdf ;

• Thus πpost is the pdf beta(x + α, n + β − x).

Hence we conclude that

πpost[θ] =
Γ(n + α + β)

Γ(α + x)Γ(n + β − x)
θx+α−1(1− θ)n−x+β−1.
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10 Bayes estimator

In the scenario of Bayes inference, the estimate for the un-

known parameter Θ is not a fixed number, but a random

variable. However, there are situations in real life where

we are asked to give a fixed number θ̂ as our estimate.

Then Bayesian estimator θ̂ would depend on the

penalty for errors created by incorrect guesses:

1. The loss function is (θ − θ̂)2, the square of the

error. Then best guess θ̂ would be the mean of the

posterior pdf.

2. The loss function is |θ − θ̂ |, the absolute value

of the error. Then best guess θ̂ would be the

median of the posterior pdf.

Remark 3. The quantity θ̂ in our notes is written as

w(y) in the textbook.
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11 Bayesian estimator: exam-

ple

Let X be the binomial random variable with parameters

n and θ. Let πprior be the beta pdf with parameters α

and β. Suppose that we have one sample with value x.

Compute the Bayesian estimator θ̂ that minimizes

• square of the error;

• absolute value error, if α + x = n + β − x = 1.
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Answer: We have previously calculated that πpost is the

pdf for beta(α + x, n + β − x). The Bayesian estimator

for the mean square error is then the mean of beta(α+x,

n + β − x),

θ̂ =
(α + x)

(α + x) + (n + β − x)
.

The Bayesian estimator for the absolute value error is the

median of beta(α + x, n + β − x) = beta(1,1), and is

thus equal to 1
2

1.

1The median of beta(α, β) is equal to 1
2 if α = β.
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